xref: /linux/rust/kernel/sync/arc.rs (revision 15f2f9313a394f97fb9443271721e9ff1c8d4be4)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! A reference-counted pointer.
4 //!
5 //! This module implements a way for users to create reference-counted objects and pointers to
6 //! them. Such a pointer automatically increments and decrements the count, and drops the
7 //! underlying object when it reaches zero. It is also safe to use concurrently from multiple
8 //! threads.
9 //!
10 //! It is different from the standard library's [`Arc`] in a few ways:
11 //! 1. It is backed by the kernel's `refcount_t` type.
12 //! 2. It does not support weak references, which allows it to be half the size.
13 //! 3. It saturates the reference count instead of aborting when it goes over a threshold.
14 //! 4. It does not provide a `get_mut` method, so the ref counted object is pinned.
15 //! 5. The object in [`Arc`] is pinned implicitly.
16 //!
17 //! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html
18 
19 use crate::{
20     alloc::{AllocError, Flags, KBox},
21     bindings,
22     init::{self, InPlaceInit, Init, PinInit},
23     try_init,
24     types::{ForeignOwnable, Opaque},
25 };
26 use core::{
27     alloc::Layout,
28     fmt,
29     marker::{PhantomData, Unsize},
30     mem::{ManuallyDrop, MaybeUninit},
31     ops::{Deref, DerefMut},
32     pin::Pin,
33     ptr::NonNull,
34 };
35 use macros::pin_data;
36 
37 mod std_vendor;
38 
39 /// A reference-counted pointer to an instance of `T`.
40 ///
41 /// The reference count is incremented when new instances of [`Arc`] are created, and decremented
42 /// when they are dropped. When the count reaches zero, the underlying `T` is also dropped.
43 ///
44 /// # Invariants
45 ///
46 /// The reference count on an instance of [`Arc`] is always non-zero.
47 /// The object pointed to by [`Arc`] is always pinned.
48 ///
49 /// # Examples
50 ///
51 /// ```
52 /// use kernel::sync::Arc;
53 ///
54 /// struct Example {
55 ///     a: u32,
56 ///     b: u32,
57 /// }
58 ///
59 /// // Create a refcounted instance of `Example`.
60 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
61 ///
62 /// // Get a new pointer to `obj` and increment the refcount.
63 /// let cloned = obj.clone();
64 ///
65 /// // Assert that both `obj` and `cloned` point to the same underlying object.
66 /// assert!(core::ptr::eq(&*obj, &*cloned));
67 ///
68 /// // Destroy `obj` and decrement its refcount.
69 /// drop(obj);
70 ///
71 /// // Check that the values are still accessible through `cloned`.
72 /// assert_eq!(cloned.a, 10);
73 /// assert_eq!(cloned.b, 20);
74 ///
75 /// // The refcount drops to zero when `cloned` goes out of scope, and the memory is freed.
76 /// # Ok::<(), Error>(())
77 /// ```
78 ///
79 /// Using `Arc<T>` as the type of `self`:
80 ///
81 /// ```
82 /// use kernel::sync::Arc;
83 ///
84 /// struct Example {
85 ///     a: u32,
86 ///     b: u32,
87 /// }
88 ///
89 /// impl Example {
90 ///     fn take_over(self: Arc<Self>) {
91 ///         // ...
92 ///     }
93 ///
94 ///     fn use_reference(self: &Arc<Self>) {
95 ///         // ...
96 ///     }
97 /// }
98 ///
99 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
100 /// obj.use_reference();
101 /// obj.take_over();
102 /// # Ok::<(), Error>(())
103 /// ```
104 ///
105 /// Coercion from `Arc<Example>` to `Arc<dyn MyTrait>`:
106 ///
107 /// ```
108 /// use kernel::sync::{Arc, ArcBorrow};
109 ///
110 /// trait MyTrait {
111 ///     // Trait has a function whose `self` type is `Arc<Self>`.
