1 // SPDX-License-Identifier: GPL-2.0 2 3 //! A reference-counted pointer. 4 //! 5 //! This module implements a way for users to create reference-counted objects and pointers to 6 //! them. Such a pointer automatically increments and decrements the count, and drops the 7 //! underlying object when it reaches zero. It is also safe to use concurrently from multiple 8 //! threads. 9 //! 10 //! It is different from the standard library's [`Arc`] in a few ways: 11 //! 1. It is backed by the kernel's [`Refcount`] type. 12 //! 2. It does not support weak references, which allows it to be half the size. 13 //! 3. It saturates the reference count instead of aborting when it goes over a threshold. 14 //! 4. It does not provide a `get_mut` method, so the ref counted object is pinned. 15 //! 5. The object in [`Arc`] is pinned implicitly. 16 //! 17 //! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html 18 19 use crate::{ 20 alloc::{AllocError, Flags, KBox}, 21 ffi::c_void, 22 fmt, 23 init::InPlaceInit, 24 sync::Refcount, 25 try_init, 26 types::ForeignOwnable, 27 }; 28 use core::{ 29 alloc::Layout, 30 borrow::{Borrow, BorrowMut}, 31 marker::PhantomData, 32 mem::{ManuallyDrop, MaybeUninit}, 33 ops::{Deref, DerefMut}, 34 pin::Pin, 35 ptr::NonNull, 36 }; 37 use pin_init::{self, pin_data, InPlaceWrite, Init, PinInit}; 38 39 mod std_vendor; 40 41 /// A reference-counted pointer to an instance of `T`. 42 /// 43 /// The reference count is incremented when new instances of [`Arc`] are created, and decremented 44 /// when they are dropped. When the count reaches zero, the underlying `T` is also dropped. 45 /// 46 /// # Invariants 47 /// 48 /// The reference count on an instance of [`Arc`] is always non-zero. 49 /// The object pointed to by [`Arc`] is always pinned. 50 /// 51 /// # Examples 52 /// 53 /// ``` 54 /// use kernel::sync::Arc; 55 /// 56 /// struct Example { 57 /// a: u32, 58 /// b: u32, 59 /// } 60 /// 61 /// // Create a refcounted instance of `Example`. 62 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 63 /// 64 /// // Get a new pointer to `obj` and increment the refcount. 65 /// let cloned = obj.clone(); 66 /// 67 /// // Assert that both `obj` and `cloned` point to the same underlying object. 68 /// assert!(core::ptr::eq(&*obj, &*cloned)); 69 /// 70 /// // Destroy `obj` and decrement its refcount. 71 /// drop(obj); 72 /// 73 /// // Check that the values are still accessible through `cloned`. 74 /// assert_eq!(cloned.a, 10); 75 /// assert_eq!(cloned.b, 20); 76 /// 77 /// // The refcount drops to zero when `cloned` goes out of scope, and the memory is freed. 78 /// # Ok::<(), Error>(()) 79 /// ``` 80 /// 81 /// Using `Arc<T>` as the type of `self`: 82 /// 83 /// ``` 84 /// use kernel::sync::Arc; 85 /// 86 /// struct Example { 87 /// a: u32, 88 /// b: u32, 89 /// } 90 /// 91 /// impl Example { 92 /// fn take_over(self: Arc<Self>) { 93 /// // ... 94 /// } 95 /// 96 /// fn use_reference(self: &Arc<Self>) { 97 /// // ... 98 /// } 99 /// } 100 /// 101 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 102 /// obj.use_reference(); 103 /// obj.take_over(); 104 /// # Ok::<(), Error>(()) 105 /// ``` 106 /// 107 /// Coercion from `Arc<Example>` to `Arc<dyn MyTrait>`: 108 /// 109 /// ``` 110 /// use kernel::sync::{Arc, ArcBorrow}; 111 /// 112 /// trait MyTrait { 113 /// // Trait has a function whose `self` type is `Arc<Self>`. 114 /// fn example1(self: Arc<Self>) {} 115 /// 116 /// // Trait has a function whose `self` type is `ArcBorrow<'_, Self>`. 117 /// fn example2(self: ArcBorrow<'_, Self>) {} 118 /// } 119 /// 120 /// struct Example; 121 /// impl MyTrait for Example {} 122 /// 123 /// // `obj` has type `Arc<Example>`. 124 /// let obj: Arc<Example> = Arc::new(Example, GFP_KERNEL)?; 125 /// 126 /// // `coerced` has type `Arc<dyn MyTrait>`. 