1 // SPDX-License-Identifier: GPL-2.0 2 3 //! A reference-counted pointer. 4 //! 5 //! This module implements a way for users to create reference-counted objects and pointers to 6 //! them. Such a pointer automatically increments and decrements the count, and drops the 7 //! underlying object when it reaches zero. It is also safe to use concurrently from multiple 8 //! threads. 9 //! 10 //! It is different from the standard library's [`Arc`] in a few ways: 11 //! 1. It is backed by the kernel's [`Refcount`] type. 12 //! 2. It does not support weak references, which allows it to be half the size. 13 //! 3. It saturates the reference count instead of aborting when it goes over a threshold. 14 //! 4. It does not provide a `get_mut` method, so the ref counted object is pinned. 15 //! 5. The object in [`Arc`] is pinned implicitly. 16 //! 17 //! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html 18 19 use crate::{ 20 alloc::{AllocError, Flags, KBox}, 21 ffi::c_void, 22 fmt, 23 init::InPlaceInit, 24 sync::Refcount, 25 try_init, 26 types::ForeignOwnable, 27 }; 28 use core::{ 29 alloc::Layout, 30 borrow::{Borrow, BorrowMut}, 31 marker::PhantomData, 32 mem::{ManuallyDrop, MaybeUninit}, 33 ops::{Deref, DerefMut}, 34 pin::Pin, 35 ptr::NonNull, 36 }; 37 use pin_init::{self, pin_data, InPlaceWrite, Init, PinInit}; 38 39 mod std_vendor; 40 41 /// A reference-counted pointer to an instance of `T`. 42 /// 43 /// The reference count is incremented when new instances of [`Arc`] are created, and decremented 44 /// when they are dropped. When the count reaches zero, the underlying `T` is also dropped. 45 /// 46 /// # Invariants 47 /// 48 /// The reference count on an instance of [`Arc`] is always non-zero. 49 /// The object pointed to by [`Arc`] is always pinned. 50 /// 51 /// # Examples 52 /// 53 /// ``` 54 /// use kernel::sync::Arc; 55 /// 56 /// struct Example { 57 /// a: u32, 58 /// b: u32, 59 /// } 60 /// 61 /// // Create a refcounted instance of `Example`. 62 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 63 /// 64 /// // Get a new pointer to `obj` and increment the refcount. 65 /// let cloned = obj.clone(); 66 /// 67 /// // Assert that both `obj` and `cloned` point to the same underlying object. 68 /// assert!(core::ptr::eq(&*obj, &*cloned)); 69 /// 70 /// // Destroy `obj` and decrement its refcount. 71 /// drop(obj); 72 /// 73 /// // Check that the values are still accessible through `cloned`. 74 /// assert_eq!(cloned.a, 10); 75 /// assert_eq!(cloned.b, 20); 76 /// 77 /// // The refcount drops to zero when `cloned` goes out of scope, and the memory is freed. 78 /// # Ok::<(), Error>(()) 79 /// ``` 80 /// 81 /// Using `Arc<T>` as the type of `self`: 82 /// 83 /// ``` 84 /// use kernel::sync::Arc; 85 /// 86 /// struct Example { 87 /// a: u32, 88 /// b: u32, 89 /// } 90 /// 91 /// impl Example { 92 /// fn take_over(self: Arc<Self>) { 93 /// // ... 94 /// } 95 /// 96 /// fn use_reference(self: &Arc<Self>) { 97 /// // ... 98 /// } 99 /// } 100 /// 101 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 102 /// obj.use_reference(); 103 /// obj.take_over(); 104 /// # Ok::<(), Error>(()) 105 /// ``` 106 /// 107 /// Coercion from `Arc<Example>` to `Arc<dyn MyTrait>`: 108 /// 109 /// ``` 110 /// use kernel::sync::{Arc, ArcBorrow}; 111 /// 112 /// trait MyTrait { 113 /// // Trait has a function whose `self` type is `Arc<Self>`. 114 /// fn example1(self: Arc<Self>) {} 115 /// 116 /// // Trait has a function whose `self` type is `ArcBorrow<'_, Self>`. 117 /// fn example2(self: ArcBorrow<'_, Self>) {} 118 /// } 119 /// 120 /// struct Example; 121 /// impl MyTrait for Example {} 122 /// 123 /// // `obj` has type `Arc<Example>`. 124 /// let obj: Arc<Example> = Arc::new(Example, GFP_KERNEL)?; 125 /// 126 /// // `coerced` has type `Arc<dyn MyTrait>`. 