xref: /linux/rust/kernel/sync/arc.rs (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! A reference-counted pointer.
4 //!
5 //! This module implements a way for users to create reference-counted objects and pointers to
6 //! them. Such a pointer automatically increments and decrements the count, and drops the
7 //! underlying object when it reaches zero. It is also safe to use concurrently from multiple
8 //! threads.
9 //!
10 //! It is different from the standard library's [`Arc`] in a few ways:
11 //! 1. It is backed by the kernel's [`Refcount`] type.
12 //! 2. It does not support weak references, which allows it to be half the size.
13 //! 3. It saturates the reference count instead of aborting when it goes over a threshold.
14 //! 4. It does not provide a `get_mut` method, so the ref counted object is pinned.
15 //! 5. The object in [`Arc`] is pinned implicitly.
16 //!
17 //! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html
18 
19 use crate::{
20     alloc::{AllocError, Flags, KBox},
21     ffi::c_void,
22     fmt,
23     init::InPlaceInit,
24     sync::Refcount,
25     try_init,
26     types::ForeignOwnable,
27 };
28 use core::{
29     alloc::Layout,
30     borrow::{Borrow, BorrowMut},
31     marker::PhantomData,
32     mem::{ManuallyDrop, MaybeUninit},
33     ops::{Deref, DerefMut},
34     pin::Pin,
35     ptr::NonNull,
36 };
37 use pin_init::{self, pin_data, InPlaceWrite, Init, PinInit};
38 
39 mod std_vendor;
40 
41 /// A reference-counted pointer to an instance of `T`.
42 ///
43 /// The reference count is incremented when new instances of [`Arc`] are created, and decremented
44 /// when they are dropped. When the count reaches zero, the underlying `T` is also dropped.
45 ///
46 /// # Invariants
47 ///
48 /// The reference count on an instance of [`Arc`] is always non-zero.
49 /// The object pointed to by [`Arc`] is always pinned.
50 ///
51 /// # Examples
52 ///
53 /// ```
54 /// use kernel::sync::Arc;
55 ///
56 /// struct Example {
57 ///     a: u32,
58 ///     b: u32,
59 /// }
60 ///
61 /// // Create a refcounted instance of `Example`.
62 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
63 ///
64 /// // Get a new pointer to `obj` and increment the refcount.
65 /// let cloned = obj.clone();
66 ///
67 /// // Assert that both `obj` and `cloned` point to the same underlying object.
68 /// assert!(core::ptr::eq(&*obj, &*cloned));
69 ///
70 /// // Destroy `obj` and decrement its refcount.
71 /// drop(obj);
72 ///
73 /// // Check that the values are still accessible through `cloned`.
74 /// assert_eq!(cloned.a, 10);
75 /// assert_eq!(cloned.b, 20);
76 ///
77 /// // The refcount drops to zero when `cloned` goes out of scope, and the memory is freed.
78 /// # Ok::<(), Error>(())
79 /// ```
80 ///
81 /// Using `Arc<T>` as the type of `self`:
82 ///
83 /// ```
84 /// use kernel::sync::Arc;
85 ///
86 /// struct Example {
87 ///     a: u32,
88 ///     b: u32,
89 /// }
90 ///
91 /// impl Example {
92 ///     fn take_over(self: Arc<Self>) {
93 ///         // ...
94 ///     }
95 ///
96 ///     fn use_reference(self: &Arc<Self>) {
97 ///         // ...
98 ///     }
99 /// }
100 ///
101 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
102 /// obj.use_reference();
103 /// obj.take_over();
104 /// # Ok::<(), Error>(())
105 /// ```
106 ///
107 /// Coercion from `Arc<Example>` to `Arc<dyn MyTrait>`:
108 ///
109 /// ```
110 /// use kernel::sync::{Arc, ArcBorrow};
111 ///
112 /// trait MyTrait {
113 ///     // Trait has a function whose `self` type is `Arc<Self>`.
114 ///     fn example1(self: Arc<Self>) {}
115 ///
116 ///     // Trait has a function whose `self` type is `ArcBorrow<'_, Self>`.
117 ///     fn example2(self: ArcBorrow<'_, Self>) {}
118 /// }
119 ///
120 /// struct Example;
121 /// impl MyTrait for Example {}
122 ///
123 /// // `obj` has type `Arc<Example>`.
124 /// let obj: Arc<Example> = Arc::new(Example, GFP_KERNEL)?;
125 ///
126 /// // `coerced` has type `Arc<dyn MyTrait>`.