127 /// let coerced: Arc<dyn MyTrait> = obj; 128 /// # Ok::<(), Error>(()) 129 /// ``` 130 #[repr(transparent)] 131 #[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, derive(core::marker::CoercePointee))] 132 pub struct Arc<T: ?Sized> { 133 ptr: NonNull<ArcInner<T>>, 134 // NB: this informs dropck that objects of type `ArcInner<T>` may be used in `<Arc<T> as 135 // Drop>::drop`. Note that dropck already assumes that objects of type `T` may be used in 136 // `<Arc<T> as Drop>::drop` and the distinction between `T` and `ArcInner<T>` is not presently 137 // meaningful with respect to dropck - but this may change in the future so this is left here 138 // out of an abundance of caution. 139 // 140 // See <https://doc.rust-lang.org/nomicon/phantom-data.html#generic-parameters-and-drop-checking> 141 // for more detail on the semantics of dropck in the presence of `PhantomData`. 142 _p: PhantomData<ArcInner<T>>, 143 } 144 145 #[pin_data] 146 #[repr(C)] 147 struct ArcInner<T: ?Sized> { 148 refcount: Refcount, 149 data: T, 150 } 151 152 impl<T: ?Sized> ArcInner<T> { 153 /// Converts a pointer to the contents of an [`Arc`] into a pointer to the [`ArcInner`]. 154 /// 155 /// # Safety 156 /// 157 /// `ptr` must have been returned by a previous call to [`Arc::into_raw`], and the `Arc` must 158 /// not yet have been destroyed. 159 unsafe fn container_of(ptr: *const T) -> NonNull<ArcInner<T>> { 160 let refcount_layout = Layout::new::<Refcount>(); 161 // SAFETY: The caller guarantees that the pointer is valid. 162 let val_layout = Layout::for_value(unsafe { &*ptr }); 163 // SAFETY: We're computing the layout of a real struct that existed when compiling this 164 // binary, so its layout is not so large that it can trigger arithmetic overflow. 165 let val_offset = unsafe { refcount_layout.extend(val_layout).unwrap_unchecked().1 }; 166 167 // Pointer casts leave the metadata unchanged. This is okay because the metadata of `T` and 168 // `ArcInner<T>` is the same since `ArcInner` is a struct with `T` as its last field. 169 // 170 // This is documented at: 171 // <https://doc.rust-lang.org/std/ptr/trait.Pointee.html>. 172 let ptr = ptr as *const ArcInner<T>; 173 174 // SAFETY: The pointer is in-bounds of an allocation both before and after offsetting the 175 // pointer, since it originates from a previous call to `Arc::into_raw` on an `Arc` that is 176 // still valid. 177 let ptr = unsafe { ptr.byte_sub(val_offset) }; 178 179 // SAFETY: The pointer can't be null since you can't have an `ArcInner<T>` value at the null 180 // address. 181 unsafe { NonNull::new_unchecked(ptr.cast_mut()) } 182 } 183 } 184 185 // This is to allow coercion from `Arc<T>` to `Arc<U>` if `T` can be converted to the 186 // dynamically-sized type (DST) `U`. 187 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))] 188 impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Arc<U>> for Arc<T> {} 189 190 // This is to allow `Arc<U>` to be dispatched on when `Arc<T>` can be coerced into `Arc<U>`. 191 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))] 192 impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<Arc<U>> for Arc<T> {} 193 194 // SAFETY: It is safe to send `Arc<T>` to another thread when the underlying `T` is `Sync` because 195 // it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs 196 // `T` to be `Send` because any thread that has an `Arc<T>` may ultimately access `T` using a 197 // mutable reference when the reference count reaches zero and `T` is dropped. 198 unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {} 199 200 // SAFETY: It is safe to send `&Arc<T>` to another thread when the underlying `T` is `Sync` 201 // because it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, 202 // it needs `T` to be `Send` because any thread that has a `&Arc<T>` may clone it and get an 203 // `Arc<T>` on that thread, so the thread may ultimately access `T` using a mutable reference when 204 // the reference count reaches zero and `T` is dropped. 