1 // SPDX-License-Identifier: GPL-2.0 2 3 //! A reference-counted pointer. 4 //! 5 //! This module implements a way for users to create reference-counted objects and pointers to 6 //! them. Such a pointer automatically increments and decrements the count, and drops the 7 //! underlying object when it reaches zero. It is also safe to use concurrently from multiple 8 //! threads. 9 //! 10 //! It is different from the standard library's [`Arc`] in a few ways: 11 //! 1. It is backed by the kernel's `refcount_t` type. 12 //! 2. It does not support weak references, which allows it to be half the size. 13 //! 3. It saturates the reference count instead of aborting when it goes over a threshold. 14 //! 4. It does not provide a `get_mut` method, so the ref counted object is pinned. 15 //! 5. The object in [`Arc`] is pinned implicitly. 16 //! 17 //! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html 18 19 use crate::{ 20 alloc::{AllocError, Flags, KBox}, 21 bindings, 22 init::{self, InPlaceInit, Init, PinInit}, 23 try_init, 24 types::{ForeignOwnable, Opaque}, 25 }; 26 use core::{ 27 alloc::Layout, 28 fmt, 29 marker::{PhantomData, Unsize}, 30 mem::{ManuallyDrop, MaybeUninit}, 31 ops::{Deref, DerefMut}, 32 pin::Pin, 33 ptr::NonNull, 34 }; 35 use macros::pin_data; 36 37 mod std_vendor; 38 39 /// A reference-counted pointer to an instance of `T`. 40 /// 41 /// The reference count is incremented when new instances of [`Arc`] are created, and decremented 42 /// when they are dropped. When the count reaches zero, the underlying `T` is also dropped. 43 /// 44 /// # Invariants 45 /// 46 /// The reference count on an instance of [`Arc`] is always non-zero. 47 /// The object pointed to by [`Arc`] is always pinned. 48 /// 49 /// # Examples 50 /// 51 /// ``` 52 /// use kernel::sync::Arc; 53 /// 54 /// struct Example { 55 /// a: u32, 56 /// b: u32, 57 /// } 58 /// 59 /// // Create a refcounted instance of `Example`. 60 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 61 /// 62 /// // Get a new pointer to `obj` and increment the refcount. 63 /// let cloned = obj.clone(); 64 /// 65 /// // Assert that both `obj` and `cloned` point to the same underlying object. 66 /// assert!(core::ptr::eq(&*obj, &*cloned)); 67 /// 68 /// // Destroy `obj` and decrement its refcount. 69 /// drop(obj); 70 /// 71 /// // Check that the values are still accessible through `cloned`. 72 /// assert_eq!(cloned.a, 10); 73 /// assert_eq!(cloned.b, 20); 74 /// 75 /// // The refcount drops to zero when `cloned` goes out of scope, and the memory is freed. 76 /// # Ok::<(), Error>(()) 77 /// ``` 78 /// 79 /// Using `Arc<T>` as the type of `self`: 80 /// 81 /// ``` 82 /// use kernel::sync::Arc; 83 /// 84 /// struct Example { 85 /// a: u32, 86 /// b: u32, 87 /// } 88 /// 89 /// impl Example { 90 /// fn take_over(self: Arc<Self>) { 91 /// // ... 92 /// } 93 /// 94 /// fn use_reference(self: &Arc<Self>) { 95 /// // ... 96 /// } 97 /// } 98 /// 99 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 100 /// obj.use_reference(); 101 /// obj.take_over(); 102 /// # Ok::<(), Error>(()) 103 /// ``` 104 /// 105 /// Coercion from `Arc<Example>` to `Arc<dyn MyTrait>`: 106 /// 107 /// ``` 108 /// use kernel::sync::{Arc, ArcBorrow}; 109 /// 110 /// trait MyTrait { 111 /// // Trait has a function whose `self` type is `Arc<Self>`. 112 /// fn example1(self: Arc<Self>) {} 113 /// 114 /// // Trait has a function whose `self` type is `ArcBorrow<'_, Self>`. 