1 // SPDX-License-Identifier: GPL-2.0 2 3 //! A reference-counted pointer. 4 //! 5 //! This module implements a way for users to create reference-counted objects and pointers to 6 //! them. Such a pointer automatically increments and decrements the count, and drops the 7 //! underlying object when it reaches zero. It is also safe to use concurrently from multiple 8 //! threads. 9 //! 10 //! It is different from the standard library's [`Arc`] in a few ways: 11 //! 1. It is backed by the kernel's `refcount_t` type. 12 //! 2. It does not support weak references, which allows it to be half the size. 13 //! 3. It saturates the reference count instead of aborting when it goes over a threshold. 14 //! 4. It does not provide a `get_mut` method, so the ref counted object is pinned. 15 //! 5. The object in [`Arc`] is pinned implicitly. 16 //! 17 //! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html 18 19 use crate::{ 20 alloc::{AllocError, Flags, KBox}, 21 bindings, 22 ffi::c_void, 23 init::InPlaceInit, 24 try_init, 25 types::{ForeignOwnable, Opaque}, 26 }; 27 use core::{ 28 alloc::Layout, 29 borrow::{Borrow, BorrowMut}, 30 fmt, 31 marker::PhantomData, 32 mem::{ManuallyDrop, MaybeUninit}, 33 ops::{Deref, DerefMut}, 34 pin::Pin, 35 ptr::NonNull, 36 }; 37 use pin_init::{self, pin_data, InPlaceWrite, Init, PinInit}; 38 39 mod std_vendor; 40 41 /// A reference-counted pointer to an instance of `T`. 42 /// 43 /// The reference count is incremented when new instances of [`Arc`] are created, and decremented 44 /// when they are dropped. When the count reaches zero, the underlying `T` is also dropped. 45 /// 46 /// # Invariants 47 /// 48 /// The reference count on an instance of [`Arc`] is always non-zero. 49 /// The object pointed to by [`Arc`] is always pinned. 50 /// 51 /// # Examples 52 /// 53 /// ``` 54 /// use kernel::sync::Arc; 55 /// 56 /// struct Example { 57 /// a: u32, 58 /// b: u32, 59 /// } 60 /// 61 /// // Create a refcounted instance of `Example`. 62 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 63 /// 64 /// // Get a new pointer to `obj` and increment the refcount. 65 /// let cloned = obj.clone(); 66 /// 67 /// // Assert that both `obj` and `cloned` point to the same underlying object. 68 /// assert!(core::ptr::eq(&*obj, &*cloned)); 69 /// 70 /// // Destroy `obj` and decrement its refcount. 71 /// drop(obj); 72 /// 73 /// // Check that the values are still accessible through `cloned`. 74 /// assert_eq!(cloned.a, 10); 75 /// assert_eq!(cloned.b, 20); 76 /// 77 /// // The refcount drops to zero when `cloned` goes out of scope, and the memory is freed. 78 /// # Ok::<(), Error>(()) 79 /// ``` 80 /// 81 /// Using `Arc<T>` as the type of `self`: 82 /// 83 /// ``` 84 /// use kernel::sync::Arc; 85 /// 86 /// struct Example { 87 /// a: u32, 88 /// b: u32, 89 /// } 90 /// 91 /// impl Example { 92 /// fn take_over(self: Arc<Self>) { 93 /// // ... 94 /// } 95 /// 96 /// fn use_reference(self: &Arc<Self>) { 97 /// // ... 98 /// } 99 /// } 100 /// 101 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 102 /// obj.use_reference(); 103 /// obj.take_over(); 104 /// # Ok::<(), Error>(()) 105 /// ``` 106 /// 107 /// Coercion from `Arc<Example>` to `Arc<dyn MyTrait>`: 108 /// 109 /// ``` 110 /// use kernel::sync::{Arc, ArcBorrow}; 111 /// 112 /// trait MyTrait { 113 /// // Trait has a function whose `self` type is `Arc<Self>`. 114 /// fn example1(self: Arc<Self>) {} 115 /// 116 /// // Trait has a function whose `self` type is `ArcBorrow<'_, Self>`. 117 /// fn example2(self: ArcBorrow<'_, Self>) {} 118 /// } 119 /// 120 /// struct Example; 121 /// impl MyTrait for Example {} 122 /// 123 /// // `obj` has type `Arc<Example>`. 124 /// let obj: Arc<Example> = Arc::new(Example, GFP_KERNEL)?; 125 /// 126 /// // `coerced` has type `Arc<dyn MyTrait>`. 