xref: /linux/rust/kernel/sync/arc.rs (revision 22c55fb9eb92395d999b8404d73e58540d11bdd8)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! A reference-counted pointer.
4 //!
5 //! This module implements a way for users to create reference-counted objects and pointers to
6 //! them. Such a pointer automatically increments and decrements the count, and drops the
7 //! underlying object when it reaches zero. It is also safe to use concurrently from multiple
8 //! threads.
9 //!
10 //! It is different from the standard library's [`Arc`] in a few ways:
11 //! 1. It is backed by the kernel's `refcount_t` type.
12 //! 2. It does not support weak references, which allows it to be half the size.
13 //! 3. It saturates the reference count instead of aborting when it goes over a threshold.
14 //! 4. It does not provide a `get_mut` method, so the ref counted object is pinned.
15 //! 5. The object in [`Arc`] is pinned implicitly.
16 //!
17 //! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html
18 
19 use crate::{
20     alloc::{AllocError, Flags, KBox},
21     bindings,
22     ffi::c_void,
23     init::InPlaceInit,
24     try_init,
25     types::{ForeignOwnable, Opaque},
26 };
27 use core::{
28     alloc::Layout,
29     borrow::{Borrow, BorrowMut},
30     fmt,
31     marker::PhantomData,
32     mem::{ManuallyDrop, MaybeUninit},
33     ops::{Deref, DerefMut},
34     pin::Pin,
35     ptr::NonNull,
36 };
37 use pin_init::{self, pin_data, InPlaceWrite, Init, PinInit};
38 
39 mod std_vendor;
40 
41 /// A reference-counted pointer to an instance of `T`.
42 ///
43 /// The reference count is incremented when new instances of [`Arc`] are created, and decremented
44 /// when they are dropped. When the count reaches zero, the underlying `T` is also dropped.
45 ///
46 /// # Invariants
47 ///
48 /// The reference count on an instance of [`Arc`] is always non-zero.
49 /// The object pointed to by [`Arc`] is always pinned.
50 ///
51 /// # Examples
52 ///
53 /// ```
54 /// use kernel::sync::Arc;
55 ///
56 /// struct Example {
57 ///     a: u32,
58 ///     b: u32,
59 /// }
60 ///
61 /// // Create a refcounted instance of `Example`.
62 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
63 ///
64 /// // Get a new pointer to `obj` and increment the refcount.
65 /// let cloned = obj.clone();
66 ///
67 /// // Assert that both `obj` and `cloned` point to the same underlying object.
68 /// assert!(core::ptr::eq(&*obj, &*cloned));
69 ///
70 /// // Destroy `obj` and decrement its refcount.
71 /// drop(obj);
72 ///
73 /// // Check that the values are still accessible through `cloned`.
74 /// assert_eq!(cloned.a, 10);
75 /// assert_eq!(cloned.b, 20);
76 ///
77 /// // The refcount drops to zero when `cloned` goes out of scope, and the memory is freed.
78 /// # Ok::<(), Error>(())
79 /// ```
80 ///
81 /// Using `Arc<T>` as the type of `self`:
82 ///
83 /// ```
84 /// use kernel::sync::Arc;
85 ///
86 /// struct Example {
87 ///     a: u32,
88 ///     b: u32,
89 /// }
90 ///
91 /// impl Example {
92 ///     fn take_over(self: Arc<Self>) {
93 ///         // ...
94 ///     }
95 ///
96 ///     fn use_reference(self: &Arc<Self>) {
97 ///         // ...
98 ///     }
99 /// }
100 ///
101 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
102 /// obj.use_reference();
103 /// obj.take_over();
104 /// # Ok::<(), Error>(())
105 /// ```
106 ///
107 /// Coercion from `Arc<Example>` to `Arc<dyn MyTrait>`:
108 ///
109 /// ```
110 /// use kernel::sync::{Arc, ArcBorrow};
111 ///
112 /// trait MyTrait {
113 ///     // Trait has a function whose `self` type is `Arc<Self>`.
114 ///     fn example1(self: Arc<Self>) {}
115 ///
116 ///     // Trait has a function whose `self` type is `ArcBorrow<'_, Self>`.
117 ///     fn example2(self: ArcBorrow<'_, Self>) {}
118 /// }
119 ///
120 /// struct Example;
121 /// impl MyTrait for Example {}
122 ///
123 /// // `obj` has type `Arc<Example>`.
124 /// let obj: Arc<Example> = Arc::new(Example, GFP_KERNEL)?;
125 ///
126 /// // `coerced` has type `Arc<dyn MyTrait>`.
