1 // SPDX-License-Identifier: GPL-2.0 2 3 //! A reference-counted pointer. 4 //! 5 //! This module implements a way for users to create reference-counted objects and pointers to 6 //! them. Such a pointer automatically increments and decrements the count, and drops the 7 //! underlying object when it reaches zero. It is also safe to use concurrently from multiple 8 //! threads. 9 //! 10 //! It is different from the standard library's [`Arc`] in a few ways: 11 //! 1. It is backed by the kernel's `refcount_t` type. 12 //! 2. It does not support weak references, which allows it to be half the size. 13 //! 3. It saturates the reference count instead of aborting when it goes over a threshold. 14 //! 4. It does not provide a `get_mut` method, so the ref counted object is pinned. 15 //! 16 //! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html 17 18 use crate::{ 19 alloc::{box_ext::BoxExt, AllocError, Flags}, 20 error::{self, Error}, 21 init::{self, InPlaceInit, Init, PinInit}, 22 try_init, 23 types::{ForeignOwnable, Opaque}, 24 }; 25 use alloc::boxed::Box; 26 use core::{ 27 alloc::Layout, 28 fmt, 29 marker::{PhantomData, Unsize}, 30 mem::{ManuallyDrop, MaybeUninit}, 31 ops::{Deref, DerefMut}, 32 pin::Pin, 33 ptr::NonNull, 34 }; 35 use macros::pin_data; 36 37 mod std_vendor; 38 39 /// A reference-counted pointer to an instance of `T`. 40 /// 41 /// The reference count is incremented when new instances of [`Arc`] are created, and decremented 42 /// when they are dropped. When the count reaches zero, the underlying `T` is also dropped. 43 /// 44 /// # Invariants 45 /// 46 /// The reference count on an instance of [`Arc`] is always non-zero. 47 /// The object pointed to by [`Arc`] is always pinned. 48 /// 49 /// # Examples 50 /// 51 /// ``` 52 /// use kernel::sync::Arc; 53 /// 54 /// struct Example { 55 /// a: u32, 56 /// b: u32, 57 /// } 58 /// 59 /// // Create a refcounted instance of `Example`. 60 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 61 /// 62 /// // Get a new pointer to `obj` and increment the refcount. 63 /// let cloned = obj.clone(); 64 /// 65 /// // Assert that both `obj` and `cloned` point to the same underlying object. 66 /// assert!(core::ptr::eq(&*obj, &*cloned)); 67 /// 68 /// // Destroy `obj` and decrement its refcount. 69 /// drop(obj); 70 /// 71 /// // Check that the values are still accessible through `cloned`. 72 /// assert_eq!(cloned.a, 10); 73 /// assert_eq!(cloned.b, 20); 74 /// 75 /// // The refcount drops to zero when `cloned` goes out of scope, and the memory is freed. 76 /// # Ok::<(), Error>(()) 77 /// ``` 78 /// 79 /// Using `Arc<T>` as the type of `self`: 80 /// 81 /// ``` 82 /// use kernel::sync::Arc; 83 /// 84 /// struct Example { 85 /// a: u32, 86 /// b: u32, 87 /// } 88 /// 89 /// impl Example { 90 /// fn take_over(self: Arc<Self>) { 91 /// // ... 92 /// } 93 /// 94 /// fn use_reference(self: &Arc<Self>) { 95 /// // ... 96 /// } 97 /// } 98 /// 99 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 100 /// obj.use_reference(); 101 /// obj.take_over(); 102 /// # Ok::<(), Error>(()) 103 /// ``` 104 /// 105 /// Coercion from `Arc<Example>` to `Arc<dyn MyTrait>`: 106 /// 107 /// ``` 108 /// use kernel::sync::{Arc, ArcBorrow}; 109 /// 110 /// trait MyTrait { 111 /// // Trait has a function whose `self` type is `Arc<Self>`. 112 /// fn example1(self: Arc<Self>) {} 113 /// 114 /// // Trait has a function whose `self` type is `ArcBorrow<'_, Self>`. 