1 // SPDX-License-Identifier: GPL-2.0 2 3 //! String representations. 4 5 use crate::alloc::{flags::*, AllocError, KVec}; 6 use core::fmt::{self, Write}; 7 use core::ops::{self, Deref, DerefMut, Index}; 8 9 use crate::error::{code::*, Error}; 10 11 /// Byte string without UTF-8 validity guarantee. 12 #[repr(transparent)] 13 pub struct BStr([u8]); 14 15 impl BStr { 16 /// Returns the length of this string. 17 #[inline] 18 pub const fn len(&self) -> usize { 19 self.0.len() 20 } 21 22 /// Returns `true` if the string is empty. 23 #[inline] 24 pub const fn is_empty(&self) -> bool { 25 self.len() == 0 26 } 27 28 /// Creates a [`BStr`] from a `[u8]`. 29 #[inline] 30 pub const fn from_bytes(bytes: &[u8]) -> &Self { 31 // SAFETY: `BStr` is transparent to `[u8]`. 32 unsafe { &*(bytes as *const [u8] as *const BStr) } 33 } 34 } 35 36 impl fmt::Display for BStr { 37 /// Formats printable ASCII characters, escaping the rest. 38 /// 39 /// ``` 40 /// # use kernel::{fmt, b_str, str::{BStr, CString}}; 41 /// let ascii = b_str!("Hello, BStr!"); 42 /// let s = CString::try_from_fmt(fmt!("{}", ascii))?; 43 /// assert_eq!(s.as_bytes(), "Hello, BStr!".as_bytes()); 44 /// 45 /// let non_ascii = b_str!(""); 46 /// let s = CString::try_from_fmt(fmt!("{}", non_ascii))?; 47 /// assert_eq!(s.as_bytes(), "\\xf0\\x9f\\xa6\\x80".as_bytes()); 48 /// # Ok::<(), kernel::error::Error>(()) 49 /// ``` 50 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 51 for &b in &self.0 { 52 match b { 53 // Common escape codes. 54 b'\t' => f.write_str("\\t")?, 55 b'\n' => f.write_str("\\n")?, 56 b'\r' => f.write_str("\\r")?, 57 // Printable characters. 58 0x20..=0x7e => f.write_char(b as char)?, 59 _ => write!(f, "\\x{:02x}", b)?, 60 } 61 } 62 Ok(()) 63 } 64 } 65 66 impl fmt::Debug for BStr { 67 /// Formats printable ASCII characters with a double quote on either end, 68 /// escaping the rest. 69 /// 70 /// ``` 71 /// # use kernel::{fmt, b_str, str::{BStr, CString}}; 72 /// // Embedded double quotes are escaped. 73 /// let ascii = b_str!("Hello, \"BStr\"!"); 74 /// let s = CString::try_from_fmt(fmt!("{:?}", ascii))?; 75 /// assert_eq!(s.as_bytes(), "\"Hello, \\\"BStr\\\"!\"".as_bytes()); 76 /// 77 /// let non_ascii = b_str!(""); 78 /// let s = CString::try_from_fmt(fmt!("{:?}", non_ascii))?; 79 /// assert_eq!(s.as_bytes(), "\"\\xf0\\x9f\\x98\\xba\"".as_bytes()); 80 /// # Ok::<(), kernel::error::Error>(()) 81 /// ``` 82 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 83 f.write_char('"')?; 84 for &b in &self.0 { 85 match b { 86 // Common escape codes. 87 b'\t' => f.write_str("\\t")?, 88 b'\n' => f.write_str("\\n")?, 89 b'\r' => f.write_str("\\r")?, 90 // String escape characters. 91 b'\"' => f.write_str("\\\"")?, 92 b'\\' => f.write_str("\\\\")?, 93 // Printable characters. 94 0x20..=0x7e => f.write_char(b as char)?, 95 _ => write!(f, "\\x{:02x}", b)?, 96 } 97 } 98 f.write_char('"') 99 } 100 } 101 102 impl Deref for BStr { 103 type Target = [u8]; 104 105 #[inline] 106 fn deref(&self) -> &Self::Target { 107 &self.0 108 } 109 } 110 111 /// Creates a new [`BStr`] from a string literal. 112 /// 113 /// `b_str!` converts the supplied string literal to byte string, so non-ASCII 114 /// characters can be included. 115 /// 116 /// # Examples 117 /// 118 /// ``` 119 /// # use kernel::b_str; 120 /// # use kernel::str::BStr; 121 /// const MY_BSTR: &BStr = b_str!("My awesome BStr!"); 122 /// ``` 123 #[macro_export] 124 macro_rules! b_str { 125 ($str:literal) => {{ 126 const S: &'static str = $str; 127 const C: &'static $crate::str::BStr = $crate::str::BStr::from_bytes(S.as_bytes()); 128 C 129 }}; 130 } 131 132 /// Possible errors when using conversion functions in [`CStr`]. 