127 /// let coerced: Arc<dyn MyTrait> = obj; 128 /// # Ok::<(), Error>(()) 129 /// ``` 130 #[repr(transparent)] 131 #[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, derive(core::marker::CoercePointee))] 132 pub struct Arc<T: ?Sized> { 133 ptr: NonNull<ArcInner<T>>, 134 // NB: this informs dropck that objects of type `ArcInner<T>` may be used in `<Arc<T> as 135 // Drop>::drop`. Note that dropck already assumes that objects of type `T` may be used in 136 // `<Arc<T> as Drop>::drop` and the distinction between `T` and `ArcInner<T>` is not presently 137 // meaningful with respect to dropck - but this may change in the future so this is left here 138 // out of an abundance of caution. 139 // 140 // See <https://doc.rust-lang.org/nomicon/phantom-data.html#generic-parameters-and-drop-checking> 141 // for more detail on the semantics of dropck in the presence of `PhantomData`. 142 _p: PhantomData<ArcInner<T>>, 143 } 144 145 #[pin_data] 146 #[repr(C)] 147 struct ArcInner<T: ?Sized> { 148 refcount: Opaque<bindings::refcount_t>, 149 data: T, 150 } 151 152 impl<T: ?Sized> ArcInner<T> { 153 /// Converts a pointer to the contents of an [`Arc`] into a pointer to the [`ArcInner`]. 154 /// 155 /// # Safety 156 /// 157 /// `ptr` must have been returned by a previous call to [`Arc::into_raw`], and the `Arc` must 158 /// not yet have been destroyed. 159 unsafe fn container_of(ptr: *const T) -> NonNull<ArcInner<T>> { 160 let refcount_layout = Layout::new::<bindings::refcount_t>(); 161 // SAFETY: The caller guarantees that the pointer is valid. 162 let val_layout = Layout::for_value(unsafe { &*ptr }); 163 // SAFETY: We're computing the layout of a real struct that existed when compiling this 164 // binary, so its layout is not so large that it can trigger arithmetic overflow. 165 let val_offset = unsafe { refcount_layout.extend(val_layout).unwrap_unchecked().1 }; 166 167 // Pointer casts leave the metadata unchanged. This is okay because the metadata of `T` and 168 // `ArcInner<T>` is the same since `ArcInner` is a struct with `T` as its last field. 169 // 170 // This is documented at: 171 // <https://doc.rust-lang.org/std/ptr/trait.Pointee.html>. 172 let ptr = ptr as *const ArcInner<T>; 173 174 // SAFETY: The pointer is in-bounds of an allocation both before and after offsetting the 175 // pointer, since it originates from a previous call to `Arc::into_raw` on an `Arc` that is 176 // still valid. 177 let ptr = unsafe { ptr.byte_sub(val_offset) }; 178 179 // SAFETY: The pointer can't be null since you can't have an `ArcInner<T>` value at the null 180 // address. 181 unsafe { NonNull::new_unchecked(ptr.cast_mut()) } 182 } 183 } 184 185 // This is to allow coercion from `Arc<T>` to `Arc<U>` if `T` can be converted to the 186 // dynamically-sized type (DST) `U`. 187 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))] 188 impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Arc<U>> for Arc<T> {} 189 190 // This is to allow `Arc<U>` to be dispatched on when `Arc<T>` can be coerced into `Arc<U>`. 191 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))] 192 impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<Arc<U>> for Arc<T> {} 193 194 // SAFETY: It is safe to send `Arc<T>` to another thread when the underlying `T` is `Sync` because 195 // it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs 196 // `T` to be `Send` because any thread that has an `Arc<T>` may ultimately access `T` using a 197 // mutable reference when the reference count reaches zero and `T` is dropped. 198 unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {} 199 200 // SAFETY: It is safe to send `&Arc<T>` to another thread when the underlying `T` is `Sync` 201 // because it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, 202 // it needs `T` to be `Send` because any thread that has a `&Arc<T>` may clone it and get an 203 // `Arc<T>` on that thread, so the thread may ultimately access `T` using a mutable reference when 204 // the reference count reaches zero and `T` is dropped. 205 unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {} 206 207 impl<T> InPlaceInit<T> for Arc<T> { 208 type PinnedSelf = Self; 209 210 #[inline] 211 fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E> 212 where 213 E: From<AllocError>, 214 { 215 UniqueArc::try_pin_init(init, flags).map(|u| u.into()) 216 } 217 218 #[inline] 219 fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E> 220 where 221 E: From<AllocError>, 222 { 223 UniqueArc::try_init(init, flags).map(|u| u.into()) 224 } 225 } 226 227 impl<T> Arc<T> { 228 /// Constructs a new reference counted instance of `T`. 