112 ///     fn example1(self: Arc<Self>) {}
113 ///
114 ///     // Trait has a function whose `self` type is `ArcBorrow<'_, Self>`.
115 ///     fn example2(self: ArcBorrow<'_, Self>) {}
116 /// }
117 ///
118 /// struct Example;
119 /// impl MyTrait for Example {}
120 ///
121 /// // `obj` has type `Arc<Example>`.
122 /// let obj: Arc<Example> = Arc::new(Example, GFP_KERNEL)?;
123 ///
124 /// // `coerced` has type `Arc<dyn MyTrait>`.
125 /// let coerced: Arc<dyn MyTrait> = obj;
126 /// # Ok::<(), Error>(())
127 /// ```
128 pub struct Arc<T: ?Sized> {
129     ptr: NonNull<ArcInner<T>>,
130     // NB: this informs dropck that objects of type `ArcInner<T>` may be used in `<Arc<T> as
131     // Drop>::drop`. Note that dropck already assumes that objects of type `T` may be used in
132     // `<Arc<T> as Drop>::drop` and the distinction between `T` and `ArcInner<T>` is not presently
133     // meaningful with respect to dropck - but this may change in the future so this is left here
134     // out of an abundance of caution.
135     //
136     // See https://doc.rust-lang.org/nomicon/phantom-data.html#generic-parameters-and-drop-checking
137     // for more detail on the semantics of dropck in the presence of `PhantomData`.
138     _p: PhantomData<ArcInner<T>>,
139 }
140 
141 #[pin_data]
142 #[repr(C)]
143 struct ArcInner<T: ?Sized> {
144     refcount: Opaque<bindings::refcount_t>,
145     data: T,
146 }
147 
148 impl<T: ?Sized> ArcInner<T> {
149     /// Converts a pointer to the contents of an [`Arc`] into a pointer to the [`ArcInner`].
150     ///
151     /// # Safety
152     ///
153     /// `ptr` must have been returned by a previous call to [`Arc::into_raw`], and the `Arc` must
154     /// not yet have been destroyed.
155     unsafe fn container_of(ptr: *const T) -> NonNull<ArcInner<T>> {
156         let refcount_layout = Layout::new::<bindings::refcount_t>();
157         // SAFETY: The caller guarantees that the pointer is valid.
158         let val_layout = Layout::for_value(unsafe { &*ptr });
159         // SAFETY: We're computing the layout of a real struct that existed when compiling this
160         // binary, so its layout is not so large that it can trigger arithmetic overflow.
161         let val_offset = unsafe { refcount_layout.extend(val_layout).unwrap_unchecked().1 };
162 
163         // Pointer casts leave the metadata unchanged. This is okay because the metadata of `T` and
164         // `ArcInner<T>` is the same since `ArcInner` is a struct with `T` as its last field.
165         //
166         // This is documented at:
167         // <https://doc.rust-lang.org/std/ptr/trait.Pointee.html>.
168         let ptr = ptr as *const ArcInner<T>;
169 
170         // SAFETY: The pointer is in-bounds of an allocation both before and after offsetting the
171         // pointer, since it originates from a previous call to `Arc::into_raw` on an `Arc` that is
172         // still valid.
173         let ptr = unsafe { ptr.byte_sub(val_offset) };
174 
175         // SAFETY: The pointer can't be null since you can't have an `ArcInner<T>` value at the null
176         // address.
177         unsafe { NonNull::new_unchecked(ptr.cast_mut()) }
178     }
179 }
180 
181 // This is to allow coercion from `Arc<T>` to `Arc<U>` if `T` can be converted to the
182 // dynamically-sized type (DST) `U`.
183 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Arc<U>> for Arc<T> {}
184 
185 // This is to allow `Arc<U>` to be dispatched on when `Arc<T>` can be coerced into `Arc<U>`.