127 /// let coerced: Arc<dyn MyTrait> = obj;
128 /// # Ok::<(), Error>(())
129 /// ```
130 #[repr(transparent)]
131 #[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, derive(core::marker::CoercePointee))]
132 pub struct Arc<T: ?Sized> {
133     ptr: NonNull<ArcInner<T>>,
134     // NB: this informs dropck that objects of type `ArcInner<T>` may be used in `<Arc<T> as
135     // Drop>::drop`. Note that dropck already assumes that objects of type `T` may be used in
136     // `<Arc<T> as Drop>::drop` and the distinction between `T` and `ArcInner<T>` is not presently
137     // meaningful with respect to dropck - but this may change in the future so this is left here
138     // out of an abundance of caution.
139     //
140     // See <https://doc.rust-lang.org/nomicon/phantom-data.html#generic-parameters-and-drop-checking>
141     // for more detail on the semantics of dropck in the presence of `PhantomData`.
142     _p: PhantomData<ArcInner<T>>,
143 }
144 
145 #[pin_data]
146 #[repr(C)]
147 struct ArcInner<T: ?Sized> {
148     refcount: Refcount,
149     data: T,
150 }
151 
152 impl<T: ?Sized> ArcInner<T> {
153     /// Converts a pointer to the contents of an [`Arc`] into a pointer to the [`ArcInner`].
154     ///
155     /// # Safety
156     ///
157     /// `ptr` must have been returned by a previous call to [`Arc::into_raw`], and the `Arc` must
158     /// not yet have been destroyed.
159     unsafe fn container_of(ptr: *const T) -> NonNull<ArcInner<T>> {
160         let refcount_layout = Layout::new::<Refcount>();
161         // SAFETY: The caller guarantees that the pointer is valid.
162         let val_layout = Layout::for_value(unsafe { &*ptr });
163         // SAFETY: We're computing the layout of a real struct that existed when compiling this
164         // binary, so its layout is not so large that it can trigger arithmetic overflow.
165         let val_offset = unsafe { refcount_layout.extend(val_layout).unwrap_unchecked().1 };
166 
167         // Pointer casts leave the metadata unchanged. This is okay because the metadata of `T` and
168         // `ArcInner<T>` is the same since `ArcInner` is a struct with `T` as its last field.
169         //
170         // This is documented at:
171         // <https://doc.rust-lang.org/std/ptr/trait.Pointee.html>.
172         let ptr = ptr as *const ArcInner<T>;
173 
174         // SAFETY: The pointer is in-bounds of an allocation both before and after offsetting the
175         // pointer, since it originates from a previous call to `Arc::into_raw` on an `Arc` that is
176         // still valid.
177         let ptr = unsafe { ptr.byte_sub(val_offset) };
178 
179         // SAFETY: The pointer can't be null since you can't have an `ArcInner<T>` value at the null
180         // address.
181         unsafe { NonNull::new_unchecked(ptr.cast_mut()) }
182     }
183 }
184 
185 // This is to allow coercion from `Arc<T>` to `Arc<U>` if `T` can be converted to the
186 // dynamically-sized type (DST) `U`.
187 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))]
188 impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Arc<U>> for Arc<T> {}
189 
190 // This is to allow `Arc<U>` to be dispatched on when `Arc<T>` can be coerced into `Arc<U>`.
191 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))]
192 impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<Arc<U>> for Arc<T> {}
193 
194 // SAFETY: It is safe to send `Arc<T>` to another thread when the underlying `T` is `Sync` because
195 // it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs
196 // `T` to be `Send` because any thread that has an `Arc<T>` may ultimately access `T` using a
197 // mutable reference when the reference count reaches zero and `T` is dropped.
198 unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {}
199 
200 // SAFETY: It is safe to send `&Arc<T>` to another thread when the underlying `T` is `Sync`
201 // because it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally,
202 // it needs `T` to be `Send` because any thread that has a `&Arc<T>` may clone it and get an
203 // `Arc<T>` on that thread, so the thread may ultimately access `T` using a mutable reference when
204 // the reference count reaches zero and `T` is dropped.
205 unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {}
206 
207 impl<T> InPlaceInit<T> for Arc<T> {
208     type PinnedSelf = Self;
209 
210     #[inline]
211     fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E>
212     where
213         E: From<AllocError>,
214     {
215         UniqueArc::try_pin_init(init, flags).map(|u| u.into())
216     }
217 
218     #[inline]
219     fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
220     where
221         E: From<AllocError>,
222     {
223         UniqueArc::try_init(init, flags).map(|u| u.into())
224     }
225 }
226 
227 impl<T> Arc<T> {
228     /// Constructs a new reference counted instance of `T`.