115 /// fn example2(self: ArcBorrow<'_, Self>) {} 116 /// } 117 /// 118 /// struct Example; 119 /// impl MyTrait for Example {} 120 /// 121 /// // `obj` has type `Arc<Example>`. 122 /// let obj: Arc<Example> = Arc::new(Example, GFP_KERNEL)?; 123 /// 124 /// // `coerced` has type `Arc<dyn MyTrait>`. 125 /// let coerced: Arc<dyn MyTrait> = obj; 126 /// # Ok::<(), Error>(()) 127 /// ``` 128 pub struct Arc<T: ?Sized> { 129 ptr: NonNull<ArcInner<T>>, 130 // NB: this informs dropck that objects of type `ArcInner<T>` may be used in `<Arc<T> as 131 // Drop>::drop`. Note that dropck already assumes that objects of type `T` may be used in 132 // `<Arc<T> as Drop>::drop` and the distinction between `T` and `ArcInner<T>` is not presently 133 // meaningful with respect to dropck - but this may change in the future so this is left here 134 // out of an abundance of caution. 135 // 136 // See https://doc.rust-lang.org/nomicon/phantom-data.html#generic-parameters-and-drop-checking 137 // for more detail on the semantics of dropck in the presence of `PhantomData`. 138 _p: PhantomData<ArcInner<T>>, 139 } 140 141 #[pin_data] 142 #[repr(C)] 143 struct ArcInner<T: ?Sized> { 144 refcount: Opaque<bindings::refcount_t>, 145 data: T, 146 } 147 148 impl<T: ?Sized> ArcInner<T> { 149 /// Converts a pointer to the contents of an [`Arc`] into a pointer to the [`ArcInner`]. 150 /// 151 /// # Safety 152 /// 153 /// `ptr` must have been returned by a previous call to [`Arc::into_raw`], and the `Arc` must 154 /// not yet have been destroyed. 155 unsafe fn container_of(ptr: *const T) -> NonNull<ArcInner<T>> { 156 let refcount_layout = Layout::new::<bindings::refcount_t>(); 157 // SAFETY: The caller guarantees that the pointer is valid. 158 let val_layout = Layout::for_value(unsafe { &*ptr }); 159 // SAFETY: We're computing the layout of a real struct that existed when compiling this 160 // binary, so its layout is not so large that it can trigger arithmetic overflow. 161 let val_offset = unsafe { refcount_layout.extend(val_layout).unwrap_unchecked().1 }; 162 163 // Pointer casts leave the metadata unchanged. This is okay because the metadata of `T` and 164 // `ArcInner<T>` is the same since `ArcInner` is a struct with `T` as its last field. 165 // 166 // This is documented at: 167 // <https://doc.rust-lang.org/std/ptr/trait.Pointee.html>. 168 let ptr = ptr as *const ArcInner<T>; 169 170 // SAFETY: The pointer is in-bounds of an allocation both before and after offsetting the 171 // pointer, since it originates from a previous call to `Arc::into_raw` on an `Arc` that is 172 // still valid. 173 let ptr = unsafe { ptr.byte_sub(val_offset) }; 174 175 // SAFETY: The pointer can't be null since you can't have an `ArcInner<T>` value at the null 176 // address. 177 unsafe { NonNull::new_unchecked(ptr.cast_mut()) } 178 } 179 } 180 181 // This is to allow coercion from `Arc<T>` to `Arc<U>` if `T` can be converted to the 182 // dynamically-sized type (DST) `U`. 183 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Arc<U>> for Arc<T> {} 184 185 // This is to allow `Arc<U>` to be dispatched on when `Arc<T>` can be coerced into `Arc<U>`. 186 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<Arc<U>> for Arc<T> {} 187 188 // SAFETY: It is safe to send `Arc<T>` to another thread when the underlying `T` is `Sync` because 189 // it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs 190 // `T` to be `Send` because any thread that has an `Arc<T>` may ultimately access `T` using a 191 // mutable reference when the reference count reaches zero and `T` is dropped. 