127 /// let coerced: Arc<dyn MyTrait> = obj; 128 /// # Ok::<(), Error>(()) 129 /// ``` 130 #[repr(transparent)] 131 #[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, derive(core::marker::CoercePointee))] 132 pub struct Arc<T: ?Sized> { 133 ptr: NonNull<ArcInner<T>>, 134 // NB: this informs dropck that objects of type `ArcInner<T>` may be used in `<Arc<T> as 135 // Drop>::drop`. Note that dropck already assumes that objects of type `T` may be used in 136 // `<Arc<T> as Drop>::drop` and the distinction between `T` and `ArcInner<T>` is not presently 137 // meaningful with respect to dropck - but this may change in the future so this is left here 138 // out of an abundance of caution. 139 // 140 // See <https://doc.rust-lang.org/nomicon/phantom-data.html#generic-parameters-and-drop-checking> 141 // for more detail on the semantics of dropck in the presence of `PhantomData`. 142 _p: PhantomData<ArcInner<T>>, 143 } 144 145 #[pin_data] 146 #[repr(C)] 147 struct ArcInner<T: ?Sized> { 148 refcount: Refcount, 149 data: T, 150 } 151 152 impl<T: ?Sized> ArcInner<T> { 153 /// Converts a pointer to the contents of an [`Arc`] into a pointer to the [`ArcInner`]. 154 /// 155 /// # Safety 156 /// 157 /// `ptr` must have been returned by a previous call to [`Arc::into_raw`], and the `Arc` must 158 /// not yet have been destroyed. 159 unsafe fn container_of(ptr: *const T) -> NonNull<ArcInner<T>> { 160 let refcount_layout = Layout::new::<Refcount>(); 161 // SAFETY: The caller guarantees that the pointer is valid. 162 let val_layout = Layout::for_value(unsafe { &*ptr }); 163 // SAFETY: We're computing the layout of a real struct that existed when compiling this 164 // binary, so its layout is not so large that it can trigger arithmetic overflow. 165 let val_offset = unsafe { refcount_layout.extend(val_layout).unwrap_unchecked().1 }; 166 167 // Pointer casts leave the metadata unchanged. This is okay because the metadata of `T` and 168 // `ArcInner<T>` is the same since `ArcInner` is a struct with `T` as its last field. 169 // 170 // This is documented at: 171 // <https://doc.rust-lang.org/std/ptr/trait.Pointee.html>. 172 let ptr = ptr as *const ArcInner<T>; 173 174 // SAFETY: The pointer is in-bounds of an allocation both before and after offsetting the 175 // pointer, since it originates from a previous call to `Arc::into_raw` on an `Arc` that is 176 // still valid. 177 let ptr = unsafe { ptr.byte_sub(val_offset) }; 178 179 // SAFETY: The pointer can't be null since you can't have an `ArcInner<T>` value at the null 180 // address. 181 unsafe { NonNull::new_unchecked(ptr.cast_mut()) } 182 } 183 } 184 185 // This is to allow coercion from `Arc<T>` to `Arc<U>` if `T` can be converted to the 186 // dynamically-sized type (DST) `U`. 187 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))] 188 impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Arc<U>> for Arc<T> {} 189 190 // This is to allow `Arc<U>` to be dispatched on when `Arc<T>` can be coerced into `Arc<U>`. 191 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))] 192 impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<Arc<U>> for Arc<T> {} 193 194 // SAFETY: It is safe to send `Arc<T>` to another thread when the underlying `T` is `Sync` because 195 // it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs 196 // `T` to be `Send` because any thread that has an `Arc<T>` may ultimately access `T` using a 197 // mutable reference when the reference count reaches zero and `T` is dropped. 198 unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {} 199 200 // SAFETY: It is safe to send `&Arc<T>` to another thread when the underlying `T` is `Sync` 201 // because it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, 202 // it needs `T` to be `Send` because any thread that has a `&Arc<T>` may clone it and get an 203 // `Arc<T>` on that thread, so the thread may ultimately access `T` using a mutable reference when 204 // the reference count reaches zero and `T` is dropped. 