205 unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {} 206 207 impl<T> InPlaceInit<T> for Arc<T> { 208 type PinnedSelf = Self; 209 210 #[inline] 211 fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E> 212 where 213 E: From<AllocError>, 214 { 215 UniqueArc::try_pin_init(init, flags).map(|u| u.into()) 216 } 217 218 #[inline] 219 fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E> 220 where 221 E: From<AllocError>, 222 { 223 UniqueArc::try_init(init, flags).map(|u| u.into()) 224 } 225 } 226 227 impl<T> Arc<T> { 228 /// Constructs a new reference counted instance of `T`. 229 pub fn new(contents: T, flags: Flags) -> Result<Self, AllocError> { 230 // INVARIANT: The refcount is initialised to a non-zero value. 231 let value = ArcInner { 232 refcount: Refcount::new(1), 233 data: contents, 234 }; 235 236 let inner = KBox::new(value, flags)?; 237 let inner = KBox::leak(inner).into(); 238 239 // SAFETY: We just created `inner` with a reference count of 1, which is owned by the new 240 // `Arc` object. 241 Ok(unsafe { Self::from_inner(inner) }) 242 } 243 244 /// The offset that the value is stored at. 245 pub const DATA_OFFSET: usize = core::mem::offset_of!(ArcInner<T>, data); 246 } 247 248 impl<T: ?Sized> Arc<T> { 249 /// Constructs a new [`Arc`] from an existing [`ArcInner`]. 250 /// 251 /// # Safety 252 /// 253 /// The caller must ensure that `inner` points to a valid location and has a non-zero reference 254 /// count, one of which will be owned by the new [`Arc`] instance. 255 unsafe fn from_inner(inner: NonNull<ArcInner<T>>) -> Self { 256 // INVARIANT: By the safety requirements, the invariants hold. 257 Arc { 258 ptr: inner, 259 _p: PhantomData, 260 } 261 } 262 263 /// Convert the [`Arc`] into a raw pointer. 264 /// 265 /// The raw pointer has ownership of the refcount that this Arc object owned. 266 pub fn into_raw(self) -> *const T { 267 let ptr = self.ptr.as_ptr(); 268 core::mem::forget(self); 269 // SAFETY: The pointer is valid. 270 unsafe { core::ptr::addr_of!((*ptr).data) } 271 } 272 273 /// Return a raw pointer to the data in this arc. 274 pub fn as_ptr(this: &Self) -> *const T { 275 let ptr = this.ptr.as_ptr(); 276 277 // SAFETY: As `ptr` points to a valid allocation of type `ArcInner`, 278 // field projection to `data`is within bounds of the allocation. 279 unsafe { core::ptr::addr_of!((*ptr).data) } 280 } 281 282 /// Recreates an [`Arc`] instance previously deconstructed via [`Arc::into_raw`]. 283 /// 284 /// # Safety 285 /// 286 /// `ptr` must have been returned by a previous call to [`Arc::into_raw`]. Additionally, it 287 /// must not be called more than once for each previous call to [`Arc::into_raw`]. 288 pub unsafe fn from_raw(ptr: *const T) -> Self { 289 // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an 290 // `Arc` that is still valid. 291 let ptr = unsafe { ArcInner::container_of(ptr) }; 292 293 // SAFETY: By the safety requirements we know that `ptr` came from `Arc::into_raw`, so the 294 // reference count held then will be owned by the new `Arc` object. 295 unsafe { Self::from_inner(ptr) } 296 } 297 298 /// Returns an [`ArcBorrow`] from the given [`Arc`]. 299 /// 300 /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method 301 /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised. 302 #[inline] 303 pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> { 304 // SAFETY: The constraint that the lifetime of the shared reference must outlive that of 305 // the returned `ArcBorrow` ensures that the object remains alive and that no mutable 306 // reference can be created. 307 unsafe { ArcBorrow::new(self.ptr) } 308 } 309 310 /// Compare whether two [`Arc`] pointers reference the same underlying object. 311 pub fn ptr_eq(this: &Self, other: &Self) -> bool { 312 core::ptr::eq(this.ptr.as_ptr(), other.ptr.as_ptr()) 313 } 314 315 /// Converts this [`Arc`] into a [`UniqueArc`], or destroys it if it is not unique. 316 /// 317 /// When this destroys the `Arc`, it does so while properly avoiding races. This means that 318 /// this method will never call the destructor of the value. 