127 /// let coerced: Arc<dyn MyTrait> = obj;
128 /// # Ok::<(), Error>(())
129 /// ```
130 #[repr(transparent)]
131 #[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, derive(core::marker::CoercePointee))]
132 pub struct Arc<T: ?Sized> {
133     ptr: NonNull<ArcInner<T>>,
134     // NB: this informs dropck that objects of type `ArcInner<T>` may be used in `<Arc<T> as
135     // Drop>::drop`. Note that dropck already assumes that objects of type `T` may be used in
136     // `<Arc<T> as Drop>::drop` and the distinction between `T` and `ArcInner<T>` is not presently
137     // meaningful with respect to dropck - but this may change in the future so this is left here
138     // out of an abundance of caution.
139     //
140     // See <https://doc.rust-lang.org/nomicon/phantom-data.html#generic-parameters-and-drop-checking>
141     // for more detail on the semantics of dropck in the presence of `PhantomData`.
142     _p: PhantomData<ArcInner<T>>,
143 }
144 
145 #[pin_data]
146 #[repr(C)]
147 struct ArcInner<T: ?Sized> {
148     refcount: Opaque<bindings::refcount_t>,
149     data: T,
150 }
151 
152 impl<T: ?Sized> ArcInner<T> {
153     /// Converts a pointer to the contents of an [`Arc`] into a pointer to the [`ArcInner`].
154     ///
155     /// # Safety
156     ///
157     /// `ptr` must have been returned by a previous call to [`Arc::into_raw`], and the `Arc` must
158     /// not yet have been destroyed.
159     unsafe fn container_of(ptr: *const T) -> NonNull<ArcInner<T>> {
160         let refcount_layout = Layout::new::<bindings::refcount_t>();
161         // SAFETY: The caller guarantees that the pointer is valid.
162         let val_layout = Layout::for_value(unsafe { &*ptr });
163         // SAFETY: We're computing the layout of a real struct that existed when compiling this
164         // binary, so its layout is not so large that it can trigger arithmetic overflow.
165         let val_offset = unsafe { refcount_layout.extend(val_layout).unwrap_unchecked().1 };
166 
167         // Pointer casts leave the metadata unchanged. This is okay because the metadata of `T` and
168         // `ArcInner<T>` is the same since `ArcInner` is a struct with `T` as its last field.
169         //
170         // This is documented at:
171         // <https://doc.rust-lang.org/std/ptr/trait.Pointee.html>.
172         let ptr = ptr as *const ArcInner<T>;
173 
174         // SAFETY: The pointer is in-bounds of an allocation both before and after offsetting the
175         // pointer, since it originates from a previous call to `Arc::into_raw` on an `Arc` that is
176         // still valid.
177         let ptr = unsafe { ptr.byte_sub(val_offset) };
178 
179         // SAFETY: The pointer can't be null since you can't have an `ArcInner<T>` value at the null
180         // address.
181         unsafe { NonNull::new_unchecked(ptr.cast_mut()) }
182     }
183 }
184 
185 // This is to allow coercion from `Arc<T>` to `Arc<U>` if `T` can be converted to the
186 // dynamically-sized type (DST) `U`.
187 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))]
188 impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Arc<U>> for Arc<T> {}
189 
190 // This is to allow `Arc<U>` to be dispatched on when `Arc<T>` can be coerced into `Arc<U>`.
191 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))]
192 impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<Arc<U>> for Arc<T> {}
193 
194 // SAFETY: It is safe to send `Arc<T>` to another thread when the underlying `T` is `Sync` because
195 // it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs
196 // `T` to be `Send` because any thread that has an `Arc<T>` may ultimately access `T` using a
197 // mutable reference when the reference count reaches zero and `T` is dropped.
198 unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {}
199 
200 // SAFETY: It is safe to send `&Arc<T>` to another thread when the underlying `T` is `Sync`
201 // because it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally,
202 // it needs `T` to be `Send` because any thread that has a `&Arc<T>` may clone it and get an
203 // `Arc<T>` on that thread, so the thread may ultimately access `T` using a mutable reference when
204 // the reference count reaches zero and `T` is dropped.
205 unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {}
206 
207 impl<T> InPlaceInit<T> for Arc<T> {
208     type PinnedSelf = Self;
209 
210     #[inline]
211     fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E>
212     where
213         E: From<AllocError>,
214     {
215         UniqueArc::try_pin_init(init, flags).map(|u| u.into())
216     }
217 
218     #[inline]
219     fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
220     where
221         E: From<AllocError>,
222     {
223         UniqueArc::try_init(init, flags).map(|u| u.into())
224     }
225 }
226 
227 impl<T> Arc<T> {
228     /// Constructs a new reference counted instance of `T`.