133 #[derive(Debug, Clone, Copy)] 134 pub enum CStrConvertError { 135 /// Supplied bytes contain an interior `NUL`. 136 InteriorNul, 137 138 /// Supplied bytes are not terminated by `NUL`. 139 NotNulTerminated, 140 } 141 142 impl From<CStrConvertError> for Error { 143 #[inline] 144 fn from(_: CStrConvertError) -> Error { 145 EINVAL 146 } 147 } 148 149 /// A string that is guaranteed to have exactly one `NUL` byte, which is at the 150 /// end. 151 /// 152 /// Used for interoperability with kernel APIs that take C strings. 153 #[repr(transparent)] 154 pub struct CStr([u8]); 155 156 impl CStr { 157 /// Returns the length of this string excluding `NUL`. 158 #[inline] 159 pub const fn len(&self) -> usize { 160 self.len_with_nul() - 1 161 } 162 163 /// Returns the length of this string with `NUL`. 164 #[inline] 165 pub const fn len_with_nul(&self) -> usize { 166 if self.0.is_empty() { 167 // SAFETY: This is one of the invariant of `CStr`. 168 // We add a `unreachable_unchecked` here to hint the optimizer that 169 // the value returned from this function is non-zero. 170 unsafe { core::hint::unreachable_unchecked() }; 171 } 172 self.0.len() 173 } 174 175 /// Returns `true` if the string only includes `NUL`. 176 #[inline] 177 pub const fn is_empty(&self) -> bool { 178 self.len() == 0 179 } 180 181 /// Wraps a raw C string pointer. 182 /// 183 /// # Safety 184 /// 185 /// `ptr` must be a valid pointer to a `NUL`-terminated C string, and it must 186 /// last at least `'a`. When `CStr` is alive, the memory pointed by `ptr` 187 /// must not be mutated. 188 #[inline] 189 pub unsafe fn from_char_ptr<'a>(ptr: *const crate::ffi::c_char) -> &'a Self { 190 // SAFETY: The safety precondition guarantees `ptr` is a valid pointer 191 // to a `NUL`-terminated C string. 192 let len = unsafe { bindings::strlen(ptr) } + 1; 193 // SAFETY: Lifetime guaranteed by the safety precondition. 194 let bytes = unsafe { core::slice::from_raw_parts(ptr as _, len) }; 195 // SAFETY: As `len` is returned by `strlen`, `bytes` does not contain interior `NUL`. 196 // As we have added 1 to `len`, the last byte is known to be `NUL`. 197 unsafe { Self::from_bytes_with_nul_unchecked(bytes) } 198 } 199 200 /// Creates a [`CStr`] from a `[u8]`. 201 /// 202 /// The provided slice must be `NUL`-terminated, does not contain any 203 /// interior `NUL` bytes. 204 pub const fn from_bytes_with_nul(bytes: &[u8]) -> Result<&Self, CStrConvertError> { 205 if bytes.is_empty() { 206 return Err(CStrConvertError::NotNulTerminated); 207 } 208 if bytes[bytes.len() - 1] != 0 { 209 return Err(CStrConvertError::NotNulTerminated); 210 } 211 let mut i = 0; 212 // `i + 1 < bytes.len()` allows LLVM to optimize away bounds checking, 213 // while it couldn't optimize away bounds checks for `i < bytes.len() - 1`. 214 while i + 1 < bytes.len() { 215 if bytes[i] == 0 { 216 return Err(CStrConvertError::InteriorNul); 217 } 218 i += 1; 219 } 220 // SAFETY: We just checked that all properties hold. 221 Ok(unsafe { Self::from_bytes_with_nul_unchecked(bytes) }) 222 } 223 224 /// Creates a [`CStr`] from a `[u8]` without performing any additional 225 /// checks. 226 /// 227 /// # Safety 228 /// 229 /// `bytes` *must* end with a `NUL` byte, and should only have a single 230 /// `NUL` byte (or the string will be truncated). 231 #[inline] 232 pub const unsafe fn from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr { 233 // SAFETY: Properties of `bytes` guaranteed by the safety precondition. 234 unsafe { core::mem::transmute(bytes) } 235 } 236 237 /// Creates a mutable [`CStr`] from a `[u8]` without performing any 238 /// additional checks. 