186 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<Arc<U>> for Arc<T> {}
187 
188 // SAFETY: It is safe to send `Arc<T>` to another thread when the underlying `T` is `Sync` because
189 // it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs
190 // `T` to be `Send` because any thread that has an `Arc<T>` may ultimately access `T` using a
191 // mutable reference when the reference count reaches zero and `T` is dropped.
192 unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {}
193 
194 // SAFETY: It is safe to send `&Arc<T>` to another thread when the underlying `T` is `Sync`
195 // because it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally,
196 // it needs `T` to be `Send` because any thread that has a `&Arc<T>` may clone it and get an
197 // `Arc<T>` on that thread, so the thread may ultimately access `T` using a mutable reference when
198 // the reference count reaches zero and `T` is dropped.
199 unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {}
200 
201 impl<T> Arc<T> {
202     /// Constructs a new reference counted instance of `T`.
203     pub fn new(contents: T, flags: Flags) -> Result<Self, AllocError> {
204         // INVARIANT: The refcount is initialised to a non-zero value.
205         let value = ArcInner {
206             // SAFETY: There are no safety requirements for this FFI call.
207             refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
208             data: contents,
209         };
210 
211         let inner = KBox::new(value, flags)?;
212 
213         // SAFETY: We just created `inner` with a reference count of 1, which is owned by the new
214         // `Arc` object.
215         Ok(unsafe { Self::from_inner(KBox::leak(inner).into()) })
216     }
217 }
218 
219 impl<T: ?Sized> Arc<T> {
220     /// Constructs a new [`Arc`] from an existing [`ArcInner`].
221     ///
222     /// # Safety
223     ///
224     /// The caller must ensure that `inner` points to a valid location and has a non-zero reference
225     /// count, one of which will be owned by the new [`Arc`] instance.
226     unsafe fn from_inner(inner: NonNull<ArcInner<T>>) -> Self {
227         // INVARIANT: By the safety requirements, the invariants hold.
228         Arc {
229             ptr: inner,
230             _p: PhantomData,
231         }
232     }
233 
234     /// Convert the [`Arc`] into a raw pointer.
235     ///
236     /// The raw pointer has ownership of the refcount that this Arc object owned.
237     pub fn into_raw(self) -> *const T {
238         let ptr = self.ptr.as_ptr();
239         core::mem::forget(self);
240         // SAFETY: The pointer is valid.
241         unsafe { core::ptr::addr_of!((*ptr).data) }
242     }
243 
244     /// Recreates an [`Arc`] instance previously deconstructed via [`Arc::into_raw`].
245     ///
246     /// # Safety
247     ///
248     /// `ptr` must have been returned by a previous call to [`Arc::into_raw`]. Additionally, it
249     /// must not be called more than once for each previous call to [`Arc::into_raw`].
250     pub unsafe fn from_raw(ptr: *const T) -> Self {
251         // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an
252         // `Arc` that is still valid.
253         let ptr = unsafe { ArcInner::container_of(ptr) };
254 
255         // SAFETY: By the safety requirements we know that `ptr` came from `Arc::into_raw`, so the
256         // reference count held then will be owned by the new `Arc` object.
257         unsafe { Self::from_inner(ptr) }
258     }
259 
260     /// Returns an [`ArcBorrow`] from the given [`Arc`].
261     ///
262     /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method
263     /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised.
264     #[inline]
265     pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> {
266         // SAFETY: The constraint that the lifetime of the shared reference must outlive that of
267         // the returned `ArcBorrow` ensures that the object remains alive and that no mutable
268         // reference can be created.
269         unsafe { ArcBorrow::new(self.ptr) }
270     }
271 
272     /// Compare whether two [`Arc`] pointers reference the same underlying object.
273     pub fn ptr_eq(this: &Self, other: &Self) -> bool {
274         core::ptr::eq(this.ptr.as_ptr(), other.ptr.as_ptr())
275     }
276 
277     /// Converts this [`Arc`] into a [`UniqueArc`], or destroys it if it is not unique.