229 pub fn new(contents: T, flags: Flags) -> Result<Self, AllocError> { 230 // INVARIANT: The refcount is initialised to a non-zero value. 231 let value = ArcInner { 232 // SAFETY: There are no safety requirements for this FFI call. 233 refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }), 234 data: contents, 235 }; 236 237 let inner = KBox::new(value, flags)?; 238 let inner = KBox::leak(inner).into(); 239 240 // SAFETY: We just created `inner` with a reference count of 1, which is owned by the new 241 // `Arc` object. 242 Ok(unsafe { Self::from_inner(inner) }) 243 } 244 } 245 246 impl<T: ?Sized> Arc<T> { 247 /// Constructs a new [`Arc`] from an existing [`ArcInner`]. 248 /// 249 /// # Safety 250 /// 251 /// The caller must ensure that `inner` points to a valid location and has a non-zero reference 252 /// count, one of which will be owned by the new [`Arc`] instance. 253 unsafe fn from_inner(inner: NonNull<ArcInner<T>>) -> Self { 254 // INVARIANT: By the safety requirements, the invariants hold. 255 Arc { 256 ptr: inner, 257 _p: PhantomData, 258 } 259 } 260 261 /// Convert the [`Arc`] into a raw pointer. 262 /// 263 /// The raw pointer has ownership of the refcount that this Arc object owned. 264 pub fn into_raw(self) -> *const T { 265 let ptr = self.ptr.as_ptr(); 266 core::mem::forget(self); 267 // SAFETY: The pointer is valid. 268 unsafe { core::ptr::addr_of!((*ptr).data) } 269 } 270 271 /// Return a raw pointer to the data in this arc. 272 pub fn as_ptr(this: &Self) -> *const T { 273 let ptr = this.ptr.as_ptr(); 274 275 // SAFETY: As `ptr` points to a valid allocation of type `ArcInner`, 276 // field projection to `data`is within bounds of the allocation. 277 unsafe { core::ptr::addr_of!((*ptr).data) } 278 } 279 280 /// Recreates an [`Arc`] instance previously deconstructed via [`Arc::into_raw`]. 281 /// 282 /// # Safety 283 /// 284 /// `ptr` must have been returned by a previous call to [`Arc::into_raw`]. Additionally, it 285 /// must not be called more than once for each previous call to [`Arc::into_raw`]. 286 pub unsafe fn from_raw(ptr: *const T) -> Self { 287 // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an 288 // `Arc` that is still valid. 289 let ptr = unsafe { ArcInner::container_of(ptr) }; 290 291 // SAFETY: By the safety requirements we know that `ptr` came from `Arc::into_raw`, so the 292 // reference count held then will be owned by the new `Arc` object. 293 unsafe { Self::from_inner(ptr) } 294 } 295 296 /// Returns an [`ArcBorrow`] from the given [`Arc`]. 297 /// 298 /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method 299 /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised. 300 #[inline] 301 pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> { 302 // SAFETY: The constraint that the lifetime of the shared reference must outlive that of 303 // the returned `ArcBorrow` ensures that the object remains alive and that no mutable 304 // reference can be created. 305 unsafe { ArcBorrow::new(self.ptr) } 306 } 307 308 /// Compare whether two [`Arc`] pointers reference the same underlying object. 309 pub fn ptr_eq(this: &Self, other: &Self) -> bool { 310 core::ptr::eq(this.ptr.as_ptr(), other.ptr.as_ptr()) 311 } 312 313 /// Converts this [`Arc`] into a [`UniqueArc`], or destroys it if it is not unique. 314 /// 315 /// When this destroys the `Arc`, it does so while properly avoiding races. This means that 316 /// this method will never call the destructor of the value. 317 /// 318 /// # Examples 319 /// 320 /// ``` 321 /// use kernel::sync::{Arc, UniqueArc}; 322 /// 323 /// let arc = Arc::new(42, GFP_KERNEL)?; 324 /// let unique_arc = arc.into_unique_or_drop(); 325 /// 326 /// // The above conversion should succeed since refcount of `arc` is 1. 327 /// assert!(unique_arc.is_some()); 328 /// 329 /// assert_eq!