205 unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {} 206 207 impl<T> InPlaceInit<T> for Arc<T> { 208 type PinnedSelf = Self; 209 210 #[inline] 211 fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E> 212 where 213 E: From<AllocError>, 214 { 215 UniqueArc::try_pin_init(init, flags).map(|u| u.into()) 216 } 217 218 #[inline] 219 fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E> 220 where 221 E: From<AllocError>, 222 { 223 UniqueArc::try_init(init, flags).map(|u| u.into()) 224 } 225 } 226 227 impl<T> Arc<T> { 228 /// Constructs a new reference counted instance of `T`. 229 pub fn new(contents: T, flags: Flags) -> Result<Self, AllocError> { 230 // INVARIANT: The refcount is initialised to a non-zero value. 231 let value = ArcInner { 232 refcount: Refcount::new(1), 233 data: contents, 234 }; 235 236 let inner = KBox::new(value, flags)?; 237 let inner = KBox::leak(inner).into(); 238 239 // SAFETY: We just created `inner` with a reference count of 1, which is owned by the new 240 // `Arc` object. 241 Ok(unsafe { Self::from_inner(inner) }) 242 } 243 } 244 245 impl<T: ?Sized> Arc<T> { 246 /// Constructs a new [`Arc`] from an existing [`ArcInner`]. 247 /// 248 /// # Safety 249 /// 250 /// The caller must ensure that `inner` points to a valid location and has a non-zero reference 251 /// count, one of which will be owned by the new [`Arc`] instance. 252 unsafe fn from_inner(inner: NonNull<ArcInner<T>>) -> Self { 253 // INVARIANT: By the safety requirements, the invariants hold. 254 Arc { 255 ptr: inner, 256 _p: PhantomData, 257 } 258 } 259 260 /// Convert the [`Arc`] into a raw pointer. 261 /// 262 /// The raw pointer has ownership of the refcount that this Arc object owned. 263 pub fn into_raw(self) -> *const T { 264 let ptr = self.ptr.as_ptr(); 265 core::mem::forget(self); 266 // SAFETY: The pointer is valid. 267 unsafe { core::ptr::addr_of!((*ptr).data) } 268 } 269 270 /// Return a raw pointer to the data in this arc. 271 pub fn as_ptr(this: &Self) -> *const T { 272 let ptr = this.ptr.as_ptr(); 273 274 // SAFETY: As `ptr` points to a valid allocation of type `ArcInner`, 275 // field projection to `data`is within bounds of the allocation. 276 unsafe { core::ptr::addr_of!((*ptr).data) } 277 } 278 279 /// Recreates an [`Arc`] instance previously deconstructed via [`Arc::into_raw`]. 280 /// 281 /// # Safety 282 /// 283 /// `ptr` must have been returned by a previous call to [`Arc::into_raw`]. Additionally, it 284 /// must not be called more than once for each previous call to [`Arc::into_raw`]. 285 pub unsafe fn from_raw(ptr: *const T) -> Self { 286 // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an 287 // `Arc` that is still valid. 288 let ptr = unsafe { ArcInner::container_of(ptr) }; 289 290 // SAFETY: By the safety requirements we know that `ptr` came from `Arc::into_raw`, so the 291 // reference count held then will be owned by the new `Arc` object. 292 unsafe { Self::from_inner(ptr) } 293 } 294 295 /// Returns an [`ArcBorrow`] from the given [`Arc`]. 296 /// 297 /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method 298 /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised. 299 #[inline] 300 pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> { 301 // SAFETY: The constraint that the lifetime of the shared reference must outlive that of 302 // the returned `ArcBorrow` ensures that the object remains alive and that no mutable 303 // reference can be created. 304 unsafe { ArcBorrow::new(self.ptr) } 305 } 306 307 /// Compare whether two [`Arc`] pointers reference the same underlying object. 308 pub fn ptr_eq(this: &Self, other: &Self) -> bool { 309 core::ptr::eq(this.ptr.as_ptr(), other.ptr.as_ptr()) 310 } 311 312 /// Converts this [`Arc`] into a [`UniqueArc`], or destroys it if it is not unique. 313 /// 314 /// When this destroys the `Arc`, it does so while properly avoiding races. This means that 315 /// this method will never call the destructor of the value. 316 /// 317 /// # Examples 318 /// 319 /// ``` 320 /// use kernel::sync::{Arc, UniqueArc}; 321 /// 322 /// let arc = Arc::new(42, GFP_KERNEL)?; 323 /// let unique_arc = Arc::into_unique_or_drop(arc); 324 /// 325 /// // The above conversion should succeed since refcount of `arc` is 1. 