115 /// fn example2(self: ArcBorrow<'_, Self>) {} 116 /// } 117 /// 118 /// struct Example; 119 /// impl MyTrait for Example {} 120 /// 121 /// // `obj` has type `Arc<Example>`. 122 /// let obj: Arc<Example> = Arc::new(Example, GFP_KERNEL)?; 123 /// 124 /// // `coerced` has type `Arc<dyn MyTrait>`. 125 /// let coerced: Arc<dyn MyTrait> = obj; 126 /// # Ok::<(), Error>(()) 127 /// ``` 128 pub struct Arc<T: ?Sized> { 129 ptr: NonNull<ArcInner<T>>, 130 _p: PhantomData<ArcInner<T>>, 131 } 132 133 #[pin_data] 134 #[repr(C)] 135 struct ArcInner<T: ?Sized> { 136 refcount: Opaque<bindings::refcount_t>, 137 data: T, 138 } 139 140 impl<T: ?Sized> ArcInner<T> { 141 /// Converts a pointer to the contents of an [`Arc`] into a pointer to the [`ArcInner`]. 142 /// 143 /// # Safety 144 /// 145 /// `ptr` must have been returned by a previous call to [`Arc::into_raw`], and the `Arc` must 146 /// not yet have been destroyed. 147 unsafe fn container_of(ptr: *const T) -> NonNull<ArcInner<T>> { 148 let refcount_layout = Layout::new::<bindings::refcount_t>(); 149 // SAFETY: The caller guarantees that the pointer is valid. 150 let val_layout = Layout::for_value(unsafe { &*ptr }); 151 // SAFETY: We're computing the layout of a real struct that existed when compiling this 152 // binary, so its layout is not so large that it can trigger arithmetic overflow. 153 let val_offset = unsafe { refcount_layout.extend(val_layout).unwrap_unchecked().1 }; 154 155 // Pointer casts leave the metadata unchanged. This is okay because the metadata of `T` and 156 // `ArcInner<T>` is the same since `ArcInner` is a struct with `T` as its last field. 157 // 158 // This is documented at: 159 // <https://doc.rust-lang.org/std/ptr/trait.Pointee.html>. 160 let ptr = ptr as *const ArcInner<T>; 161 162 // SAFETY: The pointer is in-bounds of an allocation both before and after offsetting the 163 // pointer, since it originates from a previous call to `Arc::into_raw` on an `Arc` that is 164 // still valid. 165 let ptr = unsafe { ptr.byte_sub(val_offset) }; 166 167 // SAFETY: The pointer can't be null since you can't have an `ArcInner<T>` value at the null 168 // address. 169 unsafe { NonNull::new_unchecked(ptr.cast_mut()) } 170 } 171 } 172 173 // This is to allow [`Arc`] (and variants) to be used as the type of `self`. 174 impl<T: ?Sized> core::ops::Receiver for Arc<T> {} 175 176 // This is to allow coercion from `Arc<T>` to `Arc<U>` if `T` can be converted to the 177 // dynamically-sized type (DST) `U`. 178 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Arc<U>> for Arc<T> {} 179 180 // This is to allow `Arc<U>` to be dispatched on when `Arc<T>` can be coerced into `Arc<U>`. 181 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<Arc<U>> for Arc<T> {} 182 183 // SAFETY: It is safe to send `Arc<T>` to another thread when the underlying `T` is `Sync` because 184 // it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs 185 // `T` to be `Send` because any thread that has an `Arc<T>` may ultimately access `T` using a 186 // mutable reference when the reference count reaches zero and `T` is dropped. 187 unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {} 188 189 // SAFETY: It is safe to send `&Arc<T>` to another thread when the underlying `T` is `Sync` 190 // because it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, 191 // it needs `T` to be `Send` because any thread that has a `&Arc<T>` may clone it and get an 192 // `Arc<T>` on that thread, so the thread may ultimately access `T` using a mutable reference when 193 // the reference count reaches zero and `T` is dropped. 