192 unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {} 193 194 // SAFETY: It is safe to send `&Arc<T>` to another thread when the underlying `T` is `Sync` 195 // because it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, 196 // it needs `T` to be `Send` because any thread that has a `&Arc<T>` may clone it and get an 197 // `Arc<T>` on that thread, so the thread may ultimately access `T` using a mutable reference when 198 // the reference count reaches zero and `T` is dropped. 199 unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {} 200 201 impl<T> Arc<T> { 202 /// Constructs a new reference counted instance of `T`. 203 pub fn new(contents: T, flags: Flags) -> Result<Self, AllocError> { 204 // INVARIANT: The refcount is initialised to a non-zero value. 205 let value = ArcInner { 206 // SAFETY: There are no safety requirements for this FFI call. 207 refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }), 208 data: contents, 209 }; 210 211 let inner = KBox::new(value, flags)?; 212 213 // SAFETY: We just created `inner` with a reference count of 1, which is owned by the new 214 // `Arc` object. 215 Ok(unsafe { Self::from_inner(KBox::leak(inner).into()) }) 216 } 217 } 218 219 impl<T: ?Sized> Arc<T> { 220 /// Constructs a new [`Arc`] from an existing [`ArcInner`]. 221 /// 222 /// # Safety 223 /// 224 /// The caller must ensure that `inner` points to a valid location and has a non-zero reference 225 /// count, one of which will be owned by the new [`Arc`] instance. 226 unsafe fn from_inner(inner: NonNull<ArcInner<T>>) -> Self { 227 // INVARIANT: By the safety requirements, the invariants hold. 228 Arc { 229 ptr: inner, 230 _p: PhantomData, 231 } 232 } 233 234 /// Convert the [`Arc`] into a raw pointer. 235 /// 236 /// The raw pointer has ownership of the refcount that this Arc object owned. 237 pub fn into_raw(self) -> *const T { 238 let ptr = self.ptr.as_ptr(); 239 core::mem::forget(self); 240 // SAFETY: The pointer is valid. 241 unsafe { core::ptr::addr_of!((*ptr).data) } 242 } 243 244 /// Recreates an [`Arc`] instance previously deconstructed via [`Arc::into_raw`]. 245 /// 246 /// # Safety 247 /// 248 /// `ptr` must have been returned by a previous call to [`Arc::into_raw`]. Additionally, it 249 /// must not be called more than once for each previous call to [`Arc::into_raw`]. 250 pub unsafe fn from_raw(ptr: *const T) -> Self { 251 // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an 252 // `Arc` that is still valid. 253 let ptr = unsafe { ArcInner::container_of(ptr) }; 254 255 // SAFETY: By the safety requirements we know that `ptr` came from `Arc::into_raw`, so the 256 // reference count held then will be owned by the new `Arc` object. 257 unsafe { Self::from_inner(ptr) } 258 } 259 260 /// Returns an [`ArcBorrow`] from the given [`Arc`]. 261 /// 262 /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method 263 /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised. 264 #[inline] 265 pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> { 266 // SAFETY: The constraint that the lifetime of the shared reference must outlive that of 267 // the returned `ArcBorrow` ensures that the object remains alive and that no mutable 268 // reference can be created. 269 unsafe { ArcBorrow::new(self.ptr) } 270 } 271 272 /// Compare whether two [`Arc`] pointers reference the same underlying object. 