326 /// assert!(unique_arc.is_some()); 327 /// 328 /// assert_eq!(*(unique_arc.unwrap()), 42); 329 /// 330 /// # Ok::<(), Error>(()) 331 /// ``` 332 /// 333 /// ``` 334 /// use kernel::sync::{Arc, UniqueArc}; 335 /// 336 /// let arc = Arc::new(42, GFP_KERNEL)?; 337 /// let another = arc.clone(); 338 /// 339 /// let unique_arc = Arc::into_unique_or_drop(arc); 340 /// 341 /// // The above conversion should fail since refcount of `arc` is >1. 342 /// assert!(unique_arc.is_none()); 343 /// 344 /// # Ok::<(), Error>(()) 345 /// ``` 346 pub fn into_unique_or_drop(this: Self) -> Option<Pin<UniqueArc<T>>> { 347 // We will manually manage the refcount in this method, so we disable the destructor. 348 let this = ManuallyDrop::new(this); 349 // SAFETY: We own a refcount, so the pointer is still valid. 350 let refcount = unsafe { &this.ptr.as_ref().refcount }; 351 352 // If the refcount reaches a non-zero value, then we have destroyed this `Arc` and will 353 // return without further touching the `Arc`. If the refcount reaches zero, then there are 354 // no other arcs, and we can create a `UniqueArc`. 355 if refcount.dec_and_test() { 356 refcount.set(1); 357 358 // INVARIANT: We own the only refcount to this arc, so we may create a `UniqueArc`. We 359 // must pin the `UniqueArc` because the values was previously in an `Arc`, and they pin 360 // their values. 361 Some(Pin::from(UniqueArc { 362 inner: ManuallyDrop::into_inner(this), 363 })) 364 } else { 365 None 366 } 367 } 368 } 369 370 // SAFETY: The pointer returned by `into_foreign` was originally allocated as an 371 // `KBox<ArcInner<T>>`, so that type is what determines the alignment. 372 unsafe impl<T: 'static> ForeignOwnable for Arc<T> { 373 const FOREIGN_ALIGN: usize = <KBox<ArcInner<T>> as ForeignOwnable>::FOREIGN_ALIGN; 374 375 type Borrowed<'a> = ArcBorrow<'a, T>; 376 type BorrowedMut<'a> = Self::Borrowed<'a>; 377 378 fn into_foreign(self) -> *mut c_void { 379 ManuallyDrop::new(self).ptr.as_ptr().cast() 380 } 381 382 unsafe fn from_foreign(ptr: *mut c_void) -> Self { 383 // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous 384 // call to `Self::into_foreign`. 385 let inner = unsafe { NonNull::new_unchecked(ptr.cast::<ArcInner<T>>()) }; 386 387 // SAFETY: By the safety requirement of this function, we know that `ptr` came from 388 // a previous call to `Arc::into_foreign`, which guarantees that `ptr` is valid and 389 // holds a reference count increment that is transferrable to us. 390 unsafe { Self::from_inner(inner) } 391 } 392 393 unsafe fn borrow<'a>(ptr: *mut c_void) -> ArcBorrow<'a, T> { 394 // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous 395 // call to `Self::into_foreign`. 396 let inner = unsafe { NonNull::new_unchecked(ptr.cast::<ArcInner<T>>()) }; 397 398 // SAFETY: The safety requirements of `from_foreign` ensure that the object remains alive 399 // for the lifetime of the returned value. 400 unsafe { ArcBorrow::new(inner) } 401 } 402 403 unsafe fn borrow_mut<'a>(ptr: *mut c_void) -> ArcBorrow<'a, T> { 404 // SAFETY: The safety requirements for `borrow_mut` are a superset of the safety 405 // requirements for `borrow`. 406 unsafe { <Self as ForeignOwnable>::borrow(ptr) } 407 } 408 } 409 410 impl<T: ?Sized> Deref for Arc<T> { 411 type Target = T; 412 413 fn deref(&self) -> &Self::Target { 414 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is 415 // safe to dereference it. 416 unsafe { &self.ptr.as_ref().data } 417 } 418 } 419 420 impl<T: ?Sized> AsRef<T> for Arc<T> { 421 fn as_ref(&self) -> &T { 422 self.deref() 423 } 424 } 425 426 /// # Examples 427 /// 428 /// ``` 429 /// # use core::borrow::Borrow; 430 /// # use kernel::sync::Arc; 431 /// struct Foo<B: Borrow<u32>>(B); 432 /// 433 /// // Owned instance. 434 /// let owned = Foo(1); 435 /// 436 /// // Shared instance. 