194 unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {} 195 196 impl<T> Arc<T> { 197 /// Constructs a new reference counted instance of `T`. 198 pub fn new(contents: T, flags: Flags) -> Result<Self, AllocError> { 199 // INVARIANT: The refcount is initialised to a non-zero value. 200 let value = ArcInner { 201 // SAFETY: There are no safety requirements for this FFI call. 202 refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }), 203 data: contents, 204 }; 205 206 let inner = <Box<_> as BoxExt<_>>::new(value, flags)?; 207 208 // SAFETY: We just created `inner` with a reference count of 1, which is owned by the new 209 // `Arc` object. 210 Ok(unsafe { Self::from_inner(Box::leak(inner).into()) }) 211 } 212 213 /// Use the given initializer to in-place initialize a `T`. 214 /// 215 /// If `T: !Unpin` it will not be able to move afterwards. 216 #[inline] 217 pub fn pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> error::Result<Self> 218 where 219 Error: From<E>, 220 { 221 UniqueArc::pin_init(init, flags).map(|u| u.into()) 222 } 223 224 /// Use the given initializer to in-place initialize a `T`. 225 /// 226 /// This is equivalent to [`Arc<T>::pin_init`], since an [`Arc`] is always pinned. 227 #[inline] 228 pub fn init<E>(init: impl Init<T, E>, flags: Flags) -> error::Result<Self> 229 where 230 Error: From<E>, 231 { 232 UniqueArc::init(init, flags).map(|u| u.into()) 233 } 234 } 235 236 impl<T: ?Sized> Arc<T> { 237 /// Constructs a new [`Arc`] from an existing [`ArcInner`]. 238 /// 239 /// # Safety 240 /// 241 /// The caller must ensure that `inner` points to a valid location and has a non-zero reference 242 /// count, one of which will be owned by the new [`Arc`] instance. 243 unsafe fn from_inner(inner: NonNull<ArcInner<T>>) -> Self { 244 // INVARIANT: By the safety requirements, the invariants hold. 245 Arc { 246 ptr: inner, 247 _p: PhantomData, 248 } 249 } 250 251 /// Convert the [`Arc`] into a raw pointer. 252 /// 253 /// The raw pointer has ownership of the refcount that this Arc object owned. 254 pub fn into_raw(self) -> *const T { 255 let ptr = self.ptr.as_ptr(); 256 core::mem::forget(self); 257 // SAFETY: The pointer is valid. 258 unsafe { core::ptr::addr_of!((*ptr).data) } 259 } 260 261 /// Recreates an [`Arc`] instance previously deconstructed via [`Arc::into_raw`]. 262 /// 263 /// # Safety 264 /// 265 /// `ptr` must have been returned by a previous call to [`Arc::into_raw`]. Additionally, it 266 /// must not be called more than once for each previous call to [`Arc::into_raw`]. 267 pub unsafe fn from_raw(ptr: *const T) -> Self { 268 // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an 269 // `Arc` that is still valid. 270 let ptr = unsafe { ArcInner::container_of(ptr) }; 271 272 // SAFETY: By the safety requirements we know that `ptr` came from `Arc::into_raw`, so the 273 // reference count held then will be owned by the new `Arc` object. 274 unsafe { Self::from_inner(ptr) } 275 } 276 277 /// Returns an [`ArcBorrow`] from the given [`Arc`]. 278 /// 279 /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method 280 /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised. 281 #[inline] 282 pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> { 283 // SAFETY: The constraint that the lifetime of the shared reference must outlive that of 284 // the returned `ArcBorrow` ensures that the object remains alive and that no mutable 285 // reference can be created. 