229     pub fn new(contents: T, flags: Flags) -> Result<Self, AllocError> {
230         // INVARIANT: The refcount is initialised to a non-zero value.
231         let value = ArcInner {
232             refcount: Refcount::new(1),
233             data: contents,
234         };
235 
236         let inner = KBox::new(value, flags)?;
237         let inner = KBox::leak(inner).into();
238 
239         // SAFETY: We just created `inner` with a reference count of 1, which is owned by the new
240         // `Arc` object.
241         Ok(unsafe { Self::from_inner(inner) })
242     }
243 }
244 
245 impl<T: ?Sized> Arc<T> {
246     /// Constructs a new [`Arc`] from an existing [`ArcInner`].
247     ///
248     /// # Safety
249     ///
250     /// The caller must ensure that `inner` points to a valid location and has a non-zero reference
251     /// count, one of which will be owned by the new [`Arc`] instance.
252     unsafe fn from_inner(inner: NonNull<ArcInner<T>>) -> Self {
253         // INVARIANT: By the safety requirements, the invariants hold.
254         Arc {
255             ptr: inner,
256             _p: PhantomData,
257         }
258     }
259 
260     /// Convert the [`Arc`] into a raw pointer.
261     ///
262     /// The raw pointer has ownership of the refcount that this Arc object owned.
263     pub fn into_raw(self) -> *const T {
264         let ptr = self.ptr.as_ptr();
265         core::mem::forget(self);
266         // SAFETY: The pointer is valid.
267         unsafe { core::ptr::addr_of!((*ptr).data) }
268     }
269 
270     /// Return a raw pointer to the data in this arc.
271     pub fn as_ptr(this: &Self) -> *const T {
272         let ptr = this.ptr.as_ptr();
273 
274         // SAFETY: As `ptr` points to a valid allocation of type `ArcInner`,
275         // field projection to `data`is within bounds of the allocation.
276         unsafe { core::ptr::addr_of!((*ptr).data) }
277     }
278 
279     /// Recreates an [`Arc`] instance previously deconstructed via [`Arc::into_raw`].
280     ///
281     /// # Safety
282     ///
283     /// `ptr` must have been returned by a previous call to [`Arc::into_raw`]. Additionally, it
284     /// must not be called more than once for each previous call to [`Arc::into_raw`].
285     pub unsafe fn from_raw(ptr: *const T) -> Self {
286         // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an
287         // `Arc` that is still valid.
288         let ptr = unsafe { ArcInner::container_of(ptr) };
289 
290         // SAFETY: By the safety requirements we know that `ptr` came from `Arc::into_raw`, so the
291         // reference count held then will be owned by the new `Arc` object.
292         unsafe { Self::from_inner(ptr) }
293     }
294 
295     /// Returns an [`ArcBorrow`] from the given [`Arc`].
296     ///
297     /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method
298     /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised.
299     #[inline]
300     pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> {
301         // SAFETY: The constraint that the lifetime of the shared reference must outlive that of
302         // the returned `ArcBorrow` ensures that the object remains alive and that no mutable
303         // reference can be created.
304         unsafe { ArcBorrow::new(self.ptr) }
305     }
306 
307     /// Compare whether two [`Arc`] pointers reference the same underlying object.
308     pub fn ptr_eq(this: &Self, other: &Self) -> bool {
309         core::ptr::eq(this.ptr.as_ptr(), other.ptr.as_ptr())
310     }
311 
312     /// Converts this [`Arc`] into a [`UniqueArc`], or destroys it if it is not unique.
313     ///
314     /// When this destroys the `Arc`, it does so while properly avoiding races. This means that
315     /// this method will never call the destructor of the value.
316     ///
317     /// # Examples
318     ///
319     /// ```
320     /// use kernel::sync::{Arc, UniqueArc};
321     ///
322     /// let arc = Arc::new(42, GFP_KERNEL)?;
323     /// let unique_arc = Arc::into_unique_or_drop(arc);
324     ///
325     /// // The above conversion should succeed since refcount of `arc` is 1.
326     /// assert!(unique_arc.is_some());
327     ///
328     /// assert_eq!(*(unique_arc.unwrap()), 42);
329     ///
330     /// # Ok::<(), Error>(())
331     /// ```
332     ///
333     /// ```
334     /// use kernel::sync::{Arc, UniqueArc};
335     ///
336     /// let arc = Arc::new(42, GFP_KERNEL)?;
337     /// let another = arc.clone();
338     ///
339     /// let unique_arc = Arc::into_unique_or_drop(arc);
340     ///
341     /// // The above conversion should fail since refcount of `arc` is >1.
