xref: /linux/rust/kernel/str.rs (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! String representations.
4 
5 use alloc::alloc::AllocError;
6 use alloc::vec::Vec;
7 use core::fmt::{self, Write};
8 use core::ops::{self, Deref, Index};
9 
10 use crate::{
11     bindings,
12     error::{code::*, Error},
13 };
14 
15 /// Byte string without UTF-8 validity guarantee.
16 #[repr(transparent)]
17 pub struct BStr([u8]);
18 
19 impl BStr {
20     /// Returns the length of this string.
21     #[inline]
22     pub const fn len(&self) -> usize {
23         self.0.len()
24     }
25 
26     /// Returns `true` if the string is empty.
27     #[inline]
28     pub const fn is_empty(&self) -> bool {
29         self.len() == 0
30     }
31 
32     /// Creates a [`BStr`] from a `[u8]`.
33     #[inline]
34     pub const fn from_bytes(bytes: &[u8]) -> &Self {
35         // SAFETY: `BStr` is transparent to `[u8]`.
36         unsafe { &*(bytes as *const [u8] as *const BStr) }
37     }
38 }
39 
40 impl fmt::Display for BStr {
41     /// Formats printable ASCII characters, escaping the rest.
42     ///
43     /// ```
44     /// # use kernel::{fmt, b_str, str::{BStr, CString}};
45     /// let ascii = b_str!("Hello, BStr!");
46     /// let s = CString::try_from_fmt(fmt!("{}", ascii)).unwrap();
47     /// assert_eq!(s.as_bytes(), "Hello, BStr!".as_bytes());
48     ///
49     /// let non_ascii = b_str!("��");
50     /// let s = CString::try_from_fmt(fmt!("{}", non_ascii)).unwrap();
51     /// assert_eq!(s.as_bytes(), "\\xf0\\x9f\\xa6\\x80".as_bytes());
52     /// ```
53     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
54         for &b in &self.0 {
55             match b {
56                 // Common escape codes.
57                 b'\t' => f.write_str("\\t")?,
58                 b'\n' => f.write_str("\\n")?,
59                 b'\r' => f.write_str("\\r")?,
60                 // Printable characters.
61                 0x20..=0x7e => f.write_char(b as char)?,
62                 _ => write!(f, "\\x{:02x}", b)?,
63             }
64         }
65         Ok(())
66     }
67 }
68 
69 impl fmt::Debug for BStr {
70     /// Formats printable ASCII characters with a double quote on either end,
71     /// escaping the rest.
72     ///
73     /// ```
74     /// # use kernel::{fmt, b_str, str::{BStr, CString}};
75     /// // Embedded double quotes are escaped.
76     /// let ascii = b_str!("Hello, \"BStr\"!");
77     /// let s = CString::try_from_fmt(fmt!("{:?}", ascii)).unwrap();
78     /// assert_eq!(s.as_bytes(), "\"Hello, \\\"BStr\\\"!\"".as_bytes());
79     ///
80     /// let non_ascii = b_str!("��");
81     /// let s = CString::try_from_fmt(fmt!("{:?}", non_ascii)).unwrap();
82     /// assert_eq!(s.as_bytes(), "\"\\xf0\\x9f\\x98\\xba\"".as_bytes());
83     /// ```
84     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
85         f.write_char('"')?;
86         for &b in &self.0 {
87             match b {
88                 // Common escape codes.
89                 b'\t' => f.write_str("\\t")?,
90                 b'\n' => f.write_str("\\n")?,
91                 b'\r' => f.write_str("\\r")?,
92                 // String escape characters.
93                 b'\"' => f.write_str("\\\"")?,
94                 b'\\' => f.write_str("\\\\")?,
95                 // Printable characters.
96                 0x20..=0x7e => f.write_char(b as char)?,
97                 _ => write!(f, "\\x{:02x}", b)?,
98             }
99         }
100         f.write_char('"')
101     }
102 }
103 
104 impl Deref for BStr {
105     type Target = [u8];
106 
107     #[inline]
108     fn deref(&self) -> &Self::Target {
109         &self.0
110     }
111 }
112 
113 /// Creates a new [`BStr`] from a string literal.
114 ///
115 /// `b_str!` converts the supplied string literal to byte string, so non-ASCII
116 /// characters can be included.
117 ///
118 /// # Examples
119 ///
120 /// ```
121 /// # use kernel::b_str;
122 /// # use kernel::str::BStr;
123 /// const MY_BSTR: &BStr = b_str!("My awesome BStr!");
124 /// ```
125 #[macro_export]
126 macro_rules! b_str {
127     ($str:literal) => {{
128         const S: &'static str = $str;
129         const C: &'static $crate::str::BStr = $crate::str::BStr::from_bytes(S.as_bytes());
130         C
131     }};
132 }
133 
134 /// Possible errors when using conversion functions in [`CStr`].