437 /// let arc = Arc::new(1, GFP_KERNEL)?; 438 /// let shared = Foo(arc.clone()); 439 /// 440 /// let i = 1; 441 /// // Borrowed from `i`. 442 /// let borrowed = Foo(&i); 443 /// # Ok::<(), Error>(()) 444 /// ``` 445 impl<T: ?Sized> Borrow<T> for Arc<T> { 446 fn borrow(&self) -> &T { 447 self.deref() 448 } 449 } 450 451 impl<T: ?Sized> Clone for Arc<T> { 452 fn clone(&self) -> Self { 453 // INVARIANT: `Refcount` saturates the refcount, so it cannot overflow to zero. 454 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is 455 // safe to increment the refcount. 456 unsafe { self.ptr.as_ref() }.refcount.inc(); 457 458 // SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`. 459 unsafe { Self::from_inner(self.ptr) } 460 } 461 } 462 463 impl<T: ?Sized> Drop for Arc<T> { 464 fn drop(&mut self) { 465 // INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and 466 // this instance is being dropped, so the broken invariant is not observable. 467 // SAFETY: By the type invariant, there is necessarily a reference to the object. 468 let is_zero = unsafe { self.ptr.as_ref() }.refcount.dec_and_test(); 469 if is_zero { 470 // The count reached zero, we must free the memory. 471 // 472 // SAFETY: The pointer was initialised from the result of `KBox::leak`. 473 unsafe { drop(KBox::from_raw(self.ptr.as_ptr())) }; 474 } 475 } 476 } 477 478 impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> { 479 fn from(item: UniqueArc<T>) -> Self { 480 item.inner 481 } 482 } 483 484 impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Arc<T> { 485 fn from(item: Pin<UniqueArc<T>>) -> Self { 486 // SAFETY: The type invariants of `Arc` guarantee that the data is pinned. 487 unsafe { Pin::into_inner_unchecked(item).inner } 488 } 489 } 490 491 /// A borrowed reference to an [`Arc`] instance. 492 /// 493 /// For cases when one doesn't ever need to increment the refcount on the allocation, it is simpler 494 /// to use just `&T`, which we can trivially get from an [`Arc<T>`] instance. 495 /// 496 /// However, when one may need to increment the refcount, it is preferable to use an `ArcBorrow<T>` 497 /// over `&Arc<T>` because the latter results in a double-indirection: a pointer (shared reference) 498 /// to a pointer ([`Arc<T>`]) to the object (`T`). An [`ArcBorrow`] eliminates this double 499 /// indirection while still allowing one to increment the refcount and getting an [`Arc<T>`] when/if 500 /// needed. 501 /// 502 /// # Invariants 503 /// 504 /// There are no mutable references to the underlying [`Arc`], and it remains valid for the 505 /// lifetime of the [`ArcBorrow`] instance. 506 /// 507 /// # Examples 508 /// 509 /// ``` 510 /// use kernel::sync::{Arc, ArcBorrow}; 511 /// 512 /// struct Example; 513 /// 514 /// fn do_something(e: ArcBorrow<'_, Example>) -> Arc<Example> { 515 /// e.into() 516 /// } 517 /// 518 /// let obj = Arc::new(Example, GFP_KERNEL)?; 519 /// let cloned = do_something(obj.as_arc_borrow()); 520 /// 521 /// // Assert that both `obj` and `cloned` point to the same underlying object. 522 /// assert!(core::ptr::eq(&*obj, &*cloned)); 523 /// # Ok::<(), Error>(()) 524 /// ``` 525 /// 526 /// Using `ArcBorrow<T>` as the type of `self`: 527 /// 528 /// ``` 529 /// use kernel::sync::{Arc, ArcBorrow}; 530 /// 531 /// struct Example { 532 /// a: u32, 533 /// b: u32, 534 /// } 535 /// 536 /// impl Example { 537 /// fn use_reference(self: ArcBorrow<'_, Self>) { 538 /// // ... 539 /// } 540 /// } 541 /// 542 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 543 /// obj.as_arc_borrow().use_reference(); 544 /// # Ok::<(), Error>(()) 545 /// ``` 546 #[repr(transparent)] 547 #[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, derive(core::marker::CoercePointee))] 548 pub struct ArcBorrow<'a, T: ?Sized + 'a> { 549 inner: NonNull<ArcInner<T>>, 550 _p: PhantomData<&'a ()>, 551 } 552 553 // This is to allow `ArcBorrow<U>` to be dispatched on when `ArcBorrow<T>` can be coerced into 554 // `ArcBorrow<U>`. 