342     /// assert!(unique_arc.is_none());
343     ///
344     /// # Ok::<(), Error>(())
345     /// ```
346     pub fn into_unique_or_drop(this: Self) -> Option<Pin<UniqueArc<T>>> {
347         // We will manually manage the refcount in this method, so we disable the destructor.
348         let this = ManuallyDrop::new(this);
349         // SAFETY: We own a refcount, so the pointer is still valid.
350         let refcount = unsafe { &this.ptr.as_ref().refcount };
351 
352         // If the refcount reaches a non-zero value, then we have destroyed this `Arc` and will
353         // return without further touching the `Arc`. If the refcount reaches zero, then there are
354         // no other arcs, and we can create a `UniqueArc`.
355         if refcount.dec_and_test() {
356             refcount.set(1);
357 
358             // INVARIANT: We own the only refcount to this arc, so we may create a `UniqueArc`. We
359             // must pin the `UniqueArc` because the values was previously in an `Arc`, and they pin
360             // their values.
361             Some(Pin::from(UniqueArc {
362                 inner: ManuallyDrop::into_inner(this),
363             }))
364         } else {
365             None
366         }
367     }
368 }
369 
370 // SAFETY: The pointer returned by `into_foreign` was originally allocated as an
371 // `KBox<ArcInner<T>>`, so that type is what determines the alignment.
372 unsafe impl<T: 'static> ForeignOwnable for Arc<T> {
373     const FOREIGN_ALIGN: usize = <KBox<ArcInner<T>> as ForeignOwnable>::FOREIGN_ALIGN;
374 
375     type Borrowed<'a> = ArcBorrow<'a, T>;
376     type BorrowedMut<'a> = Self::Borrowed<'a>;
377 
378     fn into_foreign(self) -> *mut c_void {
379         ManuallyDrop::new(self).ptr.as_ptr().cast()
380     }
381 
382     unsafe fn from_foreign(ptr: *mut c_void) -> Self {
383         // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous
384         // call to `Self::into_foreign`.
385         let inner = unsafe { NonNull::new_unchecked(ptr.cast::<ArcInner<T>>()) };
386 
387         // SAFETY: By the safety requirement of this function, we know that `ptr` came from
388         // a previous call to `Arc::into_foreign`, which guarantees that `ptr` is valid and
389         // holds a reference count increment that is transferrable to us.
390         unsafe { Self::from_inner(inner) }
391     }
392 
393     unsafe fn borrow<'a>(ptr: *mut c_void) -> ArcBorrow<'a, T> {
394         // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous
395         // call to `Self::into_foreign`.
396         let inner = unsafe { NonNull::new_unchecked(ptr.cast::<ArcInner<T>>()) };
397 
398         // SAFETY: The safety requirements of `from_foreign` ensure that the object remains alive
399         // for the lifetime of the returned value.
400         unsafe { ArcBorrow::new(inner) }
401     }
402 
403     unsafe fn borrow_mut<'a>(ptr: *mut c_void) -> ArcBorrow<'a, T> {
404         // SAFETY: The safety requirements for `borrow_mut` are a superset of the safety
405         // requirements for `borrow`.
406         unsafe { <Self as ForeignOwnable>::borrow(ptr) }
407     }
408 }
409 
410 impl<T: ?Sized> Deref for Arc<T> {
411     type Target = T;
412 
413     fn deref(&self) -> &Self::Target {
414         // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
415         // safe to dereference it.
416         unsafe { &self.ptr.as_ref().data }
417     }
418 }
419 
420 impl<T: ?Sized> AsRef<T> for Arc<T> {
421     fn as_ref(&self) -> &T {
422         self.deref()
423     }
424 }
425 
426 /// # Examples
427 ///
428 /// ```
429 /// # use core::borrow::Borrow;
430 /// # use kernel::sync::Arc;
431 /// struct Foo<B: Borrow<u32>>(B);
432 ///
433 /// // Owned instance.
434 /// let owned = Foo(1);
435 ///
436 /// // Shared instance.
437 /// let arc = Arc::new(1, GFP_KERNEL)?;
438 /// let shared = Foo(arc.clone());
439 ///
440 /// let i = 1;
441 /// // Borrowed from `i`.