273 pub fn ptr_eq(this: &Self, other: &Self) -> bool { 274 core::ptr::eq(this.ptr.as_ptr(), other.ptr.as_ptr()) 275 } 276 277 /// Converts this [`Arc`] into a [`UniqueArc`], or destroys it if it is not unique. 278 /// 279 /// When this destroys the `Arc`, it does so while properly avoiding races. This means that 280 /// this method will never call the destructor of the value. 281 /// 282 /// # Examples 283 /// 284 /// ``` 285 /// use kernel::sync::{Arc, UniqueArc}; 286 /// 287 /// let arc = Arc::new(42, GFP_KERNEL)?; 288 /// let unique_arc = arc.into_unique_or_drop(); 289 /// 290 /// // The above conversion should succeed since refcount of `arc` is 1. 291 /// assert!(unique_arc.is_some()); 292 /// 293 /// assert_eq!(*(unique_arc.unwrap()), 42); 294 /// 295 /// # Ok::<(), Error>(()) 296 /// ``` 297 /// 298 /// ``` 299 /// use kernel::sync::{Arc, UniqueArc}; 300 /// 301 /// let arc = Arc::new(42, GFP_KERNEL)?; 302 /// let another = arc.clone(); 303 /// 304 /// let unique_arc = arc.into_unique_or_drop(); 305 /// 306 /// // The above conversion should fail since refcount of `arc` is >1. 307 /// assert!(unique_arc.is_none()); 308 /// 309 /// # Ok::<(), Error>(()) 310 /// ``` 311 pub fn into_unique_or_drop(self) -> Option<Pin<UniqueArc<T>>> { 312 // We will manually manage the refcount in this method, so we disable the destructor. 313 let me = ManuallyDrop::new(self); 314 // SAFETY: We own a refcount, so the pointer is still valid. 315 let refcount = unsafe { me.ptr.as_ref() }.refcount.get(); 316 317 // If the refcount reaches a non-zero value, then we have destroyed this `Arc` and will 318 // return without further touching the `Arc`. If the refcount reaches zero, then there are 319 // no other arcs, and we can create a `UniqueArc`. 320 // 321 // SAFETY: We own a refcount, so the pointer is not dangling. 322 let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) }; 323 if is_zero { 324 // SAFETY: We have exclusive access to the arc, so we can perform unsynchronized 325 // accesses to the refcount. 326 unsafe { core::ptr::write(refcount, bindings::REFCOUNT_INIT(1)) }; 327 328 // INVARIANT: We own the only refcount to this arc, so we may create a `UniqueArc`. We 329 // must pin the `UniqueArc` because the values was previously in an `Arc`, and they pin 330 // their values. 331 Some(Pin::from(UniqueArc { 332 inner: ManuallyDrop::into_inner(me), 333 })) 334 } else { 335 None 336 } 337 } 338 } 339 340 impl<T: 'static> ForeignOwnable for Arc<T> { 341 type Borrowed<'a> = ArcBorrow<'a, T>; 342 343 fn into_foreign(self) -> *const crate::ffi::c_void { 344 ManuallyDrop::new(self).ptr.as_ptr() as _ 345 } 346 347 unsafe fn borrow<'a>(ptr: *const crate::ffi::c_void) -> ArcBorrow<'a, T> { 348 // By the safety requirement of this function, we know that `ptr` came from 349 // a previous call to `Arc::into_foreign`. 350 let inner = NonNull::new(ptr as *mut ArcInner<T>).unwrap(); 351 352 // SAFETY: The safety requirements of `from_foreign` ensure that the object remains alive 353 // for the lifetime of the returned value. 