229     pub fn new(contents: T, flags: Flags) -> Result<Self, AllocError> {
230         // INVARIANT: The refcount is initialised to a non-zero value.
231         let value = ArcInner {
232             // SAFETY: There are no safety requirements for this FFI call.
233             refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
234             data: contents,
235         };
236 
237         let inner = KBox::new(value, flags)?;
238         let inner = KBox::leak(inner).into();
239 
240         // SAFETY: We just created `inner` with a reference count of 1, which is owned by the new
241         // `Arc` object.
242         Ok(unsafe { Self::from_inner(inner) })
243     }
244 }
245 
246 impl<T: ?Sized> Arc<T> {
247     /// Constructs a new [`Arc`] from an existing [`ArcInner`].
248     ///
249     /// # Safety
250     ///
251     /// The caller must ensure that `inner` points to a valid location and has a non-zero reference
252     /// count, one of which will be owned by the new [`Arc`] instance.
253     unsafe fn from_inner(inner: NonNull<ArcInner<T>>) -> Self {
254         // INVARIANT: By the safety requirements, the invariants hold.
255         Arc {
256             ptr: inner,
257             _p: PhantomData,
258         }
259     }
260 
261     /// Convert the [`Arc`] into a raw pointer.
262     ///
263     /// The raw pointer has ownership of the refcount that this Arc object owned.
264     pub fn into_raw(self) -> *const T {
265         let ptr = self.ptr.as_ptr();
266         core::mem::forget(self);
267         // SAFETY: The pointer is valid.
268         unsafe { core::ptr::addr_of!((*ptr).data) }
269     }
270 
271     /// Return a raw pointer to the data in this arc.
272     pub fn as_ptr(this: &Self) -> *const T {
273         let ptr = this.ptr.as_ptr();
274 
275         // SAFETY: As `ptr` points to a valid allocation of type `ArcInner`,
276         // field projection to `data`is within bounds of the allocation.
277         unsafe { core::ptr::addr_of!((*ptr).data) }
278     }
279 
280     /// Recreates an [`Arc`] instance previously deconstructed via [`Arc::into_raw`].
281     ///
282     /// # Safety
283     ///
284     /// `ptr` must have been returned by a previous call to [`Arc::into_raw`]. Additionally, it
285     /// must not be called more than once for each previous call to [`Arc::into_raw`].
286     pub unsafe fn from_raw(ptr: *const T) -> Self {
287         // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an
288         // `Arc` that is still valid.
289         let ptr = unsafe { ArcInner::container_of(ptr) };
290 
291         // SAFETY: By the safety requirements we know that `ptr` came from `Arc::into_raw`, so the
292         // reference count held then will be owned by the new `Arc` object.
293         unsafe { Self::from_inner(ptr) }
294     }
295 
296     /// Returns an [`ArcBorrow`] from the given [`Arc`].
297     ///
298     /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method
299     /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised.
300     #[inline]
301     pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> {
302         // SAFETY: The constraint that the lifetime of the shared reference must outlive that of
303         // the returned `ArcBorrow` ensures that the object remains alive and that no mutable
304         // reference can be created.
305         unsafe { ArcBorrow::new(self.ptr) }
306     }
307 
308     /// Compare whether two [`Arc`] pointers reference the same underlying object.
309     pub fn ptr_eq(this: &Self, other: &Self) -> bool {
310         core::ptr::eq(this.ptr.as_ptr(), other.ptr.as_ptr())
311     }
312 
313     /// Converts this [`Arc`] into a [`UniqueArc`], or destroys it if it is not unique.
314     ///
315     /// When this destroys the `Arc`, it does so while properly avoiding races. This means that
316     /// this method will never call the destructor of the value.
317     ///
318     /// # Examples
319     ///
320     /// ```
321     /// use kernel::sync::{Arc, UniqueArc};
322     ///
323     /// let arc = Arc::new(42, GFP_KERNEL)?;
324     /// let unique_arc = arc.into_unique_or_drop();
325     ///
326     /// // The above conversion should succeed since refcount of `arc` is 1.
327     /// assert!(unique_arc.is_some());
328     ///
329     /// assert_eq!(*(unique_arc.unwrap()), 42);
330     ///
331     /// # Ok::<(), Error>(())
332     /// ```
333     ///
334     /// ```
335     /// use kernel::sync::{Arc, UniqueArc};
336     ///
337     /// let arc = Arc::new(42, GFP_KERNEL)?;
338     /// let another = arc.clone();
339     ///
340     /// let unique_arc = arc.into_unique_or_drop();
341     ///
342     /// // The above conversion should fail since refcount of `arc` is >1.