286 unsafe { ArcBorrow::new(self.ptr) } 287 } 288 289 /// Compare whether two [`Arc`] pointers reference the same underlying object. 290 pub fn ptr_eq(this: &Self, other: &Self) -> bool { 291 core::ptr::eq(this.ptr.as_ptr(), other.ptr.as_ptr()) 292 } 293 294 /// Converts this [`Arc`] into a [`UniqueArc`], or destroys it if it is not unique. 295 /// 296 /// When this destroys the `Arc`, it does so while properly avoiding races. This means that 297 /// this method will never call the destructor of the value. 298 /// 299 /// # Examples 300 /// 301 /// ``` 302 /// use kernel::sync::{Arc, UniqueArc}; 303 /// 304 /// let arc = Arc::new(42, GFP_KERNEL)?; 305 /// let unique_arc = arc.into_unique_or_drop(); 306 /// 307 /// // The above conversion should succeed since refcount of `arc` is 1. 308 /// assert!(unique_arc.is_some()); 309 /// 310 /// assert_eq!(*(unique_arc.unwrap()), 42); 311 /// 312 /// # Ok::<(), Error>(()) 313 /// ``` 314 /// 315 /// ``` 316 /// use kernel::sync::{Arc, UniqueArc}; 317 /// 318 /// let arc = Arc::new(42, GFP_KERNEL)?; 319 /// let another = arc.clone(); 320 /// 321 /// let unique_arc = arc.into_unique_or_drop(); 322 /// 323 /// // The above conversion should fail since refcount of `arc` is >1. 324 /// assert!(unique_arc.is_none()); 325 /// 326 /// # Ok::<(), Error>(()) 327 /// ``` 328 pub fn into_unique_or_drop(self) -> Option<Pin<UniqueArc<T>>> { 329 // We will manually manage the refcount in this method, so we disable the destructor. 330 let me = ManuallyDrop::new(self); 331 // SAFETY: We own a refcount, so the pointer is still valid. 332 let refcount = unsafe { me.ptr.as_ref() }.refcount.get(); 333 334 // If the refcount reaches a non-zero value, then we have destroyed this `Arc` and will 335 // return without further touching the `Arc`. If the refcount reaches zero, then there are 336 // no other arcs, and we can create a `UniqueArc`. 337 // 338 // SAFETY: We own a refcount, so the pointer is not dangling. 339 let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) }; 340 if is_zero { 341 // SAFETY: We have exclusive access to the arc, so we can perform unsynchronized 342 // accesses to the refcount. 343 unsafe { core::ptr::write(refcount, bindings::REFCOUNT_INIT(1)) }; 344 345 // INVARIANT: We own the only refcount to this arc, so we may create a `UniqueArc`. We 346 // must pin the `UniqueArc` because the values was previously in an `Arc`, and they pin 347 // their values. 348 Some(Pin::from(UniqueArc { 349 inner: ManuallyDrop::into_inner(me), 350 })) 351 } else { 352 None 353 } 354 } 355 } 356 357 impl<T: 'static> ForeignOwnable for Arc<T> { 358 type Borrowed<'a> = ArcBorrow<'a, T>; 359 360 fn into_foreign(self) -> *const core::ffi::c_void { 361 ManuallyDrop::new(self).ptr.as_ptr() as _ 362 } 363 364 unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> ArcBorrow<'a, T> { 365 // SAFETY: By the safety requirement of this function, we know that `ptr` came from 366 // a previous call to `Arc::into_foreign`. 367 let inner = NonNull::new(ptr as *mut ArcInner<T>).unwrap(); 368 369 // SAFETY: The safety requirements of `from_foreign` ensure that the object remains alive 370 // for the lifetime of the returned value. 