354 unsafe { ArcBorrow::new(inner) } 355 } 356 357 unsafe fn from_foreign(ptr: *const crate::ffi::c_void) -> Self { 358 // SAFETY: By the safety requirement of this function, we know that `ptr` came from 359 // a previous call to `Arc::into_foreign`, which guarantees that `ptr` is valid and 360 // holds a reference count increment that is transferrable to us. 361 unsafe { Self::from_inner(NonNull::new(ptr as _).unwrap()) } 362 } 363 } 364 365 impl<T: ?Sized> Deref for Arc<T> { 366 type Target = T; 367 368 fn deref(&self) -> &Self::Target { 369 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is 370 // safe to dereference it. 371 unsafe { &self.ptr.as_ref().data } 372 } 373 } 374 375 impl<T: ?Sized> AsRef<T> for Arc<T> { 376 fn as_ref(&self) -> &T { 377 self.deref() 378 } 379 } 380 381 impl<T: ?Sized> Clone for Arc<T> { 382 fn clone(&self) -> Self { 383 // INVARIANT: C `refcount_inc` saturates the refcount, so it cannot overflow to zero. 384 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is 385 // safe to increment the refcount. 386 unsafe { bindings::refcount_inc(self.ptr.as_ref().refcount.get()) }; 387 388 // SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`. 389 unsafe { Self::from_inner(self.ptr) } 390 } 391 } 392 393 impl<T: ?Sized> Drop for Arc<T> { 394 fn drop(&mut self) { 395 // SAFETY: By the type invariant, there is necessarily a reference to the object. We cannot 396 // touch `refcount` after it's decremented to a non-zero value because another thread/CPU 397 // may concurrently decrement it to zero and free it. It is ok to have a raw pointer to 398 // freed/invalid memory as long as it is never dereferenced. 399 let refcount = unsafe { self.ptr.as_ref() }.refcount.get(); 400 401 // INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and 402 // this instance is being dropped, so the broken invariant is not observable. 403 // SAFETY: Also by the type invariant, we are allowed to decrement the refcount. 404 let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) }; 405 if is_zero { 406 // The count reached zero, we must free the memory. 407 // 408 // SAFETY: The pointer was initialised from the result of `KBox::leak`. 409 unsafe { drop(KBox::from_raw(self.ptr.as_ptr())) }; 410 } 411 } 412 } 413 414 impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> { 415 fn from(item: UniqueArc<T>) -> Self { 416 item.inner 417 } 418 } 419 420 impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Arc<T> { 421 fn from(item: Pin<UniqueArc<T>>) -> Self { 422 // SAFETY: The type invariants of `Arc` guarantee that the data is pinned. 423 unsafe { Pin::into_inner_unchecked(item).inner } 424 } 425 } 426 427 /// A borrowed reference to an [`Arc`] instance. 428 /// 429 /// For cases when one doesn't ever need to increment the refcount on the allocation, it is simpler 430 /// to use just `&T`, which we can trivially get from an [`Arc<T>`] instance. 431 /// 432 /// However, when one may need to increment the refcount, it is preferable to use an `ArcBorrow<T>` 433 /// over `&Arc<T>` because the latter results in a double-indirection: a pointer (shared reference) 434 /// to a pointer ([`Arc<T>`]) to the object (`T`). An [`ArcBorrow`] eliminates this double 435 /// indirection while still allowing one to increment the refcount and getting an [`Arc<T>`] when/if 436 /// needed. 437 /// 438 /// # Invariants 439 /// 440 /// There are no mutable references to the underlying [`Arc`], and it remains valid for the 441 /// lifetime of the [`ArcBorrow`] instance. 442 /// 443 /// # Example 444 /// 445 /// ``` 446 /// use kernel::sync::{Arc, ArcBorrow}; 447 /// 448 /// struct Example; 449 /// 450 /// fn do_something(e: ArcBorrow<'_, Example>) -> Arc<Example> { 451 /// e.into() 452 /// } 453 /// 454 /// let obj = Arc::new(Example, GFP_KERNEL)?; 455 /// let cloned = do_something(obj.as_arc_borrow()); 456 /// 457 /// // Assert that both `obj` and `cloned` point to the same underlying object. 