319 /// 320 /// # Examples 321 /// 322 /// ``` 323 /// use kernel::sync::{Arc, UniqueArc}; 324 /// 325 /// let arc = Arc::new(42, GFP_KERNEL)?; 326 /// let unique_arc = Arc::into_unique_or_drop(arc); 327 /// 328 /// // The above conversion should succeed since refcount of `arc` is 1. 329 /// assert!(unique_arc.is_some()); 330 /// 331 /// assert_eq!(*(unique_arc.unwrap()), 42); 332 /// 333 /// # Ok::<(), Error>(()) 334 /// ``` 335 /// 336 /// ``` 337 /// use kernel::sync::{Arc, UniqueArc}; 338 /// 339 /// let arc = Arc::new(42, GFP_KERNEL)?; 340 /// let another = arc.clone(); 341 /// 342 /// let unique_arc = Arc::into_unique_or_drop(arc); 343 /// 344 /// // The above conversion should fail since refcount of `arc` is >1. 345 /// assert!(unique_arc.is_none()); 346 /// 347 /// # Ok::<(), Error>(()) 348 /// ``` 349 pub fn into_unique_or_drop(this: Self) -> Option<Pin<UniqueArc<T>>> { 350 // We will manually manage the refcount in this method, so we disable the destructor. 351 let this = ManuallyDrop::new(this); 352 // SAFETY: We own a refcount, so the pointer is still valid. 353 let refcount = unsafe { &this.ptr.as_ref().refcount }; 354 355 // If the refcount reaches a non-zero value, then we have destroyed this `Arc` and will 356 // return without further touching the `Arc`. If the refcount reaches zero, then there are 357 // no other arcs, and we can create a `UniqueArc`. 358 if refcount.dec_and_test() { 359 refcount.set(1); 360 361 // INVARIANT: We own the only refcount to this arc, so we may create a `UniqueArc`. We 362 // must pin the `UniqueArc` because the values was previously in an `Arc`, and they pin 363 // their values. 364 Some(Pin::from(UniqueArc { 365 inner: ManuallyDrop::into_inner(this), 366 })) 367 } else { 368 None 369 } 370 } 371 } 372 373 // SAFETY: The pointer returned by `into_foreign` was originally allocated as an 374 // `KBox<ArcInner<T>>`, so that type is what determines the alignment. 375 unsafe impl<T: 'static> ForeignOwnable for Arc<T> { 376 const FOREIGN_ALIGN: usize = <KBox<ArcInner<T>> as ForeignOwnable>::FOREIGN_ALIGN; 377 378 type Borrowed<'a> = ArcBorrow<'a, T>; 379 type BorrowedMut<'a> = Self::Borrowed<'a>; 380 381 fn into_foreign(self) -> *mut c_void { 382 ManuallyDrop::new(self).ptr.as_ptr().cast() 383 } 384 385 unsafe fn from_foreign(ptr: *mut c_void) -> Self { 386 // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous 387 // call to `Self::into_foreign`. 388 let inner = unsafe { NonNull::new_unchecked(ptr.cast::<ArcInner<T>>()) }; 389 390 // SAFETY: By the safety requirement of this function, we know that `ptr` came from 391 // a previous call to `Arc::into_foreign`, which guarantees that `ptr` is valid and 392 // holds a reference count increment that is transferrable to us. 393 unsafe { Self::from_inner(inner) } 394 } 395 396 unsafe fn borrow<'a>(ptr: *mut c_void) -> ArcBorrow<'a, T> { 397 // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous 398 // call to `Self::into_foreign`. 399 let inner = unsafe { NonNull::new_unchecked(ptr.cast::<ArcInner<T>>()) }; 400 401 // SAFETY: The safety requirements of `from_foreign` ensure that the object remains alive 402 // for the lifetime of the returned value. 403 unsafe { ArcBorrow::new(inner) } 404 } 405 406 unsafe fn borrow_mut<'a>(ptr: *mut c_void) -> ArcBorrow<'a, T> { 407 // SAFETY: The safety requirements for `borrow_mut` are a superset of the safety 408 // requirements for `borrow`. 409 unsafe { <Self as ForeignOwnable>::borrow(ptr) } 410 } 411 } 412 413 impl<T: ?Sized> Deref for Arc<T> { 414 type Target = T; 415 416 fn deref(&self) -> &Self::Target { 417 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is 418 // safe to dereference it. 419 unsafe { &self.ptr.as_ref().data } 420 } 421 } 422 423 impl<T: ?Sized> AsRef<T> for Arc<T> { 424 fn as_ref(&self) -> &T { 425 self.deref() 426 } 427 } 428 429 /// # Examples 430 /// 431 /// ``` 432 /// # use core::borrow::Borrow; 433 /// # use kernel::sync::Arc; 434 /// struct Foo<B: Borrow<u32>>(B); 435 /// 436 /// // Owned instance. 