343     /// assert!(unique_arc.is_none());
344     ///
345     /// # Ok::<(), Error>(())
346     /// ```
347     pub fn into_unique_or_drop(self) -> Option<Pin<UniqueArc<T>>> {
348         // We will manually manage the refcount in this method, so we disable the destructor.
349         let me = ManuallyDrop::new(self);
350         // SAFETY: We own a refcount, so the pointer is still valid.
351         let refcount = unsafe { me.ptr.as_ref() }.refcount.get();
352 
353         // If the refcount reaches a non-zero value, then we have destroyed this `Arc` and will
354         // return without further touching the `Arc`. If the refcount reaches zero, then there are
355         // no other arcs, and we can create a `UniqueArc`.
356         //
357         // SAFETY: We own a refcount, so the pointer is not dangling.
358         let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) };
359         if is_zero {
360             // SAFETY: We have exclusive access to the arc, so we can perform unsynchronized
361             // accesses to the refcount.
362             unsafe { core::ptr::write(refcount, bindings::REFCOUNT_INIT(1)) };
363 
364             // INVARIANT: We own the only refcount to this arc, so we may create a `UniqueArc`. We
365             // must pin the `UniqueArc` because the values was previously in an `Arc`, and they pin
366             // their values.
367             Some(Pin::from(UniqueArc {
368                 inner: ManuallyDrop::into_inner(me),
369             }))
370         } else {
371             None
372         }
373     }
374 }
375 
376 // SAFETY: The pointer returned by `into_foreign` comes from a well aligned
377 // pointer to `ArcInner<T>`.
378 unsafe impl<T: 'static> ForeignOwnable for Arc<T> {
379     const FOREIGN_ALIGN: usize = core::mem::align_of::<ArcInner<T>>();
380 
381     type Borrowed<'a> = ArcBorrow<'a, T>;
382     type BorrowedMut<'a> = Self::Borrowed<'a>;
383 
384     fn into_foreign(self) -> *mut c_void {
385         ManuallyDrop::new(self).ptr.as_ptr().cast()
386     }
387 
388     unsafe fn from_foreign(ptr: *mut c_void) -> Self {
389         // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous
390         // call to `Self::into_foreign`.
391         let inner = unsafe { NonNull::new_unchecked(ptr.cast::<ArcInner<T>>()) };
392 
393         // SAFETY: By the safety requirement of this function, we know that `ptr` came from
394         // a previous call to `Arc::into_foreign`, which guarantees that `ptr` is valid and
395         // holds a reference count increment that is transferrable to us.
396         unsafe { Self::from_inner(inner) }
397     }
398 
399     unsafe fn borrow<'a>(ptr: *mut c_void) -> ArcBorrow<'a, T> {
400         // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous
401         // call to `Self::into_foreign`.
402         let inner = unsafe { NonNull::new_unchecked(ptr.cast::<ArcInner<T>>()) };
403 
404         // SAFETY: The safety requirements of `from_foreign` ensure that the object remains alive
405         // for the lifetime of the returned value.
406         unsafe { ArcBorrow::new(inner) }
407     }
408 
409     unsafe fn borrow_mut<'a>(ptr: *mut c_void) -> ArcBorrow<'a, T> {
410         // SAFETY: The safety requirements for `borrow_mut` are a superset of the safety
411         // requirements for `borrow`.
412         unsafe { <Self as ForeignOwnable>::borrow(ptr) }
413     }
414 }
415 
416 impl<T: ?Sized> Deref for Arc<T> {
417     type Target = T;
418 
419     fn deref(&self) -> &Self::Target {
420         // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
421         // safe to dereference it.
422         unsafe { &self.ptr.as_ref().data }
423     }
424 }
425 
426 impl<T: ?Sized> AsRef<T> for Arc<T> {
427     fn as_ref(&self) -> &T {
428         self.deref()
429     }
430 }
431 
432 /// # Examples
433 ///
434 /// ```
435 /// # use core::borrow::Borrow;
436 /// # use kernel::sync::Arc;
437 /// struct Foo<B: Borrow<u32>>(B);
438 ///
439 /// // Owned instance.
440 /// let owned = Foo(1);
441 ///
442 /// // Shared instance.
443 /// let arc = Arc::new(1, GFP_KERNEL)?;
444 /// let shared = Foo(arc.clone());
445 ///
446 /// let i = 1;
447 /// // Borrowed from `i`.
448 /// let borrowed = Foo(&i);
449 /// # Ok::<(), Error>(())
450 /// ```
451 impl<T: ?Sized> Borrow<T> for Arc<T> {
452     fn borrow(&self) -> &T {
453         self.deref()
454     }
455 }
456 
457 impl<T: ?Sized> Clone for Arc<T> {
458     fn clone(&self) -> Self {
459         // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
460         // safe to dereference it.