371 unsafe { ArcBorrow::new(inner) } 372 } 373 374 unsafe fn from_foreign(ptr: *const core::ffi::c_void) -> Self { 375 // SAFETY: By the safety requirement of this function, we know that `ptr` came from 376 // a previous call to `Arc::into_foreign`, which guarantees that `ptr` is valid and 377 // holds a reference count increment that is transferrable to us. 378 unsafe { Self::from_inner(NonNull::new(ptr as _).unwrap()) } 379 } 380 } 381 382 impl<T: ?Sized> Deref for Arc<T> { 383 type Target = T; 384 385 fn deref(&self) -> &Self::Target { 386 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is 387 // safe to dereference it. 388 unsafe { &self.ptr.as_ref().data } 389 } 390 } 391 392 impl<T: ?Sized> AsRef<T> for Arc<T> { 393 fn as_ref(&self) -> &T { 394 self.deref() 395 } 396 } 397 398 impl<T: ?Sized> Clone for Arc<T> { 399 fn clone(&self) -> Self { 400 // INVARIANT: C `refcount_inc` saturates the refcount, so it cannot overflow to zero. 401 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is 402 // safe to increment the refcount. 403 unsafe { bindings::refcount_inc(self.ptr.as_ref().refcount.get()) }; 404 405 // SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`. 406 unsafe { Self::from_inner(self.ptr) } 407 } 408 } 409 410 impl<T: ?Sized> Drop for Arc<T> { 411 fn drop(&mut self) { 412 // SAFETY: By the type invariant, there is necessarily a reference to the object. We cannot 413 // touch `refcount` after it's decremented to a non-zero value because another thread/CPU 414 // may concurrently decrement it to zero and free it. It is ok to have a raw pointer to 415 // freed/invalid memory as long as it is never dereferenced. 416 let refcount = unsafe { self.ptr.as_ref() }.refcount.get(); 417 418 // INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and 419 // this instance is being dropped, so the broken invariant is not observable. 420 // SAFETY: Also by the type invariant, we are allowed to decrement the refcount. 421 let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) }; 422 if is_zero { 423 // The count reached zero, we must free the memory. 424 // 425 // SAFETY: The pointer was initialised from the result of `Box::leak`. 426 unsafe { drop(Box::from_raw(self.ptr.as_ptr())) }; 427 } 428 } 429 } 430 431 impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> { 432 fn from(item: UniqueArc<T>) -> Self { 433 item.inner 434 } 435 } 436 437 impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Arc<T> { 438 fn from(item: Pin<UniqueArc<T>>) -> Self { 439 // SAFETY: The type invariants of `Arc` guarantee that the data is pinned. 440 unsafe { Pin::into_inner_unchecked(item).inner } 441 } 442 } 443 444 /// A borrowed reference to an [`Arc`] instance. 445 /// 446 /// For cases when one doesn't ever need to increment the refcount on the allocation, it is simpler 447 /// to use just `&T`, which we can trivially get from an [`Arc<T>`] instance. 448 /// 449 /// However, when one may need to increment the refcount, it is preferable to use an `ArcBorrow<T>` 450 /// over `&Arc<T>` because the latter results in a double-indirection: a pointer (shared reference) 451 /// to a pointer ([`Arc<T>`]) to the object (`T`). An [`ArcBorrow`] eliminates this double 452 /// indirection while still allowing one to increment the refcount and getting an [`Arc<T>`] when/if 453 /// needed. 454 /// 455 /// # Invariants 456 /// 457 /// There are no mutable references to the underlying [`Arc`], and it remains valid for the 458 /// lifetime of the [`ArcBorrow`] instance. 459 /// 460 /// # Example 461 /// 462 /// ``` 463 /// use kernel::sync::{Arc, ArcBorrow}; 464 /// 465 /// struct Example; 466 /// 467 /// fn do_something(e: ArcBorrow<'_, Example>) -> Arc<Example> { 468 /// e.into() 469 /// } 470 /// 471 /// let obj = Arc::new(Example, GFP_KERNEL)?; 472 /// let cloned = do_something(obj.as_arc_borrow()); 473 /// 474 /// // Assert that both `obj` and `cloned` point to the same underlying object. 