(*(unique_arc.unwrap()), 42); 330 /// 331 /// # Ok::<(), Error>(()) 332 /// ``` 333 /// 334 /// ``` 335 /// use kernel::sync::{Arc, UniqueArc}; 336 /// 337 /// let arc = Arc::new(42, GFP_KERNEL)?; 338 /// let another = arc.clone(); 339 /// 340 /// let unique_arc = arc.into_unique_or_drop(); 341 /// 342 /// // The above conversion should fail since refcount of `arc` is >1. 343 /// assert!(unique_arc.is_none()); 344 /// 345 /// # Ok::<(), Error>(()) 346 /// ``` 347 pub fn into_unique_or_drop(self) -> Option<Pin<UniqueArc<T>>> { 348 // We will manually manage the refcount in this method, so we disable the destructor. 349 let me = ManuallyDrop::new(self); 350 // SAFETY: We own a refcount, so the pointer is still valid. 351 let refcount = unsafe { me.ptr.as_ref() }.refcount.get(); 352 353 // If the refcount reaches a non-zero value, then we have destroyed this `Arc` and will 354 // return without further touching the `Arc`. If the refcount reaches zero, then there are 355 // no other arcs, and we can create a `UniqueArc`. 356 // 357 // SAFETY: We own a refcount, so the pointer is not dangling. 358 let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) }; 359 if is_zero { 360 // SAFETY: We have exclusive access to the arc, so we can perform unsynchronized 361 // accesses to the refcount. 362 unsafe { core::ptr::write(refcount, bindings::REFCOUNT_INIT(1)) }; 363 364 // INVARIANT: We own the only refcount to this arc, so we may create a `UniqueArc`. We 365 // must pin the `UniqueArc` because the values was previously in an `Arc`, and they pin 366 // their values. 367 Some(Pin::from(UniqueArc { 368 inner: ManuallyDrop::into_inner(me), 369 })) 370 } else { 371 None 372 } 373 } 374 } 375 376 // SAFETY: The pointer returned by `into_foreign` comes from a well aligned 377 // pointer to `ArcInner<T>`. 378 unsafe impl<T: 'static> ForeignOwnable for Arc<T> { 379 const FOREIGN_ALIGN: usize = core::mem::align_of::<ArcInner<T>>(); 380 381 type Borrowed<'a> = ArcBorrow<'a, T>; 382 type BorrowedMut<'a> = Self::Borrowed<'a>; 383 384 fn into_foreign(self) -> *mut c_void { 385 ManuallyDrop::new(self).ptr.as_ptr().cast() 386 } 387 388 unsafe fn from_foreign(ptr: *mut c_void) -> Self { 389 // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous 390 // call to `Self::into_foreign`. 391 let inner = unsafe { NonNull::new_unchecked(ptr.cast::<ArcInner<T>>()) }; 392 393 // SAFETY: By the safety requirement of this function, we know that `ptr` came from 394 // a previous call to `Arc::into_foreign`, which guarantees that `ptr` is valid and 395 // holds a reference count increment that is transferrable to us. 396 unsafe { Self::from_inner(inner) } 397 } 398 399 unsafe fn borrow<'a>(ptr: *mut c_void) -> ArcBorrow<'a, T> { 400 // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous 401 // call to `Self::into_foreign`. 402 let inner = unsafe { NonNull::new_unchecked(ptr.cast::<ArcInner<T>>()) }; 403 404 // SAFETY: The safety requirements of `from_foreign` ensure that the object remains alive 405 // for the lifetime of the returned value. 406 unsafe { ArcBorrow::new(inner) } 407 } 408 409 unsafe fn borrow_mut<'a>(ptr: *mut c_void) -> ArcBorrow<'a, T> { 410 // SAFETY: The safety requirements for `borrow_mut` are a superset of the safety 411 // requirements for `borrow`. 412 unsafe { <Self as ForeignOwnable>::borrow(ptr) } 413 } 414 } 415 416 impl<T: ?Sized> Deref for Arc<T> { 417 type Target = T; 418 419 fn deref(&self) -> &Self::Target { 420 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is 421 // safe to dereference it. 422 unsafe { &self.ptr.as_ref().data } 423 } 424 } 425 426 impl<T: ?Sized> AsRef<T> for Arc<T> { 427 fn as_ref(&self) -> &T { 428 self.deref() 429 } 430 } 431 432 /// # Examples 433 /// 434 /// ``` 435 /// # use core::borrow::Borrow; 436 /// # use kernel::sync::Arc; 437 /// struct Foo<B: Borrow<u32>>(B); 438 /// 439 /// // Owned instance. 440 /// let owned = Foo(1); 441 /// 442 /// // Shared instance. 443 /// let arc = Arc::new(1, GFP_KERNEL)?; 444 /// let shared = Foo(arc.clone()); 445 /// 446 /// let i = 1; 447 /// // Borrowed from `i`. 