278     ///
279     /// When this destroys the `Arc`, it does so while properly avoiding races. This means that
280     /// this method will never call the destructor of the value.
281     ///
282     /// # Examples
283     ///
284     /// ```
285     /// use kernel::sync::{Arc, UniqueArc};
286     ///
287     /// let arc = Arc::new(42, GFP_KERNEL)?;
288     /// let unique_arc = arc.into_unique_or_drop();
289     ///
290     /// // The above conversion should succeed since refcount of `arc` is 1.
291     /// assert!(unique_arc.is_some());
292     ///
293     /// assert_eq!(*(unique_arc.unwrap()), 42);
294     ///
295     /// # Ok::<(), Error>(())
296     /// ```
297     ///
298     /// ```
299     /// use kernel::sync::{Arc, UniqueArc};
300     ///
301     /// let arc = Arc::new(42, GFP_KERNEL)?;
302     /// let another = arc.clone();
303     ///
304     /// let unique_arc = arc.into_unique_or_drop();
305     ///
306     /// // The above conversion should fail since refcount of `arc` is >1.
307     /// assert!(unique_arc.is_none());
308     ///
309     /// # Ok::<(), Error>(())
310     /// ```
311     pub fn into_unique_or_drop(self) -> Option<Pin<UniqueArc<T>>> {
312         // We will manually manage the refcount in this method, so we disable the destructor.
313         let me = ManuallyDrop::new(self);
314         // SAFETY: We own a refcount, so the pointer is still valid.
315         let refcount = unsafe { me.ptr.as_ref() }.refcount.get();
316 
317         // If the refcount reaches a non-zero value, then we have destroyed this `Arc` and will
318         // return without further touching the `Arc`. If the refcount reaches zero, then there are
319         // no other arcs, and we can create a `UniqueArc`.
320         //
321         // SAFETY: We own a refcount, so the pointer is not dangling.
322         let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) };
323         if is_zero {
324             // SAFETY: We have exclusive access to the arc, so we can perform unsynchronized
325             // accesses to the refcount.
326             unsafe { core::ptr::write(refcount, bindings::REFCOUNT_INIT(1)) };
327 
328             // INVARIANT: We own the only refcount to this arc, so we may create a `UniqueArc`. We
329             // must pin the `UniqueArc` because the values was previously in an `Arc`, and they pin
330             // their values.
331             Some(Pin::from(UniqueArc {
332                 inner: ManuallyDrop::into_inner(me),
333             }))
334         } else {
335             None
336         }
337     }
338 }
339 
340 impl<T: 'static> ForeignOwnable for Arc<T> {
341     type Borrowed<'a> = ArcBorrow<'a, T>;
342 
343     fn into_foreign(self) -> *const crate::ffi::c_void {
344         ManuallyDrop::new(self).ptr.as_ptr() as _
345     }
346 
347     unsafe fn borrow<'a>(ptr: *const crate::ffi::c_void) -> ArcBorrow<'a, T> {
348         // By the safety requirement of this function, we know that `ptr` came from
349         // a previous call to `Arc::into_foreign`.
350         let inner = NonNull::new(ptr as *mut ArcInner<T>).unwrap();
351 
352         // SAFETY: The safety requirements of `from_foreign` ensure that the object remains alive
353         // for the lifetime of the returned value.
354         unsafe { ArcBorrow::new(inner) }
355     }
356 
357     unsafe fn from_foreign(ptr: *const crate::ffi::c_void) -> Self {
358         // SAFETY: By the safety requirement of this function, we know that `ptr` came from
359         // a previous call to `Arc::into_foreign`, which guarantees that `ptr` is valid and
360         // holds a reference count increment that is transferrable to us.
361         unsafe { Self::from_inner(NonNull::new(ptr as _).unwrap()) }
362     }
363 }
364 
365 impl<T: ?Sized> Deref for Arc<T> {
366     type Target = T;
367 
368     fn deref(&self) -> &Self::Target {
369         // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
370         // safe to dereference it.