461         let refcount = unsafe { self.ptr.as_ref() }.refcount.get();
462 
463         // INVARIANT: C `refcount_inc` saturates the refcount, so it cannot overflow to zero.
464         // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
465         // safe to increment the refcount.
466         unsafe { bindings::refcount_inc(refcount) };
467 
468         // SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`.
469         unsafe { Self::from_inner(self.ptr) }
470     }
471 }
472 
473 impl<T: ?Sized> Drop for Arc<T> {
474     fn drop(&mut self) {
475         // SAFETY: By the type invariant, there is necessarily a reference to the object. We cannot
476         // touch `refcount` after it's decremented to a non-zero value because another thread/CPU
477         // may concurrently decrement it to zero and free it. It is ok to have a raw pointer to
478         // freed/invalid memory as long as it is never dereferenced.
479         let refcount = unsafe { self.ptr.as_ref() }.refcount.get();
480 
481         // INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and
482         // this instance is being dropped, so the broken invariant is not observable.
483         // SAFETY: Also by the type invariant, we are allowed to decrement the refcount.
484         let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) };
485         if is_zero {
486             // The count reached zero, we must free the memory.
487             //
488             // SAFETY: The pointer was initialised from the result of `KBox::leak`.
489             unsafe { drop(KBox::from_raw(self.ptr.as_ptr())) };
490         }
491     }
492 }
493 
494 impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> {
495     fn from(item: UniqueArc<T>) -> Self {
496         item.inner
497     }
498 }
499 
500 impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Arc<T> {
501     fn from(item: Pin<UniqueArc<T>>) -> Self {
502         // SAFETY: The type invariants of `Arc` guarantee that the data is pinned.
503         unsafe { Pin::into_inner_unchecked(item).inner }
504     }
505 }
506 
507 /// A borrowed reference to an [`Arc`] instance.
508 ///
509 /// For cases when one doesn't ever need to increment the refcount on the allocation, it is simpler
510 /// to use just `&T`, which we can trivially get from an [`Arc<T>`] instance.
511 ///
512 /// However, when one may need to increment the refcount, it is preferable to use an `ArcBorrow<T>`
513 /// over `&Arc<T>` because the latter results in a double-indirection: a pointer (shared reference)
514 /// to a pointer ([`Arc<T>`]) to the object (`T`). An [`ArcBorrow`] eliminates this double
515 /// indirection while still allowing one to increment the refcount and getting an [`Arc<T>`] when/if
516 /// needed.
517 ///
518 /// # Invariants
519 ///
520 /// There are no mutable references to the underlying [`Arc`], and it remains valid for the
521 /// lifetime of the [`ArcBorrow`] instance.
522 ///
523 /// # Examples
524 ///
525 /// ```
526 /// use kernel::sync::{Arc, ArcBorrow};
527 ///
528 /// struct Example;
529 ///
530 /// fn do_something(e: ArcBorrow<'_, Example>) -> Arc<Example> {
531 ///     e.into()
532 /// }
533 ///
534 /// let obj = Arc::new(Example, GFP_KERNEL)?;
535 /// let cloned = do_something(obj.as_arc_borrow());
536 ///
537 /// // Assert that both `obj` and `cloned` point to the same underlying object.
538 /// assert!(core::ptr::eq(&*obj, &*cloned));
539 /// # Ok::<(), Error>(())
540 /// ```
541 ///
542 /// Using `ArcBorrow<T>` as the type of `self`:
543 ///
544 /// ```
545 /// use kernel::sync::{Arc, ArcBorrow};
546 ///
547 /// struct Example {
548 ///     a: u32,
549 ///     b: u32,
550 /// }
551 ///
552 /// impl Example {
553 ///     fn use_reference(self: ArcBorrow<'_, Self>) {
554 ///         // ...
555 ///     }
556 /// }
557 ///
558 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
559 /// obj.as_arc_borrow().use_reference();
560 /// # Ok::<(), Error>(())
561 /// ```
562 #[repr(transparent)]
563 #[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, derive(core::marker::CoercePointee))]
564 pub struct ArcBorrow<'a, T: ?Sized + 'a> {
565     inner: NonNull<ArcInner<T>>,
566     _p: PhantomData<&'a ()>,
567 }
568 
569 // This is to allow `ArcBorrow<U>` to be dispatched on when `ArcBorrow<T>` can be coerced into
570 // `ArcBorrow<U>`.