448 /// let borrowed = Foo(&i); 449 /// # Ok::<(), Error>(()) 450 /// ``` 451 impl<T: ?Sized> Borrow<T> for Arc<T> { 452 fn borrow(&self) -> &T { 453 self.deref() 454 } 455 } 456 457 impl<T: ?Sized> Clone for Arc<T> { 458 fn clone(&self) -> Self { 459 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is 460 // safe to dereference it. 461 let refcount = unsafe { self.ptr.as_ref() }.refcount.get(); 462 463 // INVARIANT: C `refcount_inc` saturates the refcount, so it cannot overflow to zero. 464 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is 465 // safe to increment the refcount. 466 unsafe { bindings::refcount_inc(refcount) }; 467 468 // SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`. 469 unsafe { Self::from_inner(self.ptr) } 470 } 471 } 472 473 impl<T: ?Sized> Drop for Arc<T> { 474 fn drop(&mut self) { 475 // SAFETY: By the type invariant, there is necessarily a reference to the object. We cannot 476 // touch `refcount` after it's decremented to a non-zero value because another thread/CPU 477 // may concurrently decrement it to zero and free it. It is ok to have a raw pointer to 478 // freed/invalid memory as long as it is never dereferenced. 479 let refcount = unsafe { self.ptr.as_ref() }.refcount.get(); 480 481 // INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and 482 // this instance is being dropped, so the broken invariant is not observable. 483 // SAFETY: Also by the type invariant, we are allowed to decrement the refcount. 484 let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) }; 485 if is_zero { 486 // The count reached zero, we must free the memory. 487 // 488 // SAFETY: The pointer was initialised from the result of `KBox::leak`. 489 unsafe { drop(KBox::from_raw(self.ptr.as_ptr())) }; 490 } 491 } 492 } 493 494 impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> { 495 fn from(item: UniqueArc<T>) -> Self { 496 item.inner 497 } 498 } 499 500 impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Arc<T> { 501 fn from(item: Pin<UniqueArc<T>>) -> Self { 502 // SAFETY: The type invariants of `Arc` guarantee that the data is pinned. 503 unsafe { Pin::into_inner_unchecked(item).inner } 504 } 505 } 506 507 /// A borrowed reference to an [`Arc`] instance. 508 /// 509 /// For cases when one doesn't ever need to increment the refcount on the allocation, it is simpler 510 /// to use just `&T`, which we can trivially get from an [`Arc<T>`] instance. 511 /// 512 /// However, when one may need to increment the refcount, it is preferable to use an `ArcBorrow<T>` 513 /// over `&Arc<T>` because the latter results in a double-indirection: a pointer (shared reference) 514 /// to a pointer ([`Arc<T>`]) to the object (`T`). An [`ArcBorrow`] eliminates this double 515 /// indirection while still allowing one to increment the refcount and getting an [`Arc<T>`] when/if 516 /// needed. 517 /// 518 /// # Invariants 519 /// 520 /// There are no mutable references to the underlying [`Arc`], and it remains valid for the 521 /// lifetime of the [`ArcBorrow`] instance. 522 /// 523 /// # Examples 524 /// 525 /// ``` 526 /// use kernel::sync::{Arc, ArcBorrow}; 527 /// 528 /// struct Example; 529 /// 530 /// fn do_something(e: ArcBorrow<'_, Example>) -> Arc<Example> { 531 /// e.into() 532 /// } 533 /// 534 /// let obj = Arc::new(Example, GFP_KERNEL)?; 535 /// let cloned = do_something(obj.as_arc_borrow()); 536 /// 537 /// // Assert that both `obj` and `cloned` point to the same underlying object. 538 /// assert!(core::ptr::eq(&*obj, &*cloned)); 539 /// # Ok::<(), Error>(()) 540 /// ``` 541 /// 542 /// Using `ArcBorrow<T>` as the type of `self`: 543 /// 544 /// ``` 545 /// use kernel::sync::{Arc, ArcBorrow}; 546 /// 547 /// struct Example { 548 /// a: u32, 549 /// b: u32, 550 /// } 551 /// 552 /// impl Example { 553 /// fn use_reference(self: ArcBorrow<'_, Self>) { 554 /// // ... 555 /// } 556 /// } 557 /// 558 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 559 /// obj.as_arc_borrow().use_reference(); 560 /// # Ok::<(), Error>(()) 561 /// ``` 562 #[repr(transparent)] 563 #[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, derive(core::marker::CoercePointee))] 564 pub struct ArcBorrow<'a, T: ?Sized + 'a> { 565 inner: NonNull<ArcInner<T>>, 566 _p: PhantomData<&'a ()>, 567 } 568 569 // This is to allow `ArcBorrow<U>` to be dispatched on when `ArcBorrow<T>` can be coerced into 570 // `ArcBorrow<U>`. 