458 /// assert!(core::ptr::eq(&*obj, &*cloned)); 459 /// # Ok::<(), Error>(()) 460 /// ``` 461 /// 462 /// Using `ArcBorrow<T>` as the type of `self`: 463 /// 464 /// ``` 465 /// use kernel::sync::{Arc, ArcBorrow}; 466 /// 467 /// struct Example { 468 /// a: u32, 469 /// b: u32, 470 /// } 471 /// 472 /// impl Example { 473 /// fn use_reference(self: ArcBorrow<'_, Self>) { 474 /// // ... 475 /// } 476 /// } 477 /// 478 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 479 /// obj.as_arc_borrow().use_reference(); 480 /// # Ok::<(), Error>(()) 481 /// ``` 482 pub struct ArcBorrow<'a, T: ?Sized + 'a> { 483 inner: NonNull<ArcInner<T>>, 484 _p: PhantomData<&'a ()>, 485 } 486 487 // This is to allow `ArcBorrow<U>` to be dispatched on when `ArcBorrow<T>` can be coerced into 488 // `ArcBorrow<U>`. 489 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<ArcBorrow<'_, U>> 490 for ArcBorrow<'_, T> 491 { 492 } 493 494 impl<T: ?Sized> Clone for ArcBorrow<'_, T> { 495 fn clone(&self) -> Self { 496 *self 497 } 498 } 499 500 impl<T: ?Sized> Copy for ArcBorrow<'_, T> {} 501 502 impl<T: ?Sized> ArcBorrow<'_, T> { 503 /// Creates a new [`ArcBorrow`] instance. 504 /// 505 /// # Safety 506 /// 507 /// Callers must ensure the following for the lifetime of the returned [`ArcBorrow`] instance: 508 /// 1. That `inner` remains valid; 509 /// 2. That no mutable references to `inner` are created. 510 unsafe fn new(inner: NonNull<ArcInner<T>>) -> Self { 511 // INVARIANT: The safety requirements guarantee the invariants. 512 Self { 513 inner, 514 _p: PhantomData, 515 } 516 } 517 518 /// Creates an [`ArcBorrow`] to an [`Arc`] that has previously been deconstructed with 519 /// [`Arc::into_raw`]. 520 /// 521 /// # Safety 522 /// 523 /// * The provided pointer must originate from a call to [`Arc::into_raw`]. 524 /// * For the duration of the lifetime annotated on this `ArcBorrow`, the reference count must 525 /// not hit zero. 526 /// * For the duration of the lifetime annotated on this `ArcBorrow`, there must not be a 527 /// [`UniqueArc`] reference to this value. 528 pub unsafe fn from_raw(ptr: *const T) -> Self { 529 // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an 530 // `Arc` that is still valid. 531 let ptr = unsafe { ArcInner::container_of(ptr) }; 532 533 // SAFETY: The caller promises that the value remains valid since the reference count must 534 // not hit zero, and no mutable reference will be created since that would involve a 535 // `UniqueArc`. 536 unsafe { Self::new(ptr) } 537 } 538 } 539 540 impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc<T> { 541 fn from(b: ArcBorrow<'_, T>) -> Self { 542 // SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop` 543 // guarantees that `drop` isn't called, so it's ok that the temporary `Arc` doesn't own the 544 // increment. 545 ManuallyDrop::new(unsafe { Arc::from_inner(b.inner) }) 546 .deref() 547 .clone() 548 } 549 } 550 551 impl<T: ?Sized> Deref for ArcBorrow<'_, T> { 552 type Target = T; 553 554 fn deref(&self) -> &Self::Target { 555 // SAFETY: By the type invariant, the underlying object is still alive with no mutable 556 // references to it, so it is safe to create a shared reference. 557 unsafe { &self.inner.as_ref().data } 558 } 559 } 560 561 /// A refcounted object that is known to have a refcount of 1. 