571 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))]
572 impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<ArcBorrow<'_, U>>
573     for ArcBorrow<'_, T>
574 {
575 }
576 
577 impl<T: ?Sized> Clone for ArcBorrow<'_, T> {
578     fn clone(&self) -> Self {
579         *self
580     }
581 }
582 
583 impl<T: ?Sized> Copy for ArcBorrow<'_, T> {}
584 
585 impl<T: ?Sized> ArcBorrow<'_, T> {
586     /// Creates a new [`ArcBorrow`] instance.
587     ///
588     /// # Safety
589     ///
590     /// Callers must ensure the following for the lifetime of the returned [`ArcBorrow`] instance:
591     /// 1. That `inner` remains valid;
592     /// 2. That no mutable references to `inner` are created.
593     unsafe fn new(inner: NonNull<ArcInner<T>>) -> Self {
594         // INVARIANT: The safety requirements guarantee the invariants.
595         Self {
596             inner,
597             _p: PhantomData,
598         }
599     }
600 
601     /// Creates an [`ArcBorrow`] to an [`Arc`] that has previously been deconstructed with
602     /// [`Arc::into_raw`] or [`Arc::as_ptr`].
603     ///
604     /// # Safety
605     ///
606     /// * The provided pointer must originate from a call to [`Arc::into_raw`] or [`Arc::as_ptr`].
607     /// * For the duration of the lifetime annotated on this `ArcBorrow`, the reference count must
608     ///   not hit zero.
609     /// * For the duration of the lifetime annotated on this `ArcBorrow`, there must not be a
610     ///   [`UniqueArc`] reference to this value.
611     pub unsafe fn from_raw(ptr: *const T) -> Self {
612         // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an
613         // `Arc` that is still valid.
614         let ptr = unsafe { ArcInner::container_of(ptr) };
615 
616         // SAFETY: The caller promises that the value remains valid since the reference count must
617         // not hit zero, and no mutable reference will be created since that would involve a
618         // `UniqueArc`.
619         unsafe { Self::new(ptr) }
620     }
621 }
622 
623 impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc<T> {
624     fn from(b: ArcBorrow<'_, T>) -> Self {
625         // SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop`
626         // guarantees that `drop` isn't called, so it's ok that the temporary `Arc` doesn't own the
627         // increment.
628         ManuallyDrop::new(unsafe { Arc::from_inner(b.inner) })
629             .deref()
630             .clone()
631     }
632 }
633 
634 impl<T: ?Sized> Deref for ArcBorrow<'_, T> {
635     type Target = T;
636 
637     fn deref(&self) -> &Self::Target {
638         // SAFETY: By the type invariant, the underlying object is still alive with no mutable
639         // references to it, so it is safe to create a shared reference.
640         unsafe { &self.inner.as_ref().data }
641     }
642 }
643 
644 /// A refcounted object that is known to have a refcount of 1.
645 ///
646 /// It is mutable and can be converted to an [`Arc`] so that it can be shared.
647 ///
648 /// # Invariants
649 ///
650 /// `inner` always has a reference count of 1.
651 ///
652 /// # Examples
653 ///
654 /// In the following example, we make changes to the inner object before turning it into an
655 /// `Arc<Test>` object (after which point, it cannot be mutated directly). Note that `x.into()`
656 /// cannot fail.
657 ///
658 /// ```
659 /// use kernel::sync::{Arc, UniqueArc};
660 ///
661 /// struct Example {
662 ///     a: u32,
663 ///     b: u32,
664 /// }
665 ///
666 /// fn test() -> Result<Arc<Example>> {
667 ///     let mut x = UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
668 ///     x.a += 1;
669 ///     x.b += 1;
670 ///     Ok(x.into())
671 /// }
672 ///
673 /// # test().unwrap();
674 /// ```
675 ///
676 /// In the following example we first allocate memory for a refcounted `Example` but we don't
677 /// initialise it on allocation. We do initialise it later with a call to [`UniqueArc::write`],
678 /// followed by a conversion to `Arc<Example>`. This is particularly useful when allocation happens
679 /// in one context (e.g., sleepable) and initialisation in another (e.g., atomic):
680 ///
681 /// ```
682 /// use kernel::sync::{Arc, UniqueArc};
683 ///
684 /// struct Example {
685 ///     a: u32,
686 ///     b: u32,
687 /// }
688 ///
689 /// fn test() -> Result<Arc<Example>> {
690 ///     let x = UniqueArc::new_uninit(GFP_KERNEL)?;
691 ///     Ok(x.write(Example { a: 10, b: 20 }).into())
692 /// }
693 ///
694 /// # test().unwrap();
695 /// ```
696 ///
697 /// In the last example below, the caller gets a pinned instance of `Example` while converting to
698 /// `Arc<Example>`; this is useful in scenarios where one needs a pinned reference during
699 /// initialisation, for example, when initialising fields that are wrapped in locks.