571 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))] 572 impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<ArcBorrow<'_, U>> 573 for ArcBorrow<'_, T> 574 { 575 } 576 577 impl<T: ?Sized> Clone for ArcBorrow<'_, T> { 578 fn clone(&self) -> Self { 579 *self 580 } 581 } 582 583 impl<T: ?Sized> Copy for ArcBorrow<'_, T> {} 584 585 impl<T: ?Sized> ArcBorrow<'_, T> { 586 /// Creates a new [`ArcBorrow`] instance. 587 /// 588 /// # Safety 589 /// 590 /// Callers must ensure the following for the lifetime of the returned [`ArcBorrow`] instance: 591 /// 1. That `inner` remains valid; 592 /// 2. That no mutable references to `inner` are created. 593 unsafe fn new(inner: NonNull<ArcInner<T>>) -> Self { 594 // INVARIANT: The safety requirements guarantee the invariants. 595 Self { 596 inner, 597 _p: PhantomData, 598 } 599 } 600 601 /// Creates an [`ArcBorrow`] to an [`Arc`] that has previously been deconstructed with 602 /// [`Arc::into_raw`] or [`Arc::as_ptr`]. 603 /// 604 /// # Safety 605 /// 606 /// * The provided pointer must originate from a call to [`Arc::into_raw`] or [`Arc::as_ptr`]. 607 /// * For the duration of the lifetime annotated on this `ArcBorrow`, the reference count must 608 /// not hit zero. 609 /// * For the duration of the lifetime annotated on this `ArcBorrow`, there must not be a 610 /// [`UniqueArc`] reference to this value. 611 pub unsafe fn from_raw(ptr: *const T) -> Self { 612 // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an 613 // `Arc` that is still valid. 614 let ptr = unsafe { ArcInner::container_of(ptr) }; 615 616 // SAFETY: The caller promises that the value remains valid since the reference count must 617 // not hit zero, and no mutable reference will be created since that would involve a 618 // `UniqueArc`. 619 unsafe { Self::new(ptr) } 620 } 621 } 622 623 impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc<T> { 624 fn from(b: ArcBorrow<'_, T>) -> Self { 625 // SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop` 626 // guarantees that `drop` isn't called, so it's ok that the temporary `Arc` doesn't own the 627 // increment. 628 ManuallyDrop::new(unsafe { Arc::from_inner(b.inner) }) 629 .deref() 630 .clone() 631 } 632 } 633 634 impl<T: ?Sized> Deref for ArcBorrow<'_, T> { 635 type Target = T; 636 637 fn deref(&self) -> &Self::Target { 638 // SAFETY: By the type invariant, the underlying object is still alive with no mutable 639 // references to it, so it is safe to create a shared reference. 640 unsafe { &self.inner.as_ref().data } 641 } 642 } 643 644 /// A refcounted object that is known to have a refcount of 1. 645 /// 646 /// It is mutable and can be converted to an [`Arc`] so that it can be shared. 647 /// 648 /// # Invariants 649 /// 650 /// `inner` always has a reference count of 1. 651 /// 652 /// # Examples 653 /// 654 /// In the following example, we make changes to the inner object before turning it into an 655 /// `Arc<Test>` object (after which point, it cannot be mutated directly). Note that `x.into()` 656 /// cannot fail. 657 /// 658 /// ``` 659 /// use kernel::sync::{Arc, UniqueArc}; 660 /// 661 /// struct Example { 662 /// a: u32, 663 /// b: u32, 664 /// } 665 /// 666 /// fn test() -> Result<Arc<Example>> { 667 /// let mut x = UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 668 /// x.a += 1; 669 /// x.b += 1; 670 /// Ok(x.into()) 671 /// } 672 /// 673 /// # test().unwrap(); 674 /// ``` 675 /// 676 /// In the following example we first allocate memory for a refcounted `Example` but we don't 677 /// initialise it on allocation. We do initialise it later with a call to [`UniqueArc::write`], 678 /// followed by a conversion to `Arc<Example>`. This is particularly useful when allocation happens 679 /// in one context (e.g., sleepable) and initialisation in another (e.g., atomic): 680 /// 681 /// ``` 682 /// use kernel::sync::{Arc, UniqueArc}; 683 /// 684 /// struct Example { 685 /// a: u32, 686 /// b: u32, 687 /// } 688 /// 689 /// fn test() -> Result<Arc<Example>> { 690 /// let x = UniqueArc::new_uninit(GFP_KERNEL)?; 691 /// Ok(x.write(Example { a: 10, b: 20 }).into()) 692 /// } 693 /// 694 /// # test().unwrap(); 695 /// ``` 696 /// 697 /// In the last example below, the caller gets a pinned instance of `Example` while converting to 698 /// `Arc<Example>`; this is useful in scenarios where one needs a pinned reference during 699 /// initialisation, for example, when initialising fields that are wrapped in locks. 700 /// 701 /// ``` 702 /// use kernel::sync::{Arc, UniqueArc}; 703 /// 704 /// struct Example { 705 /// a: u32, 706 /// b: u32, 707 /// } 708 /// 709 /// fn test() -> Result<Arc<Example>> { 710 /// let mut pinned = Pin::from(UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?); 711 /// // We can modify `pinned` because it is `Unpin`. 712 /// pinned.as_mut().a += 1; 713 /// Ok(pinned.into()) 714 /// } 715 /// 716 /// # test().unwrap(); 717 /// ``` 718 pub struct UniqueArc<T: ?Sized> { 719 inner: Arc<T>, 720 } 721 722 impl<T> InPlaceInit<T> for UniqueArc<T> { 723 type PinnedSelf = Pin<Self>; 724 725 #[inline] 726 fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E> 727 where 728 E: From<AllocError>, 729 { 730 UniqueArc::new_uninit(flags)?.write_pin_init(init) 731 } 732 733 #[inline] 734 fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E> 735 where 736 E: From<AllocError>, 737 { 738 UniqueArc::new_uninit(flags)?.write_init(init) 739 } 740 } 741 742 impl<T> InPlaceWrite<T> for UniqueArc<MaybeUninit<T>> { 743 type Initialized = UniqueArc<T>; 744 745 fn write_init<E>(mut self, init: impl Init<T, E>) -> Result<Self::Initialized, E> { 746 let slot = self.as_mut_ptr(); 747 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 748 // slot is valid. 749 unsafe { init.__init(slot)? }; 750 // SAFETY: All fields have been initialized. 751 Ok(unsafe { self.assume_init() }) 752 } 753 754 fn write_pin_init<E>(mut self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E> { 755 let slot = self.as_mut_ptr(); 756 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 757 // slot is valid and will not be moved, because we pin it later. 758 unsafe { init.__pinned_init(slot)? }; 759 // SAFETY: All fields have been initialized. 760 Ok(unsafe { self.assume_init() }.into()) 761 } 762 } 763 764 impl<T> UniqueArc<T> { 765 /// Tries to allocate a new [`UniqueArc`] instance. 766 pub fn new(value: T, flags: Flags) -> Result<Self, AllocError> { 767 Ok(Self { 768 // INVARIANT: The newly-created object has a refcount of 1. 769 inner: Arc::new(value, flags)?, 770 }) 771 } 772 773 /// Tries to allocate a new [`UniqueArc`] instance whose contents are not initialised yet. 774 pub fn new_uninit(flags: Flags) -> Result<UniqueArc<MaybeUninit<T>>, AllocError> { 775 // INVARIANT: The refcount is initialised to a non-zero value. 776 let inner = KBox::try_init::<AllocError>( 777 try_init!(ArcInner { 778 // SAFETY: There are no safety requirements for this FFI call. 779 refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }), 780 data <- pin_init::uninit::<T, AllocError>(), 781 }? AllocError), 782 flags, 783 )?; 784 Ok(UniqueArc { 785 // INVARIANT: The newly-created object has a refcount of 1. 786 // SAFETY: The pointer from the `KBox` is valid. 787 inner: unsafe { Arc::from_inner(KBox::leak(inner).into()) }, 788 }) 789 } 790 } 791 792 impl<T> UniqueArc<MaybeUninit<T>> { 793 /// Converts a `UniqueArc<MaybeUninit<T>>` into a `UniqueArc<T>` by writing a value into it. 794 pub fn write(mut self, value: T) -> UniqueArc<T> { 795 self.deref_mut().write(value); 796 // SAFETY: We just wrote the value to be initialized. 797 unsafe { self.assume_init() } 798 } 799 800 /// Unsafely assume that `self` is initialized. 801 /// 802 /// # Safety 803 /// 804 /// The caller guarantees that the value behind this pointer has been initialized. It is 805 /// *immediate* UB to call this when the value is not initialized. 