475 /// assert!(core::ptr::eq(&*obj, &*cloned)); 476 /// # Ok::<(), Error>(()) 477 /// ``` 478 /// 479 /// Using `ArcBorrow<T>` as the type of `self`: 480 /// 481 /// ``` 482 /// use kernel::sync::{Arc, ArcBorrow}; 483 /// 484 /// struct Example { 485 /// a: u32, 486 /// b: u32, 487 /// } 488 /// 489 /// impl Example { 490 /// fn use_reference(self: ArcBorrow<'_, Self>) { 491 /// // ... 492 /// } 493 /// } 494 /// 495 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 496 /// obj.as_arc_borrow().use_reference(); 497 /// # Ok::<(), Error>(()) 498 /// ``` 499 pub struct ArcBorrow<'a, T: ?Sized + 'a> { 500 inner: NonNull<ArcInner<T>>, 501 _p: PhantomData<&'a ()>, 502 } 503 504 // This is to allow [`ArcBorrow`] (and variants) to be used as the type of `self`. 505 impl<T: ?Sized> core::ops::Receiver for ArcBorrow<'_, T> {} 506 507 // This is to allow `ArcBorrow<U>` to be dispatched on when `ArcBorrow<T>` can be coerced into 508 // `ArcBorrow<U>`. 509 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<ArcBorrow<'_, U>> 510 for ArcBorrow<'_, T> 511 { 512 } 513 514 impl<T: ?Sized> Clone for ArcBorrow<'_, T> { 515 fn clone(&self) -> Self { 516 *self 517 } 518 } 519 520 impl<T: ?Sized> Copy for ArcBorrow<'_, T> {} 521 522 impl<T: ?Sized> ArcBorrow<'_, T> { 523 /// Creates a new [`ArcBorrow`] instance. 524 /// 525 /// # Safety 526 /// 527 /// Callers must ensure the following for the lifetime of the returned [`ArcBorrow`] instance: 528 /// 1. That `inner` remains valid; 529 /// 2. That no mutable references to `inner` are created. 530 unsafe fn new(inner: NonNull<ArcInner<T>>) -> Self { 531 // INVARIANT: The safety requirements guarantee the invariants. 532 Self { 533 inner, 534 _p: PhantomData, 535 } 536 } 537 538 /// Creates an [`ArcBorrow`] to an [`Arc`] that has previously been deconstructed with 539 /// [`Arc::into_raw`]. 540 /// 541 /// # Safety 542 /// 543 /// * The provided pointer must originate from a call to [`Arc::into_raw`]. 544 /// * For the duration of the lifetime annotated on this `ArcBorrow`, the reference count must 545 /// not hit zero. 546 /// * For the duration of the lifetime annotated on this `ArcBorrow`, there must not be a 547 /// [`UniqueArc`] reference to this value. 548 pub unsafe fn from_raw(ptr: *const T) -> Self { 549 // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an 550 // `Arc` that is still valid. 551 let ptr = unsafe { ArcInner::container_of(ptr) }; 552 553 // SAFETY: The caller promises that the value remains valid since the reference count must 554 // not hit zero, and no mutable reference will be created since that would involve a 555 // `UniqueArc`. 556 unsafe { Self::new(ptr) } 557 } 558 } 559 560 impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc<T> { 561 fn from(b: ArcBorrow<'_, T>) -> Self { 562 // SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop` 563 // guarantees that `drop` isn't called, so it's ok that the temporary `Arc` doesn't own the 564 // increment. 565 ManuallyDrop::new(unsafe { Arc::from_inner(b.inner) }) 566 .deref() 567 .clone() 568 } 569 } 570 571 impl<T: ?Sized> Deref for ArcBorrow<'_, T> { 572 type Target = T; 573 574 fn deref(&self) -> &Self::Target { 575 // SAFETY: By the type invariant, the underlying object is still alive with no mutable 576 // references to it, so it is safe to create a shared reference. 