437 /// let owned = Foo(1); 438 /// 439 /// // Shared instance. 440 /// let arc = Arc::new(1, GFP_KERNEL)?; 441 /// let shared = Foo(arc.clone()); 442 /// 443 /// let i = 1; 444 /// // Borrowed from `i`. 445 /// let borrowed = Foo(&i); 446 /// # Ok::<(), Error>(()) 447 /// ``` 448 impl<T: ?Sized> Borrow<T> for Arc<T> { 449 fn borrow(&self) -> &T { 450 self.deref() 451 } 452 } 453 454 impl<T: ?Sized> Clone for Arc<T> { 455 fn clone(&self) -> Self { 456 // INVARIANT: `Refcount` saturates the refcount, so it cannot overflow to zero. 457 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is 458 // safe to increment the refcount. 459 unsafe { self.ptr.as_ref() }.refcount.inc(); 460 461 // SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`. 462 unsafe { Self::from_inner(self.ptr) } 463 } 464 } 465 466 impl<T: ?Sized> Drop for Arc<T> { 467 fn drop(&mut self) { 468 // INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and 469 // this instance is being dropped, so the broken invariant is not observable. 470 // SAFETY: By the type invariant, there is necessarily a reference to the object. 471 let is_zero = unsafe { self.ptr.as_ref() }.refcount.dec_and_test(); 472 if is_zero { 473 // The count reached zero, we must free the memory. 474 // 475 // SAFETY: The pointer was initialised from the result of `KBox::leak`. 476 unsafe { drop(KBox::from_raw(self.ptr.as_ptr())) }; 477 } 478 } 479 } 480 481 impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> { 482 fn from(item: UniqueArc<T>) -> Self { 483 item.inner 484 } 485 } 486 487 impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Arc<T> { 488 fn from(item: Pin<UniqueArc<T>>) -> Self { 489 // SAFETY: The type invariants of `Arc` guarantee that the data is pinned. 490 unsafe { Pin::into_inner_unchecked(item).inner } 491 } 492 } 493 494 /// A borrowed reference to an [`Arc`] instance. 495 /// 496 /// For cases when one doesn't ever need to increment the refcount on the allocation, it is simpler 497 /// to use just `&T`, which we can trivially get from an [`Arc<T>`] instance. 498 /// 499 /// However, when one may need to increment the refcount, it is preferable to use an `ArcBorrow<T>` 500 /// over `&Arc<T>` because the latter results in a double-indirection: a pointer (shared reference) 501 /// to a pointer ([`Arc<T>`]) to the object (`T`). An [`ArcBorrow`] eliminates this double 502 /// indirection while still allowing one to increment the refcount and getting an [`Arc<T>`] when/if 503 /// needed. 504 /// 505 /// # Invariants 506 /// 507 /// There are no mutable references to the underlying [`Arc`], and it remains valid for the 508 /// lifetime of the [`ArcBorrow`] instance. 509 /// 510 /// # Examples 511 /// 512 /// ``` 513 /// use kernel::sync::{Arc, ArcBorrow}; 514 /// 515 /// struct Example; 516 /// 517 /// fn do_something(e: ArcBorrow<'_, Example>) -> Arc<Example> { 518 /// e.into() 519 /// } 520 /// 521 /// let obj = Arc::new(Example, GFP_KERNEL)?; 522 /// let cloned = do_something(obj.as_arc_borrow()); 523 /// 524 /// // Assert that both `obj` and `cloned` point to the same underlying object. 525 /// assert!(core::ptr::eq(&*obj, &*cloned)); 526 /// # Ok::<(), Error>(()) 527 /// ``` 528 /// 529 /// Using `ArcBorrow<T>` as the type of `self`: 530 /// 531 /// ``` 532 /// use kernel::sync::{Arc, ArcBorrow}; 533 /// 534 /// struct Example { 535 /// a: u32, 536 /// b: u32, 537 /// } 538 /// 539 /// impl Example { 540 /// fn use_reference(self: ArcBorrow<'_, Self>) { 541 /// // ... 542 /// } 543 /// } 544 /// 545 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 546 /// obj.as_arc_borrow().use_reference(); 547 /// # Ok::<(), Error>(()) 548 /// ``` 549 #[repr(transparent)] 550 #[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, derive(core::marker::CoercePointee))] 551 pub struct ArcBorrow<'a, T: ?Sized + 'a> { 552 inner: NonNull<ArcInner<T>>, 553 _p: PhantomData<&'a ()>, 554 } 555 556 // This is to allow `ArcBorrow<U>` to be dispatched on when `ArcBorrow<T>` can be coerced into 557 // `ArcBorrow<U>`. 