371         unsafe { &self.ptr.as_ref().data }
372     }
373 }
374 
375 impl<T: ?Sized> AsRef<T> for Arc<T> {
376     fn as_ref(&self) -> &T {
377         self.deref()
378     }
379 }
380 
381 impl<T: ?Sized> Clone for Arc<T> {
382     fn clone(&self) -> Self {
383         // INVARIANT: C `refcount_inc` saturates the refcount, so it cannot overflow to zero.
384         // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
385         // safe to increment the refcount.
386         unsafe { bindings::refcount_inc(self.ptr.as_ref().refcount.get()) };
387 
388         // SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`.
389         unsafe { Self::from_inner(self.ptr) }
390     }
391 }
392 
393 impl<T: ?Sized> Drop for Arc<T> {
394     fn drop(&mut self) {
395         // SAFETY: By the type invariant, there is necessarily a reference to the object. We cannot
396         // touch `refcount` after it's decremented to a non-zero value because another thread/CPU
397         // may concurrently decrement it to zero and free it. It is ok to have a raw pointer to
398         // freed/invalid memory as long as it is never dereferenced.
399         let refcount = unsafe { self.ptr.as_ref() }.refcount.get();
400 
401         // INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and
402         // this instance is being dropped, so the broken invariant is not observable.
403         // SAFETY: Also by the type invariant, we are allowed to decrement the refcount.
404         let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) };
405         if is_zero {
406             // The count reached zero, we must free the memory.
407             //
408             // SAFETY: The pointer was initialised from the result of `KBox::leak`.
409             unsafe { drop(KBox::from_raw(self.ptr.as_ptr())) };
410         }
411     }
412 }
413 
414 impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> {
415     fn from(item: UniqueArc<T>) -> Self {
416         item.inner
417     }
418 }
419 
420 impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Arc<T> {
421     fn from(item: Pin<UniqueArc<T>>) -> Self {
422         // SAFETY: The type invariants of `Arc` guarantee that the data is pinned.
423         unsafe { Pin::into_inner_unchecked(item).inner }
424     }
425 }
426 
427 /// A borrowed reference to an [`Arc`] instance.
428 ///
429 /// For cases when one doesn't ever need to increment the refcount on the allocation, it is simpler
430 /// to use just `&T`, which we can trivially get from an [`Arc<T>`] instance.
431 ///
432 /// However, when one may need to increment the refcount, it is preferable to use an `ArcBorrow<T>`
433 /// over `&Arc<T>` because the latter results in a double-indirection: a pointer (shared reference)
434 /// to a pointer ([`Arc<T>`]) to the object (`T`). An [`ArcBorrow`] eliminates this double
435 /// indirection while still allowing one to increment the refcount and getting an [`Arc<T>`] when/if
436 /// needed.
437 ///
438 /// # Invariants
439 ///
440 /// There are no mutable references to the underlying [`Arc`], and it remains valid for the
441 /// lifetime of the [`ArcBorrow`] instance.
442 ///
443 /// # Example
444 ///
445 /// ```
446 /// use kernel::sync::{Arc, ArcBorrow};
447 ///
448 /// struct Example;
449 ///
450 /// fn do_something(e: ArcBorrow<'_, Example>) -> Arc<Example> {
451 ///     e.into()
452 /// }
453 ///
454 /// let obj = Arc::new(Example, GFP_KERNEL)?;
455 /// let cloned = do_something(obj.as_arc_borrow());
456 ///
457 /// // Assert that both `obj` and `cloned` point to the same underlying object.