562 /// 563 /// It is mutable and can be converted to an [`Arc`] so that it can be shared. 564 /// 565 /// # Invariants 566 /// 567 /// `inner` always has a reference count of 1. 568 /// 569 /// # Examples 570 /// 571 /// In the following example, we make changes to the inner object before turning it into an 572 /// `Arc<Test>` object (after which point, it cannot be mutated directly). Note that `x.into()` 573 /// cannot fail. 574 /// 575 /// ``` 576 /// use kernel::sync::{Arc, UniqueArc}; 577 /// 578 /// struct Example { 579 /// a: u32, 580 /// b: u32, 581 /// } 582 /// 583 /// fn test() -> Result<Arc<Example>> { 584 /// let mut x = UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 585 /// x.a += 1; 586 /// x.b += 1; 587 /// Ok(x.into()) 588 /// } 589 /// 590 /// # test().unwrap(); 591 /// ``` 592 /// 593 /// In the following example we first allocate memory for a refcounted `Example` but we don't 594 /// initialise it on allocation. We do initialise it later with a call to [`UniqueArc::write`], 595 /// followed by a conversion to `Arc<Example>`. This is particularly useful when allocation happens 596 /// in one context (e.g., sleepable) and initialisation in another (e.g., atomic): 597 /// 598 /// ``` 599 /// use kernel::sync::{Arc, UniqueArc}; 600 /// 601 /// struct Example { 602 /// a: u32, 603 /// b: u32, 604 /// } 605 /// 606 /// fn test() -> Result<Arc<Example>> { 607 /// let x = UniqueArc::new_uninit(GFP_KERNEL)?; 608 /// Ok(x.write(Example { a: 10, b: 20 }).into()) 609 /// } 610 /// 611 /// # test().unwrap(); 612 /// ``` 613 /// 614 /// In the last example below, the caller gets a pinned instance of `Example` while converting to 615 /// `Arc<Example>`; this is useful in scenarios where one needs a pinned reference during 616 /// initialisation, for example, when initialising fields that are wrapped in locks. 617 /// 618 /// ``` 619 /// use kernel::sync::{Arc, UniqueArc}; 620 /// 621 /// struct Example { 622 /// a: u32, 623 /// b: u32, 624 /// } 625 /// 626 /// fn test() -> Result<Arc<Example>> { 627 /// let mut pinned = Pin::from(UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?); 628 /// // We can modify `pinned` because it is `Unpin`. 629 /// pinned.as_mut().a += 1; 630 /// Ok(pinned.into()) 631 /// } 632 /// 633 /// # test().unwrap(); 634 /// ``` 635 pub struct UniqueArc<T: ?Sized> { 636 inner: Arc<T>, 637 } 638 639 impl<T> UniqueArc<T> { 640 /// Tries to allocate a new [`UniqueArc`] instance. 641 pub fn new(value: T, flags: Flags) -> Result<Self, AllocError> { 642 Ok(Self { 643 // INVARIANT: The newly-created object has a refcount of 1. 644 inner: Arc::new(value, flags)?, 645 }) 646 } 647 648 /// Tries to allocate a new [`UniqueArc`] instance whose contents are not initialised yet. 649 pub fn new_uninit(flags: Flags) -> Result<UniqueArc<MaybeUninit<T>>, AllocError> { 650 // INVARIANT: The refcount is initialised to a non-zero value. 651 let inner = KBox::try_init::<AllocError>( 652 try_init!(ArcInner { 653 // SAFETY: There are no safety requirements for this FFI call. 654 refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }), 655 data <- init::uninit::<T, AllocError>(), 656 }? AllocError), 657 flags, 658 )?; 659 Ok(UniqueArc { 660 // INVARIANT: The newly-created object has a refcount of 1. 661 // SAFETY: The pointer from the `KBox` is valid. 