558 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))] 559 impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<ArcBorrow<'_, U>> 560 for ArcBorrow<'_, T> 561 { 562 } 563 564 impl<T: ?Sized> Clone for ArcBorrow<'_, T> { 565 fn clone(&self) -> Self { 566 *self 567 } 568 } 569 570 impl<T: ?Sized> Copy for ArcBorrow<'_, T> {} 571 572 impl<T: ?Sized> ArcBorrow<'_, T> { 573 /// Creates a new [`ArcBorrow`] instance. 574 /// 575 /// # Safety 576 /// 577 /// Callers must ensure the following for the lifetime of the returned [`ArcBorrow`] instance: 578 /// 1. That `inner` remains valid; 579 /// 2. That no mutable references to `inner` are created. 580 unsafe fn new(inner: NonNull<ArcInner<T>>) -> Self { 581 // INVARIANT: The safety requirements guarantee the invariants. 582 Self { 583 inner, 584 _p: PhantomData, 585 } 586 } 587 588 /// Creates an [`ArcBorrow`] to an [`Arc`] that has previously been deconstructed with 589 /// [`Arc::into_raw`] or [`Arc::as_ptr`]. 590 /// 591 /// # Safety 592 /// 593 /// * The provided pointer must originate from a call to [`Arc::into_raw`] or [`Arc::as_ptr`]. 594 /// * For the duration of the lifetime annotated on this `ArcBorrow`, the reference count must 595 /// not hit zero. 596 /// * For the duration of the lifetime annotated on this `ArcBorrow`, there must not be a 597 /// [`UniqueArc`] reference to this value. 598 pub unsafe fn from_raw(ptr: *const T) -> Self { 599 // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an 600 // `Arc` that is still valid. 601 let ptr = unsafe { ArcInner::container_of(ptr) }; 602 603 // SAFETY: The caller promises that the value remains valid since the reference count must 604 // not hit zero, and no mutable reference will be created since that would involve a 605 // `UniqueArc`. 606 unsafe { Self::new(ptr) } 607 } 608 } 609 610 impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc<T> { 611 fn from(b: ArcBorrow<'_, T>) -> Self { 612 // SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop` 613 // guarantees that `drop` isn't called, so it's ok that the temporary `Arc` doesn't own the 614 // increment. 615 ManuallyDrop::new(unsafe { Arc::from_inner(b.inner) }) 616 .deref() 617 .clone() 618 } 619 } 620 621 impl<T: ?Sized> Deref for ArcBorrow<'_, T> { 622 type Target = T; 623 624 fn deref(&self) -> &Self::Target { 625 // SAFETY: By the type invariant, the underlying object is still alive with no mutable 626 // references to it, so it is safe to create a shared reference. 627 unsafe { &self.inner.as_ref().data } 628 } 629 } 630 631 /// A refcounted object that is known to have a refcount of 1. 632 /// 633 /// It is mutable and can be converted to an [`Arc`] so that it can be shared. 634 /// 635 /// # Invariants 636 /// 637 /// `inner` always has a reference count of 1. 638 /// 639 /// # Examples 640 /// 641 /// In the following example, we make changes to the inner object before turning it into an 642 /// `Arc<Test>` object (after which point, it cannot be mutated directly). Note that `x.into()` 643 /// cannot fail. 644 /// 645 /// ``` 646 /// use kernel::sync::{Arc, UniqueArc}; 647 /// 648 /// struct Example { 649 /// a: u32, 650 /// b: u32, 651 /// } 652 /// 653 /// fn test() -> Result<Arc<Example>> { 654 /// let mut x = UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 655 /// x.a += 1; 656 /// x.b += 1; 657 /// Ok(x.into()) 658 /// } 659 /// 660 /// # test().unwrap(); 661 /// ``` 662 /// 663 /// In the following example we first allocate memory for a refcounted `Example` but we don't 664 /// initialise it on allocation. We do initialise it later with a call to [`UniqueArc::write`], 665 /// followed by a conversion to `Arc<Example>`. This is particularly useful when allocation happens 666 /// in one context (e.g., sleepable) and initialisation in another (e.g., atomic): 667 /// 668 /// ``` 669 /// use kernel::sync::{Arc, UniqueArc}; 670 /// 671 /// struct Example { 672 /// a: u32, 673 /// b: u32, 674 /// } 675 /// 676 /// fn test() -> Result<Arc<Example>> { 677 /// let x = UniqueArc::new_uninit(GFP_KERNEL)?; 678 /// Ok(x.write(Example { a: 10, b: 20 }).into()) 679 /// } 680 /// 681 /// # test().unwrap(); 682 /// ``` 683 /// 684 /// In the last example below, the caller gets a pinned instance of `Example` while converting to 685 /// `Arc<Example>`; this is useful in scenarios where one needs a pinned reference during 686 /// initialisation, for example, when initialising fields that are wrapped in locks. 