577 unsafe { &self.inner.as_ref().data } 578 } 579 } 580 581 /// A refcounted object that is known to have a refcount of 1. 582 /// 583 /// It is mutable and can be converted to an [`Arc`] so that it can be shared. 584 /// 585 /// # Invariants 586 /// 587 /// `inner` always has a reference count of 1. 588 /// 589 /// # Examples 590 /// 591 /// In the following example, we make changes to the inner object before turning it into an 592 /// `Arc<Test>` object (after which point, it cannot be mutated directly). Note that `x.into()` 593 /// cannot fail. 594 /// 595 /// ``` 596 /// use kernel::sync::{Arc, UniqueArc}; 597 /// 598 /// struct Example { 599 /// a: u32, 600 /// b: u32, 601 /// } 602 /// 603 /// fn test() -> Result<Arc<Example>> { 604 /// let mut x = UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 605 /// x.a += 1; 606 /// x.b += 1; 607 /// Ok(x.into()) 608 /// } 609 /// 610 /// # test().unwrap(); 611 /// ``` 612 /// 613 /// In the following example we first allocate memory for a refcounted `Example` but we don't 614 /// initialise it on allocation. We do initialise it later with a call to [`UniqueArc::write`], 615 /// followed by a conversion to `Arc<Example>`. This is particularly useful when allocation happens 616 /// in one context (e.g., sleepable) and initialisation in another (e.g., atomic): 617 /// 618 /// ``` 619 /// use kernel::sync::{Arc, UniqueArc}; 620 /// 621 /// struct Example { 622 /// a: u32, 623 /// b: u32, 624 /// } 625 /// 626 /// fn test() -> Result<Arc<Example>> { 627 /// let x = UniqueArc::new_uninit(GFP_KERNEL)?; 628 /// Ok(x.write(Example { a: 10, b: 20 }).into()) 629 /// } 630 /// 631 /// # test().unwrap(); 632 /// ``` 633 /// 634 /// In the last example below, the caller gets a pinned instance of `Example` while converting to 635 /// `Arc<Example>`; this is useful in scenarios where one needs a pinned reference during 636 /// initialisation, for example, when initialising fields that are wrapped in locks. 637 /// 638 /// ``` 639 /// use kernel::sync::{Arc, UniqueArc}; 640 /// 641 /// struct Example { 642 /// a: u32, 643 /// b: u32, 644 /// } 645 /// 646 /// fn test() -> Result<Arc<Example>> { 647 /// let mut pinned = Pin::from(UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?); 648 /// // We can modify `pinned` because it is `Unpin`. 649 /// pinned.as_mut().a += 1; 650 /// Ok(pinned.into()) 651 /// } 652 /// 653 /// # test().unwrap(); 654 /// ``` 655 pub struct UniqueArc<T: ?Sized> { 656 inner: Arc<T>, 657 } 658 659 impl<T> UniqueArc<T> { 660 /// Tries to allocate a new [`UniqueArc`] instance. 661 pub fn new(value: T, flags: Flags) -> Result<Self, AllocError> { 662 Ok(Self { 663 // INVARIANT: The newly-created object has a refcount of 1. 664 inner: Arc::new(value, flags)?, 665 }) 666 } 667 668 /// Tries to allocate a new [`UniqueArc`] instance whose contents are not initialised yet. 669 pub fn new_uninit(flags: Flags) -> Result<UniqueArc<MaybeUninit<T>>, AllocError> { 670 // INVARIANT: The refcount is initialised to a non-zero value. 671 let inner = Box::try_init::<AllocError>( 672 try_init!(ArcInner { 673 // SAFETY: There are no safety requirements for this FFI call. 674 refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }), 675 data <- init::uninit::<T, AllocError>(), 676 }? AllocError), 677 flags, 678 )?; 679 Ok(UniqueArc { 680 // INVARIANT: The newly-created object has a refcount of 1. 681 // SAFETY: The pointer from the `Box` is valid. 