662 inner: unsafe { Arc::from_inner(KBox::leak(inner).into()) }, 663 }) 664 } 665 } 666 667 impl<T> UniqueArc<MaybeUninit<T>> { 668 /// Converts a `UniqueArc<MaybeUninit<T>>` into a `UniqueArc<T>` by writing a value into it. 669 pub fn write(mut self, value: T) -> UniqueArc<T> { 670 self.deref_mut().write(value); 671 // SAFETY: We just wrote the value to be initialized. 672 unsafe { self.assume_init() } 673 } 674 675 /// Unsafely assume that `self` is initialized. 676 /// 677 /// # Safety 678 /// 679 /// The caller guarantees that the value behind this pointer has been initialized. It is 680 /// *immediate* UB to call this when the value is not initialized. 681 pub unsafe fn assume_init(self) -> UniqueArc<T> { 682 let inner = ManuallyDrop::new(self).inner.ptr; 683 UniqueArc { 684 // SAFETY: The new `Arc` is taking over `ptr` from `self.inner` (which won't be 685 // dropped). The types are compatible because `MaybeUninit<T>` is compatible with `T`. 686 inner: unsafe { Arc::from_inner(inner.cast()) }, 687 } 688 } 689 690 /// Initialize `self` using the given initializer. 691 pub fn init_with<E>(mut self, init: impl Init<T, E>) -> core::result::Result<UniqueArc<T>, E> { 692 // SAFETY: The supplied pointer is valid for initialization. 693 match unsafe { init.__init(self.as_mut_ptr()) } { 694 // SAFETY: Initialization completed successfully. 695 Ok(()) => Ok(unsafe { self.assume_init() }), 696 Err(err) => Err(err), 697 } 698 } 699 700 /// Pin-initialize `self` using the given pin-initializer. 701 pub fn pin_init_with<E>( 702 mut self, 703 init: impl PinInit<T, E>, 704 ) -> core::result::Result<Pin<UniqueArc<T>>, E> { 705 // SAFETY: The supplied pointer is valid for initialization and we will later pin the value 706 // to ensure it does not move. 707 match unsafe { init.__pinned_init(self.as_mut_ptr()) } { 708 // SAFETY: Initialization completed successfully. 709 Ok(()) => Ok(unsafe { self.assume_init() }.into()), 710 Err(err) => Err(err), 711 } 712 } 713 } 714 715 impl<T: ?Sized> From<UniqueArc<T>> for Pin<UniqueArc<T>> { 716 fn from(obj: UniqueArc<T>) -> Self { 717 // SAFETY: It is not possible to move/replace `T` inside a `Pin<UniqueArc<T>>` (unless `T` 718 // is `Unpin`), so it is ok to convert it to `Pin<UniqueArc<T>>`. 719 unsafe { Pin::new_unchecked(obj) } 720 } 721 } 722 723 impl<T: ?Sized> Deref for UniqueArc<T> { 724 type Target = T; 725 726 fn deref(&self) -> &Self::Target { 727 self.inner.deref() 728 } 729 } 730 731 impl<T: ?Sized> DerefMut for UniqueArc<T> { 732 fn deref_mut(&mut self) -> &mut Self::Target { 733 // SAFETY: By the `Arc` type invariant, there is necessarily a reference to the object, so 734 // it is safe to dereference it. Additionally, we know there is only one reference when 735 // it's inside a `UniqueArc`, so it is safe to get a mutable reference. 736 unsafe { &mut self.inner.ptr.as_mut().data } 737 } 738 } 739 740 impl<T: fmt::Display + ?Sized> fmt::Display for UniqueArc<T> { 741 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 742 fmt::Display::fmt(self.deref(), f) 743 } 744 } 745 746 impl<T: fmt::Display + ?Sized> fmt::Display for Arc<T> { 747 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 748 fmt::Display::fmt(self.deref(), f) 749 } 750 } 751 752 impl<T: fmt::Debug + ?Sized> fmt::Debug for UniqueArc<T> { 753 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 754 fmt::Debug::fmt(self.deref(), f) 755 } 756 } 757 758 impl<T: fmt::Debug + ?Sized> fmt::Debug for Arc<T> { 759 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 760 fmt::Debug::fmt(self.deref(), f) 761 } 762 } 763