700 ///
701 /// ```
702 /// use kernel::sync::{Arc, UniqueArc};
703 ///
704 /// struct Example {
705 ///     a: u32,
706 ///     b: u32,
707 /// }
708 ///
709 /// fn test() -> Result<Arc<Example>> {
710 ///     let mut pinned = Pin::from(UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?);
711 ///     // We can modify `pinned` because it is `Unpin`.
712 ///     pinned.as_mut().a += 1;
713 ///     Ok(pinned.into())
714 /// }
715 ///
716 /// # test().unwrap();
717 /// ```
718 pub struct UniqueArc<T: ?Sized> {
719     inner: Arc<T>,
720 }
721 
722 impl<T> InPlaceInit<T> for UniqueArc<T> {
723     type PinnedSelf = Pin<Self>;
724 
725     #[inline]
726     fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E>
727     where
728         E: From<AllocError>,
729     {
730         UniqueArc::new_uninit(flags)?.write_pin_init(init)
731     }
732 
733     #[inline]
734     fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
735     where
736         E: From<AllocError>,
737     {
738         UniqueArc::new_uninit(flags)?.write_init(init)
739     }
740 }
741 
742 impl<T> InPlaceWrite<T> for UniqueArc<MaybeUninit<T>> {
743     type Initialized = UniqueArc<T>;
744 
745     fn write_init<E>(mut self, init: impl Init<T, E>) -> Result<Self::Initialized, E> {
746         let slot = self.as_mut_ptr();
747         // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
748         // slot is valid.
749         unsafe { init.__init(slot)? };
750         // SAFETY: All fields have been initialized.
751         Ok(unsafe { self.assume_init() })
752     }
753 
754     fn write_pin_init<E>(mut self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E> {
755         let slot = self.as_mut_ptr();
756         // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
757         // slot is valid and will not be moved, because we pin it later.
758         unsafe { init.__pinned_init(slot)? };
759         // SAFETY: All fields have been initialized.
760         Ok(unsafe { self.assume_init() }.into())
761     }
762 }
763 
764 impl<T> UniqueArc<T> {
765     /// Tries to allocate a new [`UniqueArc`] instance.
766     pub fn new(value: T, flags: Flags) -> Result<Self, AllocError> {
767         Ok(Self {
768             // INVARIANT: The newly-created object has a refcount of 1.
769             inner: Arc::new(value, flags)?,
770         })
771     }
772 
773     /// Tries to allocate a new [`UniqueArc`] instance whose contents are not initialised yet.
774     pub fn new_uninit(flags: Flags) -> Result<UniqueArc<MaybeUninit<T>>, AllocError> {
775         // INVARIANT: The refcount is initialised to a non-zero value.
776         let inner = KBox::try_init::<AllocError>(
777             try_init!(ArcInner {
778                 // SAFETY: There are no safety requirements for this FFI call.
779                 refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
780                 data <- pin_init::uninit::<T, AllocError>(),
781             }? AllocError),
782             flags,
783         )?;
784         Ok(UniqueArc {
785             // INVARIANT: The newly-created object has a refcount of 1.
786             // SAFETY: The pointer from the `KBox` is valid.
787             inner: unsafe { Arc::from_inner(KBox::leak(inner).into()) },
788         })
789     }
790 }
791 
792 impl<T> UniqueArc<MaybeUninit<T>> {
793     /// Converts a `UniqueArc<MaybeUninit<T>>` into a `UniqueArc<T>` by writing a value into it.
794     pub fn write(mut self, value: T) -> UniqueArc<T> {
795         self.deref_mut().write(value);
796         // SAFETY: We just wrote the value to be initialized.
797         unsafe { self.assume_init() }
798     }
799 
800     /// Unsafely assume that `self` is initialized.
801     ///
802     /// # Safety
803     ///
804     /// The caller guarantees that the value behind this pointer has been initialized. It is
805     /// *immediate* UB to call this when the value is not initialized.
806     pub unsafe fn assume_init(self) -> UniqueArc<T> {
807         let inner = ManuallyDrop::new(self).inner.ptr;
808         UniqueArc {
809             // SAFETY: The new `Arc` is taking over `ptr` from `self.inner` (which won't be
810             // dropped). The types are compatible because `MaybeUninit<T>` is compatible with `T`.
811             inner: unsafe { Arc::from_inner(inner.cast()) },
812         }
813     }
814 
815     /// Initialize `self` using the given initializer.