682 inner: unsafe { Arc::from_inner(Box::leak(inner).into()) }, 683 }) 684 } 685 } 686 687 impl<T> UniqueArc<MaybeUninit<T>> { 688 /// Converts a `UniqueArc<MaybeUninit<T>>` into a `UniqueArc<T>` by writing a value into it. 689 pub fn write(mut self, value: T) -> UniqueArc<T> { 690 self.deref_mut().write(value); 691 // SAFETY: We just wrote the value to be initialized. 692 unsafe { self.assume_init() } 693 } 694 695 /// Unsafely assume that `self` is initialized. 696 /// 697 /// # Safety 698 /// 699 /// The caller guarantees that the value behind this pointer has been initialized. It is 700 /// *immediate* UB to call this when the value is not initialized. 701 pub unsafe fn assume_init(self) -> UniqueArc<T> { 702 let inner = ManuallyDrop::new(self).inner.ptr; 703 UniqueArc { 704 // SAFETY: The new `Arc` is taking over `ptr` from `self.inner` (which won't be 705 // dropped). The types are compatible because `MaybeUninit<T>` is compatible with `T`. 706 inner: unsafe { Arc::from_inner(inner.cast()) }, 707 } 708 } 709 710 /// Initialize `self` using the given initializer. 711 pub fn init_with<E>(mut self, init: impl Init<T, E>) -> core::result::Result<UniqueArc<T>, E> { 712 // SAFETY: The supplied pointer is valid for initialization. 713 match unsafe { init.__init(self.as_mut_ptr()) } { 714 // SAFETY: Initialization completed successfully. 715 Ok(()) => Ok(unsafe { self.assume_init() }), 716 Err(err) => Err(err), 717 } 718 } 719 720 /// Pin-initialize `self` using the given pin-initializer. 721 pub fn pin_init_with<E>( 722 mut self, 723 init: impl PinInit<T, E>, 724 ) -> core::result::Result<Pin<UniqueArc<T>>, E> { 725 // SAFETY: The supplied pointer is valid for initialization and we will later pin the value 726 // to ensure it does not move. 727 match unsafe { init.__pinned_init(self.as_mut_ptr()) } { 728 // SAFETY: Initialization completed successfully. 729 Ok(()) => Ok(unsafe { self.assume_init() }.into()), 730 Err(err) => Err(err), 731 } 732 } 733 } 734 735 impl<T: ?Sized> From<UniqueArc<T>> for Pin<UniqueArc<T>> { 736 fn from(obj: UniqueArc<T>) -> Self { 737 // SAFETY: It is not possible to move/replace `T` inside a `Pin<UniqueArc<T>>` (unless `T` 738 // is `Unpin`), so it is ok to convert it to `Pin<UniqueArc<T>>`. 739 unsafe { Pin::new_unchecked(obj) } 740 } 741 } 742 743 impl<T: ?Sized> Deref for UniqueArc<T> { 744 type Target = T; 745 746 fn deref(&self) -> &Self::Target { 747 self.inner.deref() 748 } 749 } 750 751 impl<T: ?Sized> DerefMut for UniqueArc<T> { 752 fn deref_mut(&mut self) -> &mut Self::Target { 753 // SAFETY: By the `Arc` type invariant, there is necessarily a reference to the object, so 754 // it is safe to dereference it. Additionally, we know there is only one reference when 755 // it's inside a `UniqueArc`, so it is safe to get a mutable reference. 756 unsafe { &mut self.inner.ptr.as_mut().data } 757 } 758 } 759 760 impl<T: fmt::Display + ?Sized> fmt::Display for UniqueArc<T> { 761 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 762 fmt::Display::fmt(self.deref(), f) 763 } 764 } 765 766 impl<T: fmt::Display + ?Sized> fmt::Display for Arc<T> { 767 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 768 fmt::Display::fmt(self.deref(), f) 769 } 770 } 771 772 impl<T: fmt::Debug + ?Sized> fmt::Debug for UniqueArc<T> { 773 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 774 fmt::Debug::fmt(self.deref(), f) 775 } 776 } 777 778 impl<T: fmt::Debug + ?Sized> fmt::Debug for Arc<T> { 779 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 780 fmt::Debug::fmt(self.deref(), f) 781 } 782 } 783