239 /// 240 /// # Safety 241 /// 242 /// `bytes` *must* end with a `NUL` byte, and should only have a single 243 /// `NUL` byte (or the string will be truncated). 244 #[inline] 245 pub unsafe fn from_bytes_with_nul_unchecked_mut(bytes: &mut [u8]) -> &mut CStr { 246 // SAFETY: Properties of `bytes` guaranteed by the safety precondition. 247 unsafe { &mut *(bytes as *mut [u8] as *mut CStr) } 248 } 249 250 /// Returns a C pointer to the string. 251 #[inline] 252 pub const fn as_char_ptr(&self) -> *const crate::ffi::c_char { 253 self.0.as_ptr() 254 } 255 256 /// Convert the string to a byte slice without the trailing `NUL` byte. 257 #[inline] 258 pub fn as_bytes(&self) -> &[u8] { 259 &self.0[..self.len()] 260 } 261 262 /// Convert the string to a byte slice containing the trailing `NUL` byte. 263 #[inline] 264 pub const fn as_bytes_with_nul(&self) -> &[u8] { 265 &self.0 266 } 267 268 /// Yields a [`&str`] slice if the [`CStr`] contains valid UTF-8. 269 /// 270 /// If the contents of the [`CStr`] are valid UTF-8 data, this 271 /// function will return the corresponding [`&str`] slice. Otherwise, 272 /// it will return an error with details of where UTF-8 validation failed. 273 /// 274 /// # Examples 275 /// 276 /// ``` 277 /// # use kernel::str::CStr; 278 /// let cstr = CStr::from_bytes_with_nul(b"foo\0")?; 279 /// assert_eq!(cstr.to_str(), Ok("foo")); 280 /// # Ok::<(), kernel::error::Error>(()) 281 /// ``` 282 #[inline] 283 pub fn to_str(&self) -> Result<&str, core::str::Utf8Error> { 284 core::str::from_utf8(self.as_bytes()) 285 } 286 287 /// Unsafely convert this [`CStr`] into a [`&str`], without checking for 288 /// valid UTF-8. 289 /// 290 /// # Safety 291 /// 292 /// The contents must be valid UTF-8. 293 /// 294 /// # Examples 295 /// 296 /// ``` 297 /// # use kernel::c_str; 298 /// # use kernel::str::CStr; 299 /// let bar = c_str!("ツ"); 300 /// // SAFETY: String literals are guaranteed to be valid UTF-8 301 /// // by the Rust compiler. 302 /// assert_eq!(unsafe { bar.as_str_unchecked() }, "ツ"); 303 /// ``` 304 #[inline] 305 pub unsafe fn as_str_unchecked(&self) -> &str { 306 // SAFETY: TODO. 307 unsafe { core::str::from_utf8_unchecked(self.as_bytes()) } 308 } 309 310 /// Convert this [`CStr`] into a [`CString`] by allocating memory and 311 /// copying over the string data. 312 pub fn to_cstring(&self) -> Result<CString, AllocError> { 313 CString::try_from(self) 314 } 315 316 /// Converts this [`CStr`] to its ASCII lower case equivalent in-place. 317 /// 318 /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', 319 /// but non-ASCII letters are unchanged. 320 /// 321 /// To return a new lowercased value without modifying the existing one, use 322 /// [`to_ascii_lowercase()`]. 323 /// 324 /// [`to_ascii_lowercase()`]: #method.to_ascii_lowercase 325 pub fn make_ascii_lowercase(&mut self) { 326 // INVARIANT: This doesn't introduce or remove NUL bytes in the C 327 // string. 328 self.0.make_ascii_lowercase(); 329 } 330 331 /// Converts this [`CStr`] to its ASCII upper case equivalent in-place. 332 /// 333 /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', 334 /// but non-ASCII letters are unchanged. 335 /// 336 /// To return a new uppercased value without modifying the existing one, use 337 /// [`to_ascii_uppercase()`]. 338 /// 339 /// [`to_ascii_uppercase()`]: #method.to_ascii_uppercase 340 pub fn make_ascii_uppercase(&mut self) { 341 // INVARIANT: This doesn't introduce or remove NUL bytes in the C 342 // string. 343 self.0.make_ascii_uppercase(); 344 } 345 346 /// Returns a copy of this [`CString`] where each character is mapped to its 347 /// ASCII lower case equivalent. 