458 /// assert!(core::ptr::eq(&*obj, &*cloned));
459 /// # Ok::<(), Error>(())
460 /// ```
461 ///
462 /// Using `ArcBorrow<T>` as the type of `self`:
463 ///
464 /// ```
465 /// use kernel::sync::{Arc, ArcBorrow};
466 ///
467 /// struct Example {
468 ///     a: u32,
469 ///     b: u32,
470 /// }
471 ///
472 /// impl Example {
473 ///     fn use_reference(self: ArcBorrow<'_, Self>) {
474 ///         // ...
475 ///     }
476 /// }
477 ///
478 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
479 /// obj.as_arc_borrow().use_reference();
480 /// # Ok::<(), Error>(())
481 /// ```
482 pub struct ArcBorrow<'a, T: ?Sized + 'a> {
483     inner: NonNull<ArcInner<T>>,
484     _p: PhantomData<&'a ()>,
485 }
486 
487 // This is to allow `ArcBorrow<U>` to be dispatched on when `ArcBorrow<T>` can be coerced into
488 // `ArcBorrow<U>`.
489 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<ArcBorrow<'_, U>>
490     for ArcBorrow<'_, T>
491 {
492 }
493 
494 impl<T: ?Sized> Clone for ArcBorrow<'_, T> {
495     fn clone(&self) -> Self {
496         *self
497     }
498 }
499 
500 impl<T: ?Sized> Copy for ArcBorrow<'_, T> {}
501 
502 impl<T: ?Sized> ArcBorrow<'_, T> {
503     /// Creates a new [`ArcBorrow`] instance.
504     ///
505     /// # Safety
506     ///
507     /// Callers must ensure the following for the lifetime of the returned [`ArcBorrow`] instance:
508     /// 1. That `inner` remains valid;
509     /// 2. That no mutable references to `inner` are created.
510     unsafe fn new(inner: NonNull<ArcInner<T>>) -> Self {
511         // INVARIANT: The safety requirements guarantee the invariants.
512         Self {
513             inner,
514             _p: PhantomData,
515         }
516     }
517 
518     /// Creates an [`ArcBorrow`] to an [`Arc`] that has previously been deconstructed with
519     /// [`Arc::into_raw`].
520     ///
521     /// # Safety
522     ///
523     /// * The provided pointer must originate from a call to [`Arc::into_raw`].
524     /// * For the duration of the lifetime annotated on this `ArcBorrow`, the reference count must
525     ///   not hit zero.
526     /// * For the duration of the lifetime annotated on this `ArcBorrow`, there must not be a
527     ///   [`UniqueArc`] reference to this value.
528     pub unsafe fn from_raw(ptr: *const T) -> Self {
529         // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an
530         // `Arc` that is still valid.
531         let ptr = unsafe { ArcInner::container_of(ptr) };
532 
533         // SAFETY: The caller promises that the value remains valid since the reference count must
534         // not hit zero, and no mutable reference will be created since that would involve a
535         // `UniqueArc`.
536         unsafe { Self::new(ptr) }
537     }
538 }
539 
540 impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc<T> {
541     fn from(b: ArcBorrow<'_, T>) -> Self {
542         // SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop`
543         // guarantees that `drop` isn't called, so it's ok that the temporary `Arc` doesn't own the
544         // increment.
545         ManuallyDrop::new(unsafe { Arc::from_inner(b.inner) })
546             .deref()
547             .clone()
548     }
549 }
550 
551 impl<T: ?Sized> Deref for ArcBorrow<'_, T> {
552     type Target = T;
553 
554     fn deref(&self) -> &Self::Target {
555         // SAFETY: By the type invariant, the underlying object is still alive with no mutable
556         // references to it, so it is safe to create a shared reference.
557         unsafe { &self.inner.as_ref().data }
558     }
559 }
560 
561 /// A refcounted object that is known to have a refcount of 1.
562 ///
563 /// It is mutable and can be converted to an [`Arc`] so that it can be shared.
564 ///
565 /// # Invariants
566 ///
567 /// `inner` always has a reference count of 1.