687 /// 688 /// ``` 689 /// use kernel::sync::{Arc, UniqueArc}; 690 /// 691 /// struct Example { 692 /// a: u32, 693 /// b: u32, 694 /// } 695 /// 696 /// fn test() -> Result<Arc<Example>> { 697 /// let mut pinned = Pin::from(UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?); 698 /// // We can modify `pinned` because it is `Unpin`. 699 /// pinned.as_mut().a += 1; 700 /// Ok(pinned.into()) 701 /// } 702 /// 703 /// # test().unwrap(); 704 /// ``` 705 pub struct UniqueArc<T: ?Sized> { 706 inner: Arc<T>, 707 } 708 709 impl<T> InPlaceInit<T> for UniqueArc<T> { 710 type PinnedSelf = Pin<Self>; 711 712 #[inline] 713 fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E> 714 where 715 E: From<AllocError>, 716 { 717 UniqueArc::new_uninit(flags)?.write_pin_init(init) 718 } 719 720 #[inline] 721 fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E> 722 where 723 E: From<AllocError>, 724 { 725 UniqueArc::new_uninit(flags)?.write_init(init) 726 } 727 } 728 729 impl<T> InPlaceWrite<T> for UniqueArc<MaybeUninit<T>> { 730 type Initialized = UniqueArc<T>; 731 732 fn write_init<E>(mut self, init: impl Init<T, E>) -> Result<Self::Initialized, E> { 733 let slot = self.as_mut_ptr(); 734 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 735 // slot is valid. 736 unsafe { init.__init(slot)? }; 737 // SAFETY: All fields have been initialized. 738 Ok(unsafe { self.assume_init() }) 739 } 740 741 fn write_pin_init<E>(mut self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E> { 742 let slot = self.as_mut_ptr(); 743 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 744 // slot is valid and will not be moved, because we pin it later. 745 unsafe { init.__pinned_init(slot)? }; 746 // SAFETY: All fields have been initialized. 747 Ok(unsafe { self.assume_init() }.into()) 748 } 749 } 750 751 impl<T> UniqueArc<T> { 752 /// Tries to allocate a new [`UniqueArc`] instance. 753 pub fn new(value: T, flags: Flags) -> Result<Self, AllocError> { 754 Ok(Self { 755 // INVARIANT: The newly-created object has a refcount of 1. 756 inner: Arc::new(value, flags)?, 757 }) 758 } 759 760 /// Tries to allocate a new [`UniqueArc`] instance whose contents are not initialised yet. 761 pub fn new_uninit(flags: Flags) -> Result<UniqueArc<MaybeUninit<T>>, AllocError> { 762 // INVARIANT: The refcount is initialised to a non-zero value. 763 let inner = KBox::try_init::<AllocError>( 764 try_init!(ArcInner { 765 refcount: Refcount::new(1), 766 data <- pin_init::uninit::<T, AllocError>(), 767 }? AllocError), 768 flags, 769 )?; 770 Ok(UniqueArc { 771 // INVARIANT: The newly-created object has a refcount of 1. 772 // SAFETY: The pointer from the `KBox` is valid. 773 inner: unsafe { Arc::from_inner(KBox::leak(inner).into()) }, 774 }) 775 } 776 } 777 778 impl<T> UniqueArc<MaybeUninit<T>> { 779 /// Converts a `UniqueArc<MaybeUninit<T>>` into a `UniqueArc<T>` by writing a value into it. 780 pub fn write(mut self, value: T) -> UniqueArc<T> { 781 self.deref_mut().write(value); 782 // SAFETY: We just wrote the value to be initialized. 783 unsafe { self.assume_init() } 784 } 785 786 /// Unsafely assume that `self` is initialized. 787 /// 788 /// # Safety 789 /// 790 /// The caller guarantees that the value behind this pointer has been initialized. It is 791 /// *immediate* UB to call this when the value is not initialized. 