806 pub unsafe fn assume_init(self) -> UniqueArc<T> { 807 let inner = ManuallyDrop::new(self).inner.ptr; 808 UniqueArc { 809 // SAFETY: The new `Arc` is taking over `ptr` from `self.inner` (which won't be 810 // dropped). The types are compatible because `MaybeUninit<T>` is compatible with `T`. 811 inner: unsafe { Arc::from_inner(inner.cast()) }, 812 } 813 } 814 815 /// Initialize `self` using the given initializer. 816 pub fn init_with<E>(mut self, init: impl Init<T, E>) -> core::result::Result<UniqueArc<T>, E> { 817 // SAFETY: The supplied pointer is valid for initialization. 818 match unsafe { init.__init(self.as_mut_ptr()) } { 819 // SAFETY: Initialization completed successfully. 820 Ok(()) => Ok(unsafe { self.assume_init() }), 821 Err(err) => Err(err), 822 } 823 } 824 825 /// Pin-initialize `self` using the given pin-initializer. 826 pub fn pin_init_with<E>( 827 mut self, 828 init: impl PinInit<T, E>, 829 ) -> core::result::Result<Pin<UniqueArc<T>>, E> { 830 // SAFETY: The supplied pointer is valid for initialization and we will later pin the value 831 // to ensure it does not move. 832 match unsafe { init.__pinned_init(self.as_mut_ptr()) } { 833 // SAFETY: Initialization completed successfully. 834 Ok(()) => Ok(unsafe { self.assume_init() }.into()), 835 Err(err) => Err(err), 836 } 837 } 838 } 839 840 impl<T: ?Sized> From<UniqueArc<T>> for Pin<UniqueArc<T>> { 841 fn from(obj: UniqueArc<T>) -> Self { 842 // SAFETY: It is not possible to move/replace `T` inside a `Pin<UniqueArc<T>>` (unless `T` 843 // is `Unpin`), so it is ok to convert it to `Pin<UniqueArc<T>>`. 844 unsafe { Pin::new_unchecked(obj) } 845 } 846 } 847 848 impl<T: ?Sized> Deref for UniqueArc<T> { 849 type Target = T; 850 851 fn deref(&self) -> &Self::Target { 852 self.inner.deref() 853 } 854 } 855 856 impl<T: ?Sized> DerefMut for UniqueArc<T> { 857 fn deref_mut(&mut self) -> &mut Self::Target { 858 // SAFETY: By the `Arc` type invariant, there is necessarily a reference to the object, so 859 // it is safe to dereference it. Additionally, we know there is only one reference when 860 // it's inside a `UniqueArc`, so it is safe to get a mutable reference. 861 unsafe { &mut self.inner.ptr.as_mut().data } 862 } 863 } 864 865 /// # Examples 866 /// 867 /// ``` 868 /// # use core::borrow::Borrow; 869 /// # use kernel::sync::UniqueArc; 870 /// struct Foo<B: Borrow<u32>>(B); 871 /// 872 /// // Owned instance. 873 /// let owned = Foo(1); 874 /// 875 /// // Owned instance using `UniqueArc`. 876 /// let arc = UniqueArc::new(1, GFP_KERNEL)?; 877 /// let shared = Foo(arc); 878 /// 879 /// let i = 1; 880 /// // Borrowed from `i`. 881 /// let borrowed = Foo(&i); 882 /// # Ok::<(), Error>(()) 883 /// ``` 884 impl<T: ?Sized> Borrow<T> for UniqueArc<T> { 885 fn borrow(&self) -> &T { 886 self.deref() 887 } 888 } 889 890 /// # Examples 891 /// 892 /// ``` 893 /// # use core::borrow::BorrowMut; 894 /// # use kernel::sync::UniqueArc; 895 /// struct Foo<B: BorrowMut<u32>>(B); 896 /// 897 /// // Owned instance. 898 /// let owned = Foo(1); 899 /// 900 /// // Owned instance using `UniqueArc`. 901 /// let arc = UniqueArc::new(1, GFP_KERNEL)?; 902 /// let shared = Foo(arc); 903 /// 904 /// let mut i = 1; 905 /// // Borrowed from `i`. 906 /// let borrowed = Foo(&mut i); 907 /// # Ok::<(), Error>(()) 908 /// ``` 909 impl<T: ?Sized> BorrowMut<T> for UniqueArc<T> { 910 fn borrow_mut(&mut self) -> &mut T { 911 self.deref_mut() 912 } 913 } 914 915 impl<T: fmt::Display + ?Sized> fmt::Display for UniqueArc<T> { 916 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 917 fmt::Display::fmt(self.deref(), f) 918 } 919 } 920 921 impl<T: fmt::Display + ?Sized> fmt::Display for Arc<T> { 922 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 923 fmt::Display::fmt(self.deref(), f) 924 } 925 } 926 927 impl<T: fmt::Debug + ?Sized> fmt::Debug for UniqueArc<T> { 928 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 929 fmt::Debug::fmt(self.deref(), f) 930 } 931 } 932 933 impl<T: fmt::Debug + ?Sized> fmt::Debug for Arc<T> { 934 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 935 fmt::Debug::fmt(self.deref(), f) 936 } 937 } 938