555 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))] 556 impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<ArcBorrow<'_, U>> 557 for ArcBorrow<'_, T> 558 { 559 } 560 561 impl<T: ?Sized> Clone for ArcBorrow<'_, T> { 562 fn clone(&self) -> Self { 563 *self 564 } 565 } 566 567 impl<T: ?Sized> Copy for ArcBorrow<'_, T> {} 568 569 impl<T: ?Sized> ArcBorrow<'_, T> { 570 /// Creates a new [`ArcBorrow`] instance. 571 /// 572 /// # Safety 573 /// 574 /// Callers must ensure the following for the lifetime of the returned [`ArcBorrow`] instance: 575 /// 1. That `inner` remains valid; 576 /// 2. That no mutable references to `inner` are created. 577 unsafe fn new(inner: NonNull<ArcInner<T>>) -> Self { 578 // INVARIANT: The safety requirements guarantee the invariants. 579 Self { 580 inner, 581 _p: PhantomData, 582 } 583 } 584 585 /// Creates an [`ArcBorrow`] to an [`Arc`] that has previously been deconstructed with 586 /// [`Arc::into_raw`] or [`Arc::as_ptr`]. 587 /// 588 /// # Safety 589 /// 590 /// * The provided pointer must originate from a call to [`Arc::into_raw`] or [`Arc::as_ptr`]. 591 /// * For the duration of the lifetime annotated on this `ArcBorrow`, the reference count must 592 /// not hit zero. 593 /// * For the duration of the lifetime annotated on this `ArcBorrow`, there must not be a 594 /// [`UniqueArc`] reference to this value. 595 pub unsafe fn from_raw(ptr: *const T) -> Self { 596 // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an 597 // `Arc` that is still valid. 598 let ptr = unsafe { ArcInner::container_of(ptr) }; 599 600 // SAFETY: The caller promises that the value remains valid since the reference count must 601 // not hit zero, and no mutable reference will be created since that would involve a 602 // `UniqueArc`. 603 unsafe { Self::new(ptr) } 604 } 605 } 606 607 impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc<T> { 608 fn from(b: ArcBorrow<'_, T>) -> Self { 609 // SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop` 610 // guarantees that `drop` isn't called, so it's ok that the temporary `Arc` doesn't own the 611 // increment. 612 ManuallyDrop::new(unsafe { Arc::from_inner(b.inner) }) 613 .deref() 614 .clone() 615 } 616 } 617 618 impl<T: ?Sized> Deref for ArcBorrow<'_, T> { 619 type Target = T; 620 621 fn deref(&self) -> &Self::Target { 622 // SAFETY: By the type invariant, the underlying object is still alive with no mutable 623 // references to it, so it is safe to create a shared reference. 624 unsafe { &self.inner.as_ref().data } 625 } 626 } 627 628 /// A refcounted object that is known to have a refcount of 1. 629 /// 630 /// It is mutable and can be converted to an [`Arc`] so that it can be shared. 631 /// 632 /// # Invariants 633 /// 634 /// `inner` always has a reference count of 1. 635 /// 636 /// # Examples 637 /// 638 /// In the following example, we make changes to the inner object before turning it into an 639 /// `Arc<Test>` object (after which point, it cannot be mutated directly). Note that `x.into()` 640 /// cannot fail. 641 /// 642 /// ``` 643 /// use kernel::sync::{Arc, UniqueArc}; 644 /// 645 /// struct Example { 646 /// a: u32, 647 /// b: u32, 648 /// } 649 /// 650 /// fn test() -> Result<Arc<Example>> { 651 /// let mut x = UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 652 /// x.a += 1; 653 /// x.b += 1; 654 /// Ok(x.into()) 655 /// } 656 /// 657 /// # test().unwrap(); 658 /// ``` 659 /// 660 /// In the following example we first allocate memory for a refcounted `Example` but we don't 661 /// initialise it on allocation. We do initialise it later with a call to [`UniqueArc::write`], 662 /// followed by a conversion to `Arc<Example>`. This is particularly useful when allocation happens 663 /// in one context (e.g., sleepable) and initialisation in another (e.g., atomic): 664 /// 665 /// ``` 666 /// use kernel::sync::{Arc, UniqueArc}; 667 /// 668 /// struct Example { 669 /// a: u32, 670 /// b: u32, 671 /// } 672 /// 673 /// fn test() -> Result<Arc<Example>> { 674 /// let x = UniqueArc::new_uninit(GFP_KERNEL)?; 675 /// Ok(x.write(Example { a: 10, b: 20 }).into()) 676 /// } 677 /// 678 /// # test().unwrap(); 679 /// ``` 680 /// 681 /// In the last example below, the caller gets a pinned instance of `Example` while converting to 682 /// `Arc<Example>`; this is useful in scenarios where one needs a pinned reference during 683 /// initialisation, for example, when initialising fields that are wrapped in locks. 