348 /// 349 /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', 350 /// but non-ASCII letters are unchanged. 351 /// 352 /// To lowercase the value in-place, use [`make_ascii_lowercase`]. 353 /// 354 /// [`make_ascii_lowercase`]: str::make_ascii_lowercase 355 pub fn to_ascii_lowercase(&self) -> Result<CString, AllocError> { 356 let mut s = self.to_cstring()?; 357 358 s.make_ascii_lowercase(); 359 360 Ok(s) 361 } 362 363 /// Returns a copy of this [`CString`] where each character is mapped to its 364 /// ASCII upper case equivalent. 365 /// 366 /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', 367 /// but non-ASCII letters are unchanged. 368 /// 369 /// To uppercase the value in-place, use [`make_ascii_uppercase`]. 370 /// 371 /// [`make_ascii_uppercase`]: str::make_ascii_uppercase 372 pub fn to_ascii_uppercase(&self) -> Result<CString, AllocError> { 373 let mut s = self.to_cstring()?; 374 375 s.make_ascii_uppercase(); 376 377 Ok(s) 378 } 379 } 380 381 impl fmt::Display for CStr { 382 /// Formats printable ASCII characters, escaping the rest. 383 /// 384 /// ``` 385 /// # use kernel::c_str; 386 /// # use kernel::fmt; 387 /// # use kernel::str::CStr; 388 /// # use kernel::str::CString; 389 /// let penguin = c_str!(""); 390 /// let s = CString::try_from_fmt(fmt!("{}", penguin))?; 391 /// assert_eq!(s.as_bytes_with_nul(), "\\xf0\\x9f\\x90\\xa7\0".as_bytes()); 392 /// 393 /// let ascii = c_str!("so \"cool\""); 394 /// let s = CString::try_from_fmt(fmt!("{}", ascii))?; 395 /// assert_eq!(s.as_bytes_with_nul(), "so \"cool\"\0".as_bytes()); 396 /// # Ok::<(), kernel::error::Error>(()) 397 /// ``` 398 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 399 for &c in self.as_bytes() { 400 if (0x20..0x7f).contains(&c) { 401 // Printable character. 402 f.write_char(c as char)?; 403 } else { 404 write!(f, "\\x{:02x}", c)?; 405 } 406 } 407 Ok(()) 408 } 409 } 410 411 impl fmt::Debug for CStr { 412 /// Formats printable ASCII characters with a double quote on either end, escaping the rest. 413 /// 414 /// ``` 415 /// # use kernel::c_str; 416 /// # use kernel::fmt; 417 /// # use kernel::str::CStr; 418 /// # use kernel::str::CString; 419 /// let penguin = c_str!(""); 420 /// let s = CString::try_from_fmt(fmt!("{:?}", penguin))?; 421 /// assert_eq!(s.as_bytes_with_nul(), "\"\\xf0\\x9f\\x90\\xa7\"\0".as_bytes()); 422 /// 423 /// // Embedded double quotes are escaped. 424 /// let ascii = c_str!("so \"cool\""); 425 /// let s = CString::try_from_fmt(fmt!("{:?}", ascii))?; 426 /// assert_eq!(s.as_bytes_with_nul(), "\"so \\\"cool\\\"\"\0".as_bytes()); 427 /// # Ok::<(), kernel::error::Error>(()) 428 /// ``` 429 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 430 f.write_str("\"")?; 431 for &c in self.as_bytes() { 432 match c { 433 // Printable characters. 434 b'\"' => f.write_str("\\\"")?, 435 0x20..=0x7e => f.write_char(c as char)?, 436 _ => write!(f, "\\x{:02x}", c)?, 437 } 438 } 439 f.write_str("\"") 440 } 441 } 442 443 impl AsRef<BStr> for CStr { 444 #[inline] 445 fn as_ref(&self) -> &BStr { 446 BStr::from_bytes(self.as_bytes()) 447 } 448 } 449 450 impl Deref for CStr { 451 type Target = BStr; 452 453 #[inline] 454 fn deref(&self) -> &Self::Target { 455 self.as_ref() 456 } 457 } 458 459 impl Index<ops::RangeFrom<usize>> for CStr { 460 type Output = CStr; 461 462 #[inline] 463 fn index(&self, index: ops::RangeFrom<usize>) -> &Self::Output { 464 // Delegate bounds checking to slice. 465 // Assign to _ to mute clippy's unnecessary operation warning. 466 let _ = &self.as_bytes()[index.start..]; 467 // SAFETY: We just checked the bounds. 