135 #[derive(Debug, Clone, Copy)]
136 pub enum CStrConvertError {
137     /// Supplied bytes contain an interior `NUL`.
138     InteriorNul,
139 
140     /// Supplied bytes are not terminated by `NUL`.
141     NotNulTerminated,
142 }
143 
144 impl From<CStrConvertError> for Error {
145     #[inline]
146     fn from(_: CStrConvertError) -> Error {
147         EINVAL
148     }
149 }
150 
151 /// A string that is guaranteed to have exactly one `NUL` byte, which is at the
152 /// end.
153 ///
154 /// Used for interoperability with kernel APIs that take C strings.
155 #[repr(transparent)]
156 pub struct CStr([u8]);
157 
158 impl CStr {
159     /// Returns the length of this string excluding `NUL`.
160     #[inline]
161     pub const fn len(&self) -> usize {
162         self.len_with_nul() - 1
163     }
164 
165     /// Returns the length of this string with `NUL`.
166     #[inline]
167     pub const fn len_with_nul(&self) -> usize {
168         // SAFETY: This is one of the invariant of `CStr`.
169         // We add a `unreachable_unchecked` here to hint the optimizer that
170         // the value returned from this function is non-zero.
171         if self.0.is_empty() {
172             unsafe { core::hint::unreachable_unchecked() };
173         }
174         self.0.len()
175     }
176 
177     /// Returns `true` if the string only includes `NUL`.
178     #[inline]
179     pub const fn is_empty(&self) -> bool {
180         self.len() == 0
181     }
182 
183     /// Wraps a raw C string pointer.
184     ///
185     /// # Safety
186     ///
187     /// `ptr` must be a valid pointer to a `NUL`-terminated C string, and it must
188     /// last at least `'a`. When `CStr` is alive, the memory pointed by `ptr`
189     /// must not be mutated.
190     #[inline]
191     pub unsafe fn from_char_ptr<'a>(ptr: *const core::ffi::c_char) -> &'a Self {
192         // SAFETY: The safety precondition guarantees `ptr` is a valid pointer
193         // to a `NUL`-terminated C string.
194         let len = unsafe { bindings::strlen(ptr) } + 1;
195         // SAFETY: Lifetime guaranteed by the safety precondition.
196         let bytes = unsafe { core::slice::from_raw_parts(ptr as _, len as _) };
197         // SAFETY: As `len` is returned by `strlen`, `bytes` does not contain interior `NUL`.
198         // As we have added 1 to `len`, the last byte is known to be `NUL`.
199         unsafe { Self::from_bytes_with_nul_unchecked(bytes) }
200     }
201 
202     /// Creates a [`CStr`] from a `[u8]`.
203     ///
204     /// The provided slice must be `NUL`-terminated, does not contain any
205     /// interior `NUL` bytes.
206     pub const fn from_bytes_with_nul(bytes: &[u8]) -> Result<&Self, CStrConvertError> {
207         if bytes.is_empty() {
208             return Err(CStrConvertError::NotNulTerminated);
209         }
210         if bytes[bytes.len() - 1] != 0 {
211             return Err(CStrConvertError::NotNulTerminated);
212         }
213         let mut i = 0;
214         // `i + 1 < bytes.len()` allows LLVM to optimize away bounds checking,
215         // while it couldn't optimize away bounds checks for `i < bytes.len() - 1`.
216         while i + 1 < bytes.len() {
217             if bytes[i] == 0 {
218                 return Err(CStrConvertError::InteriorNul);
219             }
220             i += 1;
221         }
222         // SAFETY: We just checked that all properties hold.
223         Ok(unsafe { Self::from_bytes_with_nul_unchecked(bytes) })
224     }
225 
226     /// Creates a [`CStr`] from a `[u8]` without performing any additional
227     /// checks.
228     ///
229     /// # Safety
230     ///
231     /// `bytes` *must* end with a `NUL` byte, and should only have a single
232     /// `NUL` byte (or the string will be truncated).
233     #[inline]
234     pub const unsafe fn from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr {
235         // SAFETY: Properties of `bytes` guaranteed by the safety precondition.
236         unsafe { core::mem::transmute(bytes) }
237     }
238 
239     /// Returns a C pointer to the string.
240     #[inline]
241     pub const fn as_char_ptr(&self) -> *const core::ffi::c_char {
242         self.0.as_ptr() as _
243     }
244 
245     /// Convert the string to a byte slice without the trailing `NUL` byte.