568 ///
569 /// # Examples
570 ///
571 /// In the following example, we make changes to the inner object before turning it into an
572 /// `Arc<Test>` object (after which point, it cannot be mutated directly). Note that `x.into()`
573 /// cannot fail.
574 ///
575 /// ```
576 /// use kernel::sync::{Arc, UniqueArc};
577 ///
578 /// struct Example {
579 ///     a: u32,
580 ///     b: u32,
581 /// }
582 ///
583 /// fn test() -> Result<Arc<Example>> {
584 ///     let mut x = UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
585 ///     x.a += 1;
586 ///     x.b += 1;
587 ///     Ok(x.into())
588 /// }
589 ///
590 /// # test().unwrap();
591 /// ```
592 ///
593 /// In the following example we first allocate memory for a refcounted `Example` but we don't
594 /// initialise it on allocation. We do initialise it later with a call to [`UniqueArc::write`],
595 /// followed by a conversion to `Arc<Example>`. This is particularly useful when allocation happens
596 /// in one context (e.g., sleepable) and initialisation in another (e.g., atomic):
597 ///
598 /// ```
599 /// use kernel::sync::{Arc, UniqueArc};
600 ///
601 /// struct Example {
602 ///     a: u32,
603 ///     b: u32,
604 /// }
605 ///
606 /// fn test() -> Result<Arc<Example>> {
607 ///     let x = UniqueArc::new_uninit(GFP_KERNEL)?;
608 ///     Ok(x.write(Example { a: 10, b: 20 }).into())
609 /// }
610 ///
611 /// # test().unwrap();
612 /// ```
613 ///
614 /// In the last example below, the caller gets a pinned instance of `Example` while converting to
615 /// `Arc<Example>`; this is useful in scenarios where one needs a pinned reference during
616 /// initialisation, for example, when initialising fields that are wrapped in locks.
617 ///
618 /// ```
619 /// use kernel::sync::{Arc, UniqueArc};
620 ///
621 /// struct Example {
622 ///     a: u32,
623 ///     b: u32,
624 /// }
625 ///
626 /// fn test() -> Result<Arc<Example>> {
627 ///     let mut pinned = Pin::from(UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?);
628 ///     // We can modify `pinned` because it is `Unpin`.
629 ///     pinned.as_mut().a += 1;
630 ///     Ok(pinned.into())
631 /// }
632 ///
633 /// # test().unwrap();
634 /// ```
635 pub struct UniqueArc<T: ?Sized> {
636     inner: Arc<T>,
637 }
638 
639 impl<T> UniqueArc<T> {
640     /// Tries to allocate a new [`UniqueArc`] instance.
641     pub fn new(value: T, flags: Flags) -> Result<Self, AllocError> {
642         Ok(Self {
643             // INVARIANT: The newly-created object has a refcount of 1.
644             inner: Arc::new(value, flags)?,
645         })
646     }
647 
648     /// Tries to allocate a new [`UniqueArc`] instance whose contents are not initialised yet.
649     pub fn new_uninit(flags: Flags) -> Result<UniqueArc<MaybeUninit<T>>, AllocError> {
650         // INVARIANT: The refcount is initialised to a non-zero value.
651         let inner = KBox::try_init::<AllocError>(
652             try_init!(ArcInner {
653                 // SAFETY: There are no safety requirements for this FFI call.
654                 refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
655                 data <- init::uninit::<T, AllocError>(),
656             }? AllocError),
657             flags,
658         )?;
659         Ok(UniqueArc {
660             // INVARIANT: The newly-created object has a refcount of 1.
661             // SAFETY: The pointer from the `KBox` is valid.
662             inner: unsafe { Arc::from_inner(KBox::leak(inner).into()) },
663         })
664     }
665 }
666 
667 impl<T> UniqueArc<MaybeUninit<T>> {
668     /// Converts a `UniqueArc<MaybeUninit<T>>` into a `UniqueArc<T>` by writing a value into it.