684 /// 685 /// ``` 686 /// use kernel::sync::{Arc, UniqueArc}; 687 /// 688 /// struct Example { 689 /// a: u32, 690 /// b: u32, 691 /// } 692 /// 693 /// fn test() -> Result<Arc<Example>> { 694 /// let mut pinned = Pin::from(UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?); 695 /// // We can modify `pinned` because it is `Unpin`. 696 /// pinned.as_mut().a += 1; 697 /// Ok(pinned.into()) 698 /// } 699 /// 700 /// # test().unwrap(); 701 /// ``` 702 pub struct UniqueArc<T: ?Sized> { 703 inner: Arc<T>, 704 } 705 706 impl<T> InPlaceInit<T> for UniqueArc<T> { 707 type PinnedSelf = Pin<Self>; 708 709 #[inline] 710 fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E> 711 where 712 E: From<AllocError>, 713 { 714 UniqueArc::new_uninit(flags)?.write_pin_init(init) 715 } 716 717 #[inline] 718 fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E> 719 where 720 E: From<AllocError>, 721 { 722 UniqueArc::new_uninit(flags)?.write_init(init) 723 } 724 } 725 726 impl<T> InPlaceWrite<T> for UniqueArc<MaybeUninit<T>> { 727 type Initialized = UniqueArc<T>; 728 729 fn write_init<E>(mut self, init: impl Init<T, E>) -> Result<Self::Initialized, E> { 730 let slot = self.as_mut_ptr(); 731 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 732 // slot is valid. 733 unsafe { init.__init(slot)? }; 734 // SAFETY: All fields have been initialized. 735 Ok(unsafe { self.assume_init() }) 736 } 737 738 fn write_pin_init<E>(mut self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E> { 739 let slot = self.as_mut_ptr(); 740 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 741 // slot is valid and will not be moved, because we pin it later. 742 unsafe { init.__pinned_init(slot)? }; 743 // SAFETY: All fields have been initialized. 744 Ok(unsafe { self.assume_init() }.into()) 745 } 746 } 747 748 impl<T> UniqueArc<T> { 749 /// Tries to allocate a new [`UniqueArc`] instance. 750 pub fn new(value: T, flags: Flags) -> Result<Self, AllocError> { 751 Ok(Self { 752 // INVARIANT: The newly-created object has a refcount of 1. 753 inner: Arc::new(value, flags)?, 754 }) 755 } 756 757 /// Tries to allocate a new [`UniqueArc`] instance whose contents are not initialised yet. 758 pub fn new_uninit(flags: Flags) -> Result<UniqueArc<MaybeUninit<T>>, AllocError> { 759 // INVARIANT: The refcount is initialised to a non-zero value. 760 let inner = KBox::try_init::<AllocError>( 761 try_init!(ArcInner { 762 refcount: Refcount::new(1), 763 data <- pin_init::uninit::<T, AllocError>(), 764 }? AllocError), 765 flags, 766 )?; 767 Ok(UniqueArc { 768 // INVARIANT: The newly-created object has a refcount of 1. 769 // SAFETY: The pointer from the `KBox` is valid. 770 inner: unsafe { Arc::from_inner(KBox::leak(inner).into()) }, 771 }) 772 } 773 } 774 775 impl<T> UniqueArc<MaybeUninit<T>> { 776 /// Converts a `UniqueArc<MaybeUninit<T>>` into a `UniqueArc<T>` by writing a value into it. 777 pub fn write(mut self, value: T) -> UniqueArc<T> { 778 self.deref_mut().write(value); 779 // SAFETY: We just wrote the value to be initialized. 780 unsafe { self.assume_init() } 781 } 782 783 /// Unsafely assume that `self` is initialized. 784 /// 785 /// # Safety 786 /// 787 /// The caller guarantees that the value behind this pointer has been initialized. It is 788 /// *immediate* UB to call this when the value is not initialized. 789 pub unsafe fn assume_init(self) -> UniqueArc<T> { 790 let inner = ManuallyDrop::new(self).inner.ptr; 791 UniqueArc { 792 // SAFETY: The new `Arc` is taking over `ptr` from `self.inner` (which won't be 793 // dropped). The types are compatible because `MaybeUninit<T>` is compatible with `T`. 794 inner: unsafe { Arc::from_inner(inner.cast()) }, 795 } 796 } 797 798 /// Initialize `self` using the given initializer. 799 pub fn init_with<E>(mut self, init: impl Init<T, E>) -> core::result::Result<UniqueArc<T>, E> { 800 // SAFETY: The supplied pointer is valid for initialization. 801 match unsafe { init.__init(self.as_mut_ptr()) } { 802 // SAFETY: Initialization completed successfully. 803 Ok(()) => Ok(unsafe { self.assume_init() }), 804 Err(err) => Err(err), 805 } 806 } 807 808 /// Pin-initialize `self` using the given pin-initializer. 809 pub fn pin_init_with<E>( 810 mut self, 811 init: impl PinInit<T, E>, 812 ) -> core::result::Result<Pin<UniqueArc<T>>, E> { 813 // SAFETY: The supplied pointer is valid for initialization and we will later pin the value 814 // to ensure it does not move. 815 match unsafe { init.__pinned_init(self.as_mut_ptr()) } { 816 // SAFETY: Initialization completed successfully. 817 Ok(()) => Ok(unsafe { self.assume_init() }.into()), 818 Err(err) => Err(err), 819 } 820 } 821 } 822 823 impl<T: ?Sized> From<UniqueArc<T>> for Pin<UniqueArc<T>> { 824 fn from(obj: UniqueArc<T>) -> Self { 825 // SAFETY: It is not possible to move/replace `T` inside a `Pin<UniqueArc<T>>` (unless `T` 826 // is `Unpin`), so it is ok to convert it to `Pin<UniqueArc<T>>`. 827 unsafe { Pin::new_unchecked(obj) } 828 } 829 } 830 831 impl<T: ?Sized> Deref for UniqueArc<T> { 832 type Target = T; 833 834 fn deref(&self) -> &Self::Target { 835 self.inner.deref() 836 } 837 } 838 839 impl<T: ?Sized> DerefMut for UniqueArc<T> { 840 fn deref_mut(&mut self) -> &mut Self::Target { 841 // SAFETY: By the `Arc` type invariant, there is necessarily a reference to the object, so 842 // it is safe to dereference it. Additionally, we know there is only one reference when 843 // it's inside a `UniqueArc`, so it is safe to get a mutable reference. 844 unsafe { &mut self.inner.ptr.as_mut().data } 845 } 846 } 847 848 /// # Examples 849 /// 850 /// ``` 851 /// # use core::borrow::Borrow; 852 /// # use kernel::sync::UniqueArc; 853 /// struct Foo<B: Borrow<u32>>(B); 854 /// 855 /// // Owned instance. 856 /// let owned = Foo(1); 857 /// 858 /// // Owned instance using `UniqueArc`. 859 /// let arc = UniqueArc::new(1, GFP_KERNEL)?; 860 /// let shared = Foo(arc); 861 /// 862 /// let i = 1; 863 /// // Borrowed from `i`. 864 /// let borrowed = Foo(&i); 865 /// # Ok::<(), Error>(()) 866 /// ``` 867 impl<T: ?Sized> Borrow<T> for UniqueArc<T> { 868 fn borrow(&self) -> &T { 869 self.deref() 870 } 871 } 872 873 /// # Examples 874 /// 875 /// ``` 876 /// # use core::borrow::BorrowMut; 877 /// # use kernel::sync::UniqueArc; 878 /// struct Foo<B: BorrowMut<u32>>(B); 879 /// 880 /// // Owned instance. 881 /// let owned = Foo(1); 882 /// 883 /// // Owned instance using `UniqueArc`. 884 /// let arc = UniqueArc::new(1, GFP_KERNEL)?; 885 /// let shared = Foo(arc); 886 /// 887 /// let mut i = 1; 888 /// // Borrowed from `i`. 889 /// let borrowed = Foo(&mut i); 890 /// # Ok::<(), Error>(()) 891 /// ``` 892 impl<T: ?Sized> BorrowMut<T> for UniqueArc<T> { 893 fn borrow_mut(&mut self) -> &mut T { 894 self.deref_mut() 895 } 896 } 897 898 impl<T: fmt::Display + ?Sized> fmt::Display for UniqueArc<T> { 899 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 900 fmt::Display::fmt(self.deref(), f) 901 } 902 } 903 904 impl<T: fmt::Display + ?Sized> fmt::Display for Arc<T> { 905 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 906 fmt::Display::fmt(self.deref(), f) 907 } 908 } 909 910 impl<T: fmt::Debug + ?Sized> fmt::Debug for UniqueArc<T> { 911 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 912 fmt::Debug::fmt(self.deref(), f) 913 } 914 } 915 916 impl<T: fmt::Debug + ?Sized> fmt::Debug for Arc<T> { 917 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 918 fmt::Debug::fmt(self.deref(), f) 919 } 920 } 921