442 /// let borrowed = Foo(&i);
443 /// # Ok::<(), Error>(())
444 /// ```
445 impl<T: ?Sized> Borrow<T> for Arc<T> {
446     fn borrow(&self) -> &T {
447         self.deref()
448     }
449 }
450 
451 impl<T: ?Sized> Clone for Arc<T> {
452     fn clone(&self) -> Self {
453         // INVARIANT: `Refcount` saturates the refcount, so it cannot overflow to zero.
454         // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
455         // safe to increment the refcount.
456         unsafe { self.ptr.as_ref() }.refcount.inc();
457 
458         // SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`.
459         unsafe { Self::from_inner(self.ptr) }
460     }
461 }
462 
463 impl<T: ?Sized> Drop for Arc<T> {
464     fn drop(&mut self) {
465         // INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and
466         // this instance is being dropped, so the broken invariant is not observable.
467         // SAFETY: By the type invariant, there is necessarily a reference to the object.
468         let is_zero = unsafe { self.ptr.as_ref() }.refcount.dec_and_test();
469         if is_zero {
470             // The count reached zero, we must free the memory.
471             //
472             // SAFETY: The pointer was initialised from the result of `KBox::leak`.
473             unsafe { drop(KBox::from_raw(self.ptr.as_ptr())) };
474         }
475     }
476 }
477 
478 impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> {
479     fn from(item: UniqueArc<T>) -> Self {
480         item.inner
481     }
482 }
483 
484 impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Arc<T> {
485     fn from(item: Pin<UniqueArc<T>>) -> Self {
486         // SAFETY: The type invariants of `Arc` guarantee that the data is pinned.
487         unsafe { Pin::into_inner_unchecked(item).inner }
488     }
489 }
490 
491 /// A borrowed reference to an [`Arc`] instance.
492 ///
493 /// For cases when one doesn't ever need to increment the refcount on the allocation, it is simpler
494 /// to use just `&T`, which we can trivially get from an [`Arc<T>`] instance.
495 ///
496 /// However, when one may need to increment the refcount, it is preferable to use an `ArcBorrow<T>`
497 /// over `&Arc<T>` because the latter results in a double-indirection: a pointer (shared reference)
498 /// to a pointer ([`Arc<T>`]) to the object (`T`). An [`ArcBorrow`] eliminates this double
499 /// indirection while still allowing one to increment the refcount and getting an [`Arc<T>`] when/if
500 /// needed.
501 ///
502 /// # Invariants
503 ///
504 /// There are no mutable references to the underlying [`Arc`], and it remains valid for the
505 /// lifetime of the [`ArcBorrow`] instance.
506 ///
507 /// # Examples
508 ///
509 /// ```
510 /// use kernel::sync::{Arc, ArcBorrow};
511 ///
512 /// struct Example;
513 ///
514 /// fn do_something(e: ArcBorrow<'_, Example>) -> Arc<Example> {
515 ///     e.into()
516 /// }
517 ///
518 /// let obj = Arc::new(Example, GFP_KERNEL)?;
519 /// let cloned = do_something(obj.as_arc_borrow());
520 ///
521 /// // Assert that both `obj` and `cloned` point to the same underlying object.
522 /// assert!(core::ptr::eq(&*obj, &*cloned));
523 /// # Ok::<(), Error>(())
524 /// ```
525 ///
526 /// Using `ArcBorrow<T>` as the type of `self`:
527 ///
528 /// ```
529 /// use kernel::sync::{Arc, ArcBorrow};
530 ///
531 /// struct Example {
532 ///     a: u32,
533 ///     b: u32,
534 /// }
535 ///
536 /// impl Example {
537 ///     fn use_reference(self: ArcBorrow<'_, Self>) {
538 ///         // ...
539 ///     }
540 /// }
541 ///
542 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
543 /// obj.as_arc_borrow().use_reference();
544 /// # Ok::<(), Error>(())
545 /// ```
546 #[repr(transparent)]
547 #[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, derive(core::marker::CoercePointee))]
548 pub struct ArcBorrow<'a, T: ?Sized + 'a> {
549     inner: NonNull<ArcInner<T>>,
550     _p: PhantomData<&'a ()>,
551 }
552 
553 // This is to allow `ArcBorrow<U>` to be dispatched on when `ArcBorrow<T>` can be coerced into
554 // `ArcBorrow<U>`.
555 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))]
556 impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<ArcBorrow<'_, U>>
557     for ArcBorrow<'_, T>
558 {
559 }
560 
561 impl<T: ?Sized> Clone for ArcBorrow<'_, T> {
562     fn clone(&self) -> Self {
563         *self
564     }
565 }
566 
567 impl<T: ?Sized> Copy for ArcBorrow<'_, T> {}
568 
569 impl<T: ?Sized> ArcBorrow<'_, T> {
570     /// Creates a new [`ArcBorrow`] instance.