792 pub unsafe fn assume_init(self) -> UniqueArc<T> { 793 let inner = ManuallyDrop::new(self).inner.ptr; 794 UniqueArc { 795 // SAFETY: The new `Arc` is taking over `ptr` from `self.inner` (which won't be 796 // dropped). The types are compatible because `MaybeUninit<T>` is compatible with `T`. 797 inner: unsafe { Arc::from_inner(inner.cast()) }, 798 } 799 } 800 801 /// Initialize `self` using the given initializer. 802 pub fn init_with<E>(mut self, init: impl Init<T, E>) -> core::result::Result<UniqueArc<T>, E> { 803 // SAFETY: The supplied pointer is valid for initialization. 804 match unsafe { init.__init(self.as_mut_ptr()) } { 805 // SAFETY: Initialization completed successfully. 806 Ok(()) => Ok(unsafe { self.assume_init() }), 807 Err(err) => Err(err), 808 } 809 } 810 811 /// Pin-initialize `self` using the given pin-initializer. 812 pub fn pin_init_with<E>( 813 mut self, 814 init: impl PinInit<T, E>, 815 ) -> core::result::Result<Pin<UniqueArc<T>>, E> { 816 // SAFETY: The supplied pointer is valid for initialization and we will later pin the value 817 // to ensure it does not move. 818 match unsafe { init.__pinned_init(self.as_mut_ptr()) } { 819 // SAFETY: Initialization completed successfully. 820 Ok(()) => Ok(unsafe { self.assume_init() }.into()), 821 Err(err) => Err(err), 822 } 823 } 824 } 825 826 impl<T: ?Sized> From<UniqueArc<T>> for Pin<UniqueArc<T>> { 827 fn from(obj: UniqueArc<T>) -> Self { 828 // SAFETY: It is not possible to move/replace `T` inside a `Pin<UniqueArc<T>>` (unless `T` 829 // is `Unpin`), so it is ok to convert it to `Pin<UniqueArc<T>>`. 830 unsafe { Pin::new_unchecked(obj) } 831 } 832 } 833 834 impl<T: ?Sized> Deref for UniqueArc<T> { 835 type Target = T; 836 837 fn deref(&self) -> &Self::Target { 838 self.inner.deref() 839 } 840 } 841 842 impl<T: ?Sized> DerefMut for UniqueArc<T> { 843 fn deref_mut(&mut self) -> &mut Self::Target { 844 // SAFETY: By the `Arc` type invariant, there is necessarily a reference to the object, so 845 // it is safe to dereference it. Additionally, we know there is only one reference when 846 // it's inside a `UniqueArc`, so it is safe to get a mutable reference. 847 unsafe { &mut self.inner.ptr.as_mut().data } 848 } 849 } 850 851 /// # Examples 852 /// 853 /// ``` 854 /// # use core::borrow::Borrow; 855 /// # use kernel::sync::UniqueArc; 856 /// struct Foo<B: Borrow<u32>>(B); 857 /// 858 /// // Owned instance. 859 /// let owned = Foo(1); 860 /// 861 /// // Owned instance using `UniqueArc`. 862 /// let arc = UniqueArc::new(1, GFP_KERNEL)?; 863 /// let shared = Foo(arc); 864 /// 865 /// let i = 1; 866 /// // Borrowed from `i`. 867 /// let borrowed = Foo(&i); 868 /// # Ok::<(), Error>(()) 869 /// ``` 870 impl<T: ?Sized> Borrow<T> for UniqueArc<T> { 871 fn borrow(&self) -> &T { 872 self.deref() 873 } 874 } 875 876 /// # Examples 877 /// 878 /// ``` 879 /// # use core::borrow::BorrowMut; 880 /// # use kernel::sync::UniqueArc; 881 /// struct Foo<B: BorrowMut<u32>>(B); 882 /// 883 /// // Owned instance. 884 /// let owned = Foo(1); 885 /// 886 /// // Owned instance using `UniqueArc`. 887 /// let arc = UniqueArc::new(1, GFP_KERNEL)?; 888 /// let shared = Foo(arc); 889 /// 890 /// let mut i = 1; 891 /// // Borrowed from `i`. 892 /// let borrowed = Foo(&mut i); 893 /// # Ok::<(), Error>(()) 894 /// ``` 895 impl<T: ?Sized> BorrowMut<T> for UniqueArc<T> { 896 fn borrow_mut(&mut self) -> &mut T { 897 self.deref_mut() 898 } 899 } 900 901 impl<T: fmt::Display + ?Sized> fmt::Display for UniqueArc<T> { 902 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 903 fmt::Display::fmt(self.deref(), f) 904 } 905 } 906 907 impl<T: fmt::Display + ?Sized> fmt::Display for Arc<T> { 908 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 909 fmt::Display::fmt(self.deref(), f) 910 } 911 } 912 913 impl<T: fmt::Debug + ?Sized> fmt::Debug for UniqueArc<T> { 914 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 915 fmt::Debug::fmt(self.deref(), f) 916 } 917 } 918 919 impl<T: fmt::Debug + ?Sized> fmt::Debug for Arc<T> { 920 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 921 fmt::Debug::fmt(self.deref(), f) 922 } 923 } 924