669     pub fn write(mut self, value: T) -> UniqueArc<T> {
670         self.deref_mut().write(value);
671         // SAFETY: We just wrote the value to be initialized.
672         unsafe { self.assume_init() }
673     }
674 
675     /// Unsafely assume that `self` is initialized.
676     ///
677     /// # Safety
678     ///
679     /// The caller guarantees that the value behind this pointer has been initialized. It is
680     /// *immediate* UB to call this when the value is not initialized.
681     pub unsafe fn assume_init(self) -> UniqueArc<T> {
682         let inner = ManuallyDrop::new(self).inner.ptr;
683         UniqueArc {
684             // SAFETY: The new `Arc` is taking over `ptr` from `self.inner` (which won't be
685             // dropped). The types are compatible because `MaybeUninit<T>` is compatible with `T`.
686             inner: unsafe { Arc::from_inner(inner.cast()) },
687         }
688     }
689 
690     /// Initialize `self` using the given initializer.
691     pub fn init_with<E>(mut self, init: impl Init<T, E>) -> core::result::Result<UniqueArc<T>, E> {
692         // SAFETY: The supplied pointer is valid for initialization.
693         match unsafe { init.__init(self.as_mut_ptr()) } {
694             // SAFETY: Initialization completed successfully.
695             Ok(()) => Ok(unsafe { self.assume_init() }),
696             Err(err) => Err(err),
697         }
698     }
699 
700     /// Pin-initialize `self` using the given pin-initializer.
701     pub fn pin_init_with<E>(
702         mut self,
703         init: impl PinInit<T, E>,
704     ) -> core::result::Result<Pin<UniqueArc<T>>, E> {
705         // SAFETY: The supplied pointer is valid for initialization and we will later pin the value
706         // to ensure it does not move.
707         match unsafe { init.__pinned_init(self.as_mut_ptr()) } {
708             // SAFETY: Initialization completed successfully.
709             Ok(()) => Ok(unsafe { self.assume_init() }.into()),
710             Err(err) => Err(err),
711         }
712     }
713 }
714 
715 impl<T: ?Sized> From<UniqueArc<T>> for Pin<UniqueArc<T>> {
716     fn from(obj: UniqueArc<T>) -> Self {
717         // SAFETY: It is not possible to move/replace `T` inside a `Pin<UniqueArc<T>>` (unless `T`
718         // is `Unpin`), so it is ok to convert it to `Pin<UniqueArc<T>>`.
719         unsafe { Pin::new_unchecked(obj) }
720     }
721 }
722 
723 impl<T: ?Sized> Deref for UniqueArc<T> {
724     type Target = T;
725 
726     fn deref(&self) -> &Self::Target {
727         self.inner.deref()
728     }
729 }
730 
731 impl<T: ?Sized> DerefMut for UniqueArc<T> {
732     fn deref_mut(&mut self) -> &mut Self::Target {
733         // SAFETY: By the `Arc` type invariant, there is necessarily a reference to the object, so
734         // it is safe to dereference it. Additionally, we know there is only one reference when
735         // it's inside a `UniqueArc`, so it is safe to get a mutable reference.
736         unsafe { &mut self.inner.ptr.as_mut().data }
737     }
738 }
739 
740 impl<T: fmt::Display + ?Sized> fmt::Display for UniqueArc<T> {
741     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
742         fmt::Display::fmt(self.deref(), f)
743     }
744 }
745 
746 impl<T: fmt::Display + ?Sized> fmt::Display for Arc<T> {
747     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
748         fmt::Display::fmt(self.deref(), f)
749     }
750 }
751 
752 impl<T: fmt::Debug + ?Sized> fmt::Debug for UniqueArc<T> {
753     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
754         fmt::Debug::fmt(self.deref(), f)
755     }
756 }
757 
758 impl<T: fmt::Debug + ?Sized> fmt::Debug for Arc<T> {
759     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
760         fmt::Debug::fmt(self.deref(), f)
761     }
762 }
763