816     pub fn init_with<E>(mut self, init: impl Init<T, E>) -> core::result::Result<UniqueArc<T>, E> {
817         // SAFETY: The supplied pointer is valid for initialization.
818         match unsafe { init.__init(self.as_mut_ptr()) } {
819             // SAFETY: Initialization completed successfully.
820             Ok(()) => Ok(unsafe { self.assume_init() }),
821             Err(err) => Err(err),
822         }
823     }
824 
825     /// Pin-initialize `self` using the given pin-initializer.
826     pub fn pin_init_with<E>(
827         mut self,
828         init: impl PinInit<T, E>,
829     ) -> core::result::Result<Pin<UniqueArc<T>>, E> {
830         // SAFETY: The supplied pointer is valid for initialization and we will later pin the value
831         // to ensure it does not move.
832         match unsafe { init.__pinned_init(self.as_mut_ptr()) } {
833             // SAFETY: Initialization completed successfully.
834             Ok(()) => Ok(unsafe { self.assume_init() }.into()),
835             Err(err) => Err(err),
836         }
837     }
838 }
839 
840 impl<T: ?Sized> From<UniqueArc<T>> for Pin<UniqueArc<T>> {
841     fn from(obj: UniqueArc<T>) -> Self {
842         // SAFETY: It is not possible to move/replace `T` inside a `Pin<UniqueArc<T>>` (unless `T`
843         // is `Unpin`), so it is ok to convert it to `Pin<UniqueArc<T>>`.
844         unsafe { Pin::new_unchecked(obj) }
845     }
846 }
847 
848 impl<T: ?Sized> Deref for UniqueArc<T> {
849     type Target = T;
850 
851     fn deref(&self) -> &Self::Target {
852         self.inner.deref()
853     }
854 }
855 
856 impl<T: ?Sized> DerefMut for UniqueArc<T> {
857     fn deref_mut(&mut self) -> &mut Self::Target {
858         // SAFETY: By the `Arc` type invariant, there is necessarily a reference to the object, so
859         // it is safe to dereference it. Additionally, we know there is only one reference when
860         // it's inside a `UniqueArc`, so it is safe to get a mutable reference.
861         unsafe { &mut self.inner.ptr.as_mut().data }
862     }
863 }
864 
865 /// # Examples
866 ///
867 /// ```
868 /// # use core::borrow::Borrow;
869 /// # use kernel::sync::UniqueArc;
870 /// struct Foo<B: Borrow<u32>>(B);
871 ///
872 /// // Owned instance.
873 /// let owned = Foo(1);
874 ///
875 /// // Owned instance using `UniqueArc`.
876 /// let arc = UniqueArc::new(1, GFP_KERNEL)?;
877 /// let shared = Foo(arc);
878 ///
879 /// let i = 1;
880 /// // Borrowed from `i`.
881 /// let borrowed = Foo(&i);
882 /// # Ok::<(), Error>(())
883 /// ```
884 impl<T: ?Sized> Borrow<T> for UniqueArc<T> {
885     fn borrow(&self) -> &T {
886         self.deref()
887     }
888 }
889 
890 /// # Examples
891 ///
892 /// ```
893 /// # use core::borrow::BorrowMut;
894 /// # use kernel::sync::UniqueArc;
895 /// struct Foo<B: BorrowMut<u32>>(B);
896 ///
897 /// // Owned instance.
898 /// let owned = Foo(1);
899 ///
900 /// // Owned instance using `UniqueArc`.
901 /// let arc = UniqueArc::new(1, GFP_KERNEL)?;
902 /// let shared = Foo(arc);
903 ///
904 /// let mut i = 1;
905 /// // Borrowed from `i`.
906 /// let borrowed = Foo(&mut i);
907 /// # Ok::<(), Error>(())
908 /// ```
909 impl<T: ?Sized> BorrowMut<T> for UniqueArc<T> {
910     fn borrow_mut(&mut self) -> &mut T {
911         self.deref_mut()
912     }
913 }
914 
915 impl<T: fmt::Display + ?Sized> fmt::Display for UniqueArc<T> {
916     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
917         fmt::Display::fmt(self.deref(), f)
918     }
919 }
920 
921 impl<T: fmt::Display + ?Sized> fmt::Display for Arc<T> {
922     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
923         fmt::Display::fmt(self.deref(), f)
924     }
925 }
926 
927 impl<T: fmt::Debug + ?Sized> fmt::Debug for UniqueArc<T> {
928     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
929         fmt::Debug::fmt(self.deref(), f)
930     }
931 }
932 
933 impl<T: fmt::Debug + ?Sized> fmt::Debug for Arc<T> {
934     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
935         fmt::Debug::fmt(self.deref(), f)
936     }
937 }
938