468 unsafe { Self::from_bytes_with_nul_unchecked(&self.0[index.start..]) } 469 } 470 } 471 472 impl Index<ops::RangeFull> for CStr { 473 type Output = CStr; 474 475 #[inline] 476 fn index(&self, _index: ops::RangeFull) -> &Self::Output { 477 self 478 } 479 } 480 481 mod private { 482 use core::ops; 483 484 // Marker trait for index types that can be forward to `BStr`. 485 pub trait CStrIndex {} 486 487 impl CStrIndex for usize {} 488 impl CStrIndex for ops::Range<usize> {} 489 impl CStrIndex for ops::RangeInclusive<usize> {} 490 impl CStrIndex for ops::RangeToInclusive<usize> {} 491 } 492 493 impl<Idx> Index<Idx> for CStr 494 where 495 Idx: private::CStrIndex, 496 BStr: Index<Idx>, 497 { 498 type Output = <BStr as Index<Idx>>::Output; 499 500 #[inline] 501 fn index(&self, index: Idx) -> &Self::Output { 502 &self.as_ref()[index] 503 } 504 } 505 506 /// Creates a new [`CStr`] from a string literal. 507 /// 508 /// The string literal should not contain any `NUL` bytes. 509 /// 510 /// # Examples 511 /// 512 /// ``` 513 /// # use kernel::c_str; 514 /// # use kernel::str::CStr; 515 /// const MY_CSTR: &CStr = c_str!("My awesome CStr!"); 516 /// ``` 517 #[macro_export] 518 macro_rules! c_str { 519 ($str:expr) => {{ 520 const S: &str = concat!($str, "\0"); 521 const C: &$crate::str::CStr = match $crate::str::CStr::from_bytes_with_nul(S.as_bytes()) { 522 Ok(v) => v, 523 Err(_) => panic!("string contains interior NUL"), 524 }; 525 C 526 }}; 527 } 528 529 #[cfg(test)] 530 #[expect(clippy::items_after_test_module)] 531 mod tests { 532 use super::*; 533 534 struct String(CString); 535 536 impl String { 537 fn from_fmt(args: fmt::Arguments<'_>) -> Self { 538 String(CString::try_from_fmt(args).unwrap()) 539 } 540 } 541 542 impl Deref for String { 543 type Target = str; 544 545 fn deref(&self) -> &str { 546 self.0.to_str().unwrap() 547 } 548 } 549 550 macro_rules! format { 551 ($($f:tt)*) => ({ 552 &*String::from_fmt(kernel::fmt!($($f)*)) 553 }) 554 } 555 556 const ALL_ASCII_CHARS: &str = 557 "\\x01\\x02\\x03\\x04\\x05\\x06\\x07\\x08\\x09\\x0a\\x0b\\x0c\\x0d\\x0e\\x0f\ 558 \\x10\\x11\\x12\\x13\\x14\\x15\\x16\\x17\\x18\\x19\\x1a\\x1b\\x1c\\x1d\\x1e\\x1f \ 559 !\"#$%&'()*+,-./0123456789:;<=>?@\ 560 ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~\\x7f\ 561 \\x80\\x81\\x82\\x83\\x84\\x85\\x86\\x87\\x88\\x89\\x8a\\x8b\\x8c\\x8d\\x8e\\x8f\ 562 \\x90\\x91\\x92\\x93\\x94\\x95\\x96\\x97\\x98\\x99\\x9a\\x9b\\x9c\\x9d\\x9e\\x9f\ 563 \\xa0\\xa1\\xa2\\xa3\\xa4\\xa5\\xa6\\xa7\\xa8\\xa9\\xaa\\xab\\xac\\xad\\xae\\xaf\ 564 \\xb0\\xb1\\xb2\\xb3\\xb4\\xb5\\xb6\\xb7\\xb8\\xb9\\xba\\xbb\\xbc\\xbd\\xbe\\xbf\ 565 \\xc0\\xc1\\xc2\\xc3\\xc4\\xc5\\xc6\\xc7\\xc8\\xc9\\xca\\xcb\\xcc\\xcd\\xce\\xcf\ 566 \\xd0\\xd1\\xd2\\xd3\\xd4\\xd5\\xd6\\xd7\\xd8\\xd9\\xda\\xdb\\xdc\\xdd\\xde\\xdf\ 567 \\xe0\\xe1\\xe2\\xe3\\xe4\\xe5\\xe6\\xe7\\xe8\\xe9\\xea\\xeb\\xec\\xed\\xee\\xef\ 568 \\xf0\\xf1\\xf2\\xf3\\xf4\\xf5\\xf6\\xf7\\xf8\\xf9\\xfa\\xfb\\xfc\\xfd\\xfe\\xff"; 569 570 #[test] 571 fn test_cstr_to_str() { 572 let good_bytes = b"\xf0\x9f\xa6\x80\0"; 573 let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap(); 574 let checked_str = checked_cstr.to_str().unwrap(); 575 assert_eq!(checked_str, ""); 576 } 577 578 #[test] 579 #[should_panic] 580 fn test_cstr_to_str_panic() { 581 let bad_bytes = b"\xc3\x28\0"; 582 let checked_cstr = CStr::from_bytes_with_nul(bad_bytes).unwrap(); 583 checked_cstr.to_str().unwrap(); 584 } 585 586 #[test] 587 fn test_cstr_as_str_unchecked() { 588 let good_bytes = b"\xf0\x9f\x90\xA7\0"; 589 let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap(); 590 // SAFETY: The contents come from a string literal which contains valid UTF-8. 591 let unchecked_str = unsafe { checked_cstr.as_str_unchecked() }; 592 assert_eq!