246     #[inline]
247     pub fn as_bytes(&self) -> &[u8] {
248         &self.0[..self.len()]
249     }
250 
251     /// Convert the string to a byte slice containing the trailing `NUL` byte.
252     #[inline]
253     pub const fn as_bytes_with_nul(&self) -> &[u8] {
254         &self.0
255     }
256 
257     /// Yields a [`&str`] slice if the [`CStr`] contains valid UTF-8.
258     ///
259     /// If the contents of the [`CStr`] are valid UTF-8 data, this
260     /// function will return the corresponding [`&str`] slice. Otherwise,
261     /// it will return an error with details of where UTF-8 validation failed.
262     ///
263     /// # Examples
264     ///
265     /// ```
266     /// # use kernel::str::CStr;
267     /// let cstr = CStr::from_bytes_with_nul(b"foo\0").unwrap();
268     /// assert_eq!(cstr.to_str(), Ok("foo"));
269     /// ```
270     #[inline]
271     pub fn to_str(&self) -> Result<&str, core::str::Utf8Error> {
272         core::str::from_utf8(self.as_bytes())
273     }
274 
275     /// Unsafely convert this [`CStr`] into a [`&str`], without checking for
276     /// valid UTF-8.
277     ///
278     /// # Safety
279     ///
280     /// The contents must be valid UTF-8.
281     ///
282     /// # Examples
283     ///
284     /// ```
285     /// # use kernel::c_str;
286     /// # use kernel::str::CStr;
287     /// let bar = c_str!("ツ");
288     /// // SAFETY: String literals are guaranteed to be valid UTF-8
289     /// // by the Rust compiler.
290     /// assert_eq!(unsafe { bar.as_str_unchecked() }, "ツ");
291     /// ```
292     #[inline]
293     pub unsafe fn as_str_unchecked(&self) -> &str {
294         unsafe { core::str::from_utf8_unchecked(self.as_bytes()) }
295     }
296 
297     /// Convert this [`CStr`] into a [`CString`] by allocating memory and
298     /// copying over the string data.
299     pub fn to_cstring(&self) -> Result<CString, AllocError> {
300         CString::try_from(self)
301     }
302 }
303 
304 impl fmt::Display for CStr {
305     /// Formats printable ASCII characters, escaping the rest.
306     ///
307     /// ```
308     /// # use kernel::c_str;
309     /// # use kernel::fmt;
310     /// # use kernel::str::CStr;
311     /// # use kernel::str::CString;
312     /// let penguin = c_str!("��");
313     /// let s = CString::try_from_fmt(fmt!("{}", penguin)).unwrap();
314     /// assert_eq!(s.as_bytes_with_nul(), "\\xf0\\x9f\\x90\\xa7\0".as_bytes());
315     ///
316     /// let ascii = c_str!("so \"cool\"");
317     /// let s = CString::try_from_fmt(fmt!("{}", ascii)).unwrap();
318     /// assert_eq!(s.as_bytes_with_nul(), "so \"cool\"\0".as_bytes());
319     /// ```
320     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
321         for &c in self.as_bytes() {
322             if (0x20..0x7f).contains(&c) {
323                 // Printable character.
324                 f.write_char(c as char)?;
325             } else {
326                 write!(f, "\\x{:02x}", c)?;
327             }
328         }
329         Ok(())
330     }
331 }
332 
333 impl fmt::Debug for CStr {
334     /// Formats printable ASCII characters with a double quote on either end, escaping the rest.
335     ///
336     /// ```
337     /// # use kernel::c_str;
338     /// # use kernel::fmt;
339     /// # use kernel::str::CStr;
340     /// # use kernel::str::CString;
341     /// let penguin = c_str!("��");
342     /// let s = CString::try_from_fmt(fmt!("{:?}", penguin)).unwrap();
343     /// assert_eq!(s.as_bytes_with_nul(), "\"\\xf0\\x9f\\x90\\xa7\"\0".as_bytes());
344     ///
345     /// // Embedded double quotes are escaped.
346     /// let ascii = c_str!("so \"cool\"");
347     /// let s = CString::try_from_fmt(fmt!("{:?}", ascii)).unwrap();
348     /// assert_eq!(s.as_bytes_with_nul(), "\"so \\\"cool\\\"\"\0".as_bytes());
349     /// ```
350     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
351         f.write_str("\"")?;
352         for &c in self.as_bytes() {
353             match c {
354                 // Printable characters.
355                 b'\"' => f.write_str("\\\"")?,
356                 0x20..=0x7e => f.write_char(c as char)?,
357                