571     ///
572     /// # Safety
573     ///
574     /// Callers must ensure the following for the lifetime of the returned [`ArcBorrow`] instance:
575     /// 1. That `inner` remains valid;
576     /// 2. That no mutable references to `inner` are created.
577     unsafe fn new(inner: NonNull<ArcInner<T>>) -> Self {
578         // INVARIANT: The safety requirements guarantee the invariants.
579         Self {
580             inner,
581             _p: PhantomData,
582         }
583     }
584 
585     /// Creates an [`ArcBorrow`] to an [`Arc`] that has previously been deconstructed with
586     /// [`Arc::into_raw`] or [`Arc::as_ptr`].
587     ///
588     /// # Safety
589     ///
590     /// * The provided pointer must originate from a call to [`Arc::into_raw`] or [`Arc::as_ptr`].
591     /// * For the duration of the lifetime annotated on this `ArcBorrow`, the reference count must
592     ///   not hit zero.
593     /// * For the duration of the lifetime annotated on this `ArcBorrow`, there must not be a
594     ///   [`UniqueArc`] reference to this value.
595     pub unsafe fn from_raw(ptr: *const T) -> Self {
596         // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an
597         // `Arc` that is still valid.
598         let ptr = unsafe { ArcInner::container_of(ptr) };
599 
600         // SAFETY: The caller promises that the value remains valid since the reference count must
601         // not hit zero, and no mutable reference will be created since that would involve a
602         // `UniqueArc`.
603         unsafe { Self::new(ptr) }
604     }
605 }
606 
607 impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc<T> {
608     fn from(b: ArcBorrow<'_, T>) -> Self {
609         // SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop`
610         // guarantees that `drop` isn't called, so it's ok that the temporary `Arc` doesn't own the
611         // increment.
612         ManuallyDrop::new(unsafe { Arc::from_inner(b.inner) })
613             .deref()
614             .clone()
615     }
616 }
617 
618 impl<T: ?Sized> Deref for ArcBorrow<'_, T> {
619     type Target = T;
620 
621     fn deref(&self) -> &Self::Target {
622         // SAFETY: By the type invariant, the underlying object is still alive with no mutable
623         // references to it, so it is safe to create a shared reference.
624         unsafe { &self.inner.as_ref().data }
625     }
626 }
627 
628 /// A refcounted object that is known to have a refcount of 1.
629 ///
630 /// It is mutable and can be converted to an [`Arc`] so that it can be shared.
631 ///
632 /// # Invariants
633 ///
634 /// `inner` always has a reference count of 1.
635 ///
636 /// # Examples
637 ///
638 /// In the following example, we make changes to the inner object before turning it into an
639 /// `Arc<Test>` object (after which point, it cannot be mutated directly). Note that `x.into()`
640 /// cannot fail.
641 ///
642 /// ```
643 /// use kernel::sync::{Arc, UniqueArc};
644 ///
645 /// struct Example {
646 ///     a: u32,
647 ///     b: u32,
648 /// }
649 ///
650 /// fn test() -> Result<Arc<Example>> {
651 ///     let mut x = UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
652 ///     x.a += 1;
653 ///     x.b += 1;
654 ///     Ok(x.into())
655 /// }
656 ///
657 /// # test().unwrap();
658 /// ```
659 ///
660 /// In the following example we first allocate memory for a refcounted `Example` but we don't
661 /// initialise it on allocation. We do initialise it later with a call to [`UniqueArc::write`],
662 /// followed by a conversion to `Arc<Example>`. This is particularly useful when allocation happens
663 /// in one context (e.g., sleepable) and initialisation in another (e.g., atomic):
664 ///
665 /// ```
666 /// use kernel::sync::{Arc, UniqueArc};
667 ///
668 /// struct Example {
669 ///     a: u32,
670 ///     b: u32,
671 /// }
672 ///
673 /// fn test() -> Result<Arc<Example>> {
674 ///     let x = UniqueArc::new_uninit(GFP_KERNEL)?;
675 ///     Ok(x.write(Example { a: 10, b: 20 }).into())
676 /// }
677 ///
678 /// # test().unwrap();
679 /// ```
680 ///
681 /// In the last example below, the caller gets a pinned instance of `Example` while converting to
682 /// `Arc<Example>`; this is useful in scenarios where one needs a pinned reference during
683 /// initialisation, for example, when initialising fields that are wrapped in locks.
684 ///
685 /// ```
686 /// use kernel::sync::{Arc, UniqueArc};
687 ///
688 /// struct Example {
689 ///     a: u32,
690 ///     b: u32,
691 /// }
692 ///
693 /// fn test() -> Result<Arc<Example>> {
694 ///     let mut pinned = Pin::from(UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?);
695 ///     // We can modify `pinned` because it is `Unpin`.
696 ///     pinned.as_mut().a += 1;
697 ///     Ok(pinned.into())
698 /// }
699 ///
700 /// # test().unwrap();
701 /// ```
702 pub struct UniqueArc<T: ?Sized> {
703     inner: Arc<T>,
704 }
705 
706 impl<T> InPlaceInit<T> for UniqueArc<T> {
707     type PinnedSelf = Pin<Self>;
708 
709     #[inline]
710     fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E>
711     where
712         E: From<AllocError>,
713     {
714         UniqueArc::new_uninit(flags)?.write_pin_init(init)
715     }
716 
717     #[inline]
718     fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
719     where
720         E: From<AllocError>,
721     {
722         UniqueArc::new_uninit(flags)?.write_init(init)
723     }
724 }
725 
726 impl<T> InPlaceWrite<T> for UniqueArc<MaybeUninit<T>> {
727     type Initialized = UniqueArc<T>;
728 
729     fn write_init<E>(mut self, init: impl Init<T, E>) -> Result<Self::Initialized, E> {
730         let slot = self.as_mut_ptr();
731         // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
732         // slot is valid.
733         unsafe { init.__init(slot)? };
734         // SAFETY: All fields have been initialized.
735         Ok(unsafe { self.assume_init() })
736     }
737 
738     fn write_pin_init<E>(mut self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E> {
739         let slot = self.as_mut_ptr();
740         // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
741         // slot is valid and will not be moved, because we pin it later.
742         unsafe { init.__pinned_init(slot)? };
743         // SAFETY: All fields have been initialized.
744         Ok(unsafe { self.assume_init() }.into())
745     }
746 }
747 
748 impl<T> UniqueArc<T> {
749     /// Tries to allocate a new [`UniqueArc`] instance.
750     pub fn new(value: T, flags: Flags) -> Result<Self, AllocError> {
751         Ok(Self {
752             // INVARIANT: The newly-created object has a refcount of 1.
753             inner: Arc::new(value, flags)?,
754         })
755     }
756 
757     /// Tries to allocate a new [`UniqueArc`] instance whose contents are not initialised yet.
758     pub fn new_uninit(flags: Flags) -> Result<UniqueArc<MaybeUninit<T>>, AllocError> {
759         // INVARIANT: The refcount is initialised to a non-zero value.
760         let inner = KBox::try_init::<AllocError>(
761             try_init!(ArcInner {
762                 refcount: Refcount::new(1),
763                 data <- pin_init::uninit::<T, AllocError>(),
764             }? AllocError),
765             flags,
766         )?;
767         Ok(UniqueArc {
768             // INVARIANT: The newly-created object has a refcount of 1.
769             // SAFETY: The pointer from the `KBox` is valid.
770             inner: unsafe { Arc::from_inner(KBox::leak(inner).into()) },
771         })
772     }
773 }
774 
775 impl<T> UniqueArc<MaybeUninit<T>> {
776     /// Converts a `UniqueArc<MaybeUninit<T>>` into a `UniqueArc<T>` by writing a value into it.
777     pub fn write(mut self, value: T) -> UniqueArc<T> {
778         self.deref_mut().write(value);
779         // SAFETY: We just wrote the value to be initialized.
780         unsafe { self.assume_init() }
781     }
782 
783     /// Unsafely assume that `self` is initialized.
784     ///
785     /// # Safety
786     ///
787     /// The caller guarantees that the value behind this pointer has been initialized. It is
788     /// *immediate* UB to call this when the value is not initialized.
789     pub unsafe fn assume_init(self) -> UniqueArc<T> {
790         let inner = ManuallyDrop::new(self).inner.ptr;
791         UniqueArc {
792             // SAFETY: The new `Arc` is taking over `ptr` from `self.inner` (which won't be
793             // dropped). The types are compatible because `MaybeUninit<T>` is compatible with `T`.
794             inner: unsafe { Arc::from_inner(inner.cast()) },
795         }
796     }
797 
798     /// Initialize `self` using the given initializer.
799     pub fn init_with<E>(mut self, init: impl Init<T, E>) -> core::result::Result<UniqueArc<T>, E> {
800         // SAFETY: The supplied pointer is valid for initialization.
801         match unsafe { init.__init(self.as_mut_ptr()) } {
802             // SAFETY: Initialization completed successfully.
803             Ok(()) => Ok(unsafe { self.assume_init() }),
804             Err(err) => Err(err),
805         }
806     }
807 
808     /// Pin-initialize `self` using the given pin-initializer.
809     pub fn pin_init_with<E>(
810         mut self,
811         init: impl PinInit<T, E>,
812     ) -> core::result::Result<Pin<UniqueArc<T>>, E> {
813         // SAFETY: The supplied pointer is valid for initialization and we will later pin the value
814         // to ensure it does not move.
815         match unsafe { init.__pinned_init(self.as_mut_ptr()) } {
816             // SAFETY: Initialization completed successfully.
817             Ok(()) => Ok(unsafe { self.assume_init() }.into()),
818             Err(err) => Err(err),
819         }
820     }
821 }
822 
823 impl<T: ?Sized> From<UniqueArc<T>> for Pin<UniqueArc<T>> {
824     fn from(obj: UniqueArc<T>) -> Self {
825         // SAFETY: It is not possible to move/replace `T` inside a `Pin<UniqueArc<T>>` (unless `T`
826         // is `Unpin`), so it is ok to convert it to `Pin<UniqueArc<T>>`.
827         unsafe { Pin::new_unchecked(obj) }
828     }
829 }
830 
831 impl<T: ?Sized> Deref for UniqueArc<T> {
832     type Target = T;
833 
834     fn deref(&self) -> &Self::Target {
835         self.inner.deref()
836     }
837 }
838 
839 impl<T: ?Sized> DerefMut for UniqueArc<T> {
840     fn deref_mut(&mut self) -> &mut Self::Target {
841         // SAFETY: By the `Arc` type invariant, there is necessarily a reference to the object, so
842         // it is safe to dereference it. Additionally, we know there is only one reference when
843         // it's inside a `UniqueArc`, so it is safe to get a mutable reference.
844         unsafe { &mut self.inner.ptr.as_mut().data }
845     }
846 }
847 
848 /// # Examples
849 ///
850 /// ```
851 /// # use core::borrow::Borrow;
852 /// # use kernel::sync::UniqueArc;
853 /// struct Foo<B: Borrow<u32>>(B);
854 ///
855 /// // Owned instance.
856 /// let owned = Foo(1);
857 ///
858 /// // Owned instance using `UniqueArc`.
859 /// let arc = UniqueArc::new(1, GFP_KERNEL)?;
860 /// let shared = Foo(arc);
861 ///
862 /// let i = 1;
863 /// // Borrowed from `i`.
864 /// let borrowed = Foo(&i);
865 /// # Ok::<(), Error>(())
866 /// ```
867 impl<T: ?Sized> Borrow<T> for UniqueArc<T> {
868     fn borrow(&self) -> &T {
869         self.deref()
870     }
871 }
872 
873 /// # Examples
874 ///
875 /// ```
876 /// # use core::borrow::BorrowMut;
877 /// # use kernel::sync::UniqueArc;
878 /// struct Foo<B: BorrowMut<u32>>(B);
879 ///
880 /// // Owned instance.
881 /// let owned = Foo(1);
882 ///
883 /// // Owned instance using `UniqueArc`.
884 /// let arc = UniqueArc::new(1, GFP_KERNEL)?;
885 /// let shared = Foo(arc);
886 ///
887 /// let mut i = 1;
888 /// // Borrowed from `i`.
889 /// let borrowed = Foo(&mut i);
890 /// # Ok::<(), Error>(())
891 /// ```
892 impl<T: ?Sized> BorrowMut<T> for UniqueArc<T> {
893     fn borrow_mut(&mut self) -> &mut T {
894         self.deref_mut()
895     }
896 }
897 
898 impl<T: fmt::Display + ?Sized> fmt::Display for UniqueArc<T> {
899     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
900         fmt::Display::fmt(self.deref(), f)
901     }
902 }
903 
904 impl<T: fmt::Display + ?Sized> fmt::Display for Arc<T> {
905     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
906         fmt::Display::fmt(self.deref(), f)
907     }
908 }
909 
910 impl<T: fmt::Debug + ?Sized> fmt::Debug for UniqueArc<T> {
911     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
912         fmt::Debug::fmt(self.deref(), f)
913     }
914 }
915 
916 impl<T: fmt::Debug + ?Sized> fmt::Debug for Arc<T> {
917     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
918         fmt::Debug::fmt(self.deref(), f)
919     }
920 }
921