(unchecked_str, ""); 593 } 594 595 #[test] 596 fn test_cstr_display() { 597 let hello_world = CStr::from_bytes_with_nul(b"hello, world!\0").unwrap(); 598 assert_eq!(format!("{}", hello_world), "hello, world!"); 599 let non_printables = CStr::from_bytes_with_nul(b"\x01\x09\x0a\0").unwrap(); 600 assert_eq!(format!("{}", non_printables), "\\x01\\x09\\x0a"); 601 let non_ascii = CStr::from_bytes_with_nul(b"d\xe9j\xe0 vu\0").unwrap(); 602 assert_eq!(format!("{}", non_ascii), "d\\xe9j\\xe0 vu"); 603 let good_bytes = CStr::from_bytes_with_nul(b"\xf0\x9f\xa6\x80\0").unwrap(); 604 assert_eq!(format!("{}", good_bytes), "\\xf0\\x9f\\xa6\\x80"); 605 } 606 607 #[test] 608 fn test_cstr_display_all_bytes() { 609 let mut bytes: [u8; 256] = [0; 256]; 610 // fill `bytes` with [1..=255] + [0] 611 for i in u8::MIN..=u8::MAX { 612 bytes[i as usize] = i.wrapping_add(1); 613 } 614 let cstr = CStr::from_bytes_with_nul(&bytes).unwrap(); 615 assert_eq!(format!("{}", cstr), ALL_ASCII_CHARS); 616 } 617 618 #[test] 619 fn test_cstr_debug() { 620 let hello_world = CStr::from_bytes_with_nul(b"hello, world!\0").unwrap(); 621 assert_eq!(format!("{:?}", hello_world), "\"hello, world!\""); 622 let non_printables = CStr::from_bytes_with_nul(b"\x01\x09\x0a\0").unwrap(); 623 assert_eq!(format!("{:?}", non_printables), "\"\\x01\\x09\\x0a\""); 624 let non_ascii = CStr::from_bytes_with_nul(b"d\xe9j\xe0 vu\0").unwrap(); 625 assert_eq!(format!("{:?}", non_ascii), "\"d\\xe9j\\xe0 vu\""); 626 let good_bytes = CStr::from_bytes_with_nul(b"\xf0\x9f\xa6\x80\0").unwrap(); 627 assert_eq!(format!("{:?}", good_bytes), "\"\\xf0\\x9f\\xa6\\x80\""); 628 } 629 630 #[test] 631 fn test_bstr_display() { 632 let hello_world = BStr::from_bytes(b"hello, world!"); 633 assert_eq!(format!("{}", hello_world), "hello, world!"); 634 let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_"); 635 assert_eq!(format!("{}", escapes), "_\\t_\\n_\\r_\\_'_\"_"); 636 let others = BStr::from_bytes(b"\x01"); 637 assert_eq!(format!("{}", others), "\\x01"); 638 let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu"); 639 assert_eq!(format!("{}", non_ascii), "d\\xe9j\\xe0 vu"); 640 let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80"); 641 assert_eq!(format!("{}", good_bytes), "\\xf0\\x9f\\xa6\\x80"); 642 } 643 644 #[test] 645 fn test_bstr_debug() { 646 let hello_world = BStr::from_bytes(b"hello, world!"); 647 assert_eq!(format!("{:?}", hello_world), "\"hello, world!\""); 648 let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_"); 649 assert_eq!(format!("{:?}", escapes), "\"_\\t_\\n_\\r_\\\\_'_\\\"_\""); 650 let others = BStr::from_bytes(b"\x01"); 651 assert_eq!(format!("{:?}", others), "\"\\x01\""); 652 let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu"); 653 assert_eq!(format!("{:?}", non_ascii), "\"d\\xe9j\\xe0 vu\""); 654 let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80"); 655 assert_eq!(format!("{:?}", good_bytes), "\"\\xf0\\x9f\\xa6\\x80\""); 656 } 657 } 658 659 /// Allows formatting of [`fmt::Arguments`] into a raw buffer. 660 /// 661 /// It does not fail if callers write past the end of the buffer so that they can calculate the 662 /// size required to fit everything. 663 /// 664 /// # Invariants 665 /// 666 /// The memory region between `pos` (inclusive) and `end` (exclusive) is valid for writes if `pos` 667 /// is less than `end`. 668 pub(crate) struct RawFormatter { 669 // Use `usize` to use `saturating_*` functions. 670 beg: usize, 671 pos: usize, 672 end: usize, 673 } 674 675 impl RawFormatter { 676 /// Creates a new instance of [`RawFormatter`] with an empty buffer. 677 fn new() -> Self { 678 // INVARIANT: The buffer is empty, so the region that needs to be writable is empty. 679 Self { 680 beg: 0, 681 pos: 0, 682 end: 0, 683 } 684 } 685 686 /// Creates a new instance of [`RawFormatter`] with the given buffer pointers. 687 /// 688 /// # Safety 689 /// 690 /// If `pos` is less than `end`, then the region between `pos` (inclusive) and `end` 691 /// (exclusive) must be valid for writes for the lifetime of the returned [`RawFormatter`]. 692 pub(crate) unsafe fn from_ptrs(pos: *mut u8, end: *mut u8) -> Self { 693 // INVARIANT: The safety requirements guarantee the type invariants. 694 Self { 695 beg: pos as _, 696 pos: pos as _, 697 end: end as _, 698 } 699 } 700 701 /// Creates a new instance of [`RawFormatter`] with the given buffer. 702 /// 703 /// # Safety 704 /// 705 /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes 706 /// for the lifetime of the returned [`RawFormatter`]. 707 pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self { 708 let pos = buf as usize; 709 // INVARIANT: We ensure that `end` is never less then `buf`, and the safety requirements 710 // guarantees that the memory region is valid for writes. 711 Self { 712 pos, 713 beg: pos, 714 end: pos.saturating_add(len), 715 } 716 } 717 718 /// Returns the current insert position. 719 /// 720 /// N.B. It may point to invalid memory. 721 pub(crate) fn pos(&self) -> *mut u8 { 722 self.pos as _ 723 } 724 725 /// Returns the number of bytes written to the formatter. 726 pub(crate) fn bytes_written(&self) -> usize { 727 self.pos - self.beg 728 } 729 } 730 731 impl fmt::Write for RawFormatter { 732 fn write_str(&mut self, s: &str) -> fmt::Result { 733 // `pos` value after writing `len` bytes. This does not have to be bounded by `end`, but we 734 // don't want it to wrap around to 0. 735 let pos_new = self.pos.saturating_add(s.len()); 736 737 // Amount that we can copy. `saturating_sub` ensures we get 0 if `pos` goes past `end`. 738 let len_to_copy = core::cmp::min(pos_new, self.end).saturating_sub(self.pos); 739 740 if len_to_copy > 0 { 741 // SAFETY: If `len_to_copy` is non-zero, then we know `pos` has not gone past `end` 742 // yet, so it is valid for write per the type invariants. 743 unsafe { 744 core::ptr::copy_nonoverlapping( 745 s.as_bytes().as_ptr(), 746 self.pos as *mut u8, 747 len_to_copy, 748 ) 749 }; 750 } 751 752 self.pos = pos_new; 753 Ok(()) 754 } 755 } 756 757 /// Allows formatting of [`fmt::Arguments`] into a raw buffer. 758 /// 759 /// Fails if callers attempt to write more than will fit in the buffer. 760 pub(crate) struct Formatter(RawFormatter); 761 762 impl Formatter { 763 /// Creates a new instance of [`Formatter`] with the given buffer. 764 /// 765 /// # Safety 766 /// 767 /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes 768 /// for the lifetime of the returned [`Formatter`]. 769 pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self { 770 // SAFETY: The safety requirements of this function satisfy those of the callee. 771 Self(unsafe { RawFormatter::from_buffer(buf, len) }) 772 } 773 } 774 775 impl Deref for Formatter { 776 type Target = RawFormatter; 777 778 fn deref(&self) -> &Self::Target { 779 &self.0 780 } 781 } 782 783 impl fmt::Write for Formatter { 784 fn write_str(&mut self, s: &str) -> fmt::Result { 785 self.0.write_str(s)?; 786 787 // Fail the request if we go past the end of the buffer. 788 if self.0.pos > self.0.end { 789 Err(fmt::Error) 790 } else { 791 Ok(()) 792 } 793 } 794 } 795 796 /// An owned string that is guaranteed to have exactly one `NUL` byte, which is at the end. 797 /// 798 /// Used for interoperability with kernel APIs that take C strings. 799 /// 800 /// # Invariants 801 /// 802 /// The string is always `NUL`-terminated and contains no other `NUL` bytes. 803 /// 804 /// # Examples 805 /// 806 /// ``` 807 /// use kernel::{str::CString, fmt}; 808 /// 809 /// let s = CString::try_from_fmt(fmt!("{}{}{}", "abc", 10, 20))?; 810 /// assert_eq!(s.as_bytes_with_nul(), "abc1020\0".as_bytes()); 811 /// 812 /// let tmp = "testing"; 813 /// let s = CString::try_from_fmt(fmt!("{tmp}{}", 123))?; 814 /// assert_eq!(s.as_bytes_with_nul(), "testing123\0".as_bytes()); 815 /// 816 /// // This fails because it has an embedded `NUL` byte. 817 /// let s = CString::try_from_fmt(fmt!("a\0b{}", 123)); 818 /// assert_eq!(s.is_ok(), false); 819 /// # Ok::<(), kernel::error::Error>(()) 820 /// ``` 821 pub struct CString { 822 buf: KVec<u8>, 823 } 824 825 impl CString { 826 /// Creates an instance of [`CString`] from the given formatted arguments. 827 pub fn try_from_fmt(args: fmt::Arguments<'_>) -> Result<Self, Error> { 828 // Calculate the size needed (formatted string plus `NUL` terminator). 829 let mut f = RawFormatter::new(); 830 f.write_fmt(args)?; 831 f.write_str("\0")?; 832 let size = f.bytes_written(); 833 834 // Allocate a vector with the required number of bytes, and write to it. 835 let mut buf = KVec::with_capacity(size, GFP_KERNEL)?; 836 // SAFETY: The buffer stored in `buf` is at least of size `size` and is valid for writes. 837 let mut f = unsafe { Formatter::from_buffer(buf.as_mut_ptr(), size) }; 838 f.write_fmt(args)?; 839 f.write_str("\0")?; 840 841 // SAFETY: The number of bytes that can be written to `f` is bounded by `size`, which is 842 // `buf`'s capacity. The contents of the buffer have been initialised by writes to `f`. 843 unsafe { buf.set_len(f.bytes_written()) }; 844 845 // Check that there are no `NUL` bytes before the end. 846 // SAFETY: The buffer is valid for read because `f.bytes_written()` is bounded by `size` 847 // (which the minimum buffer size) and is non-zero (we wrote at least the `NUL` terminator) 848 // so `f.bytes_written() - 1` doesn't underflow. 849 let ptr = unsafe { bindings::memchr(buf.as_ptr().cast(), 0, f.bytes_written() - 1) }; 850 if !ptr.is_null() { 851 return Err(EINVAL); 852 } 853 854 // INVARIANT: We wrote the `NUL` terminator and checked above that no other `NUL` bytes 855 // exist in the buffer. 856 Ok(Self { buf }) 857 } 858 } 859 860 impl Deref for CString { 861 type Target = CStr; 862 863 fn deref(&self) -> &Self::Target { 864 // SAFETY: The type invariants guarantee that the string is `NUL`-terminated and that no 865 // other `NUL` bytes exist. 866 unsafe { CStr::from_bytes_with_nul_unchecked(self.buf.as_slice()) } 867 } 868 } 869 870 impl DerefMut for CString { 871 fn deref_mut(&mut self) -> &mut Self::Target { 872 // SAFETY: A `CString` is always NUL-terminated and contains no other 873 // NUL bytes. 874 unsafe { CStr::from_bytes_with_nul_unchecked_mut(self.buf.as_mut_slice()) } 875 } 876 } 877 878 impl<'a> TryFrom<&'a CStr> for CString { 879 type Error = AllocError; 880 881 fn try_from(cstr: &'a CStr) -> Result<CString, AllocError> { 882 let mut buf = KVec::new(); 883 884 buf.extend_from_slice(cstr.as_bytes_with_nul(), GFP_KERNEL)?; 885 886 // INVARIANT: The `CStr` and `CString` types have the same invariants for 887 // the string data, and we copied it over without changes. 888 Ok(CString { buf }) 889 } 890 } 891 892 impl fmt::Debug for CString { 893 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 894 fmt::Debug::fmt(&**self, f) 895 } 896 } 897 898 /// A convenience alias for [`core::format_args`]. 899 #[macro_export] 900 macro_rules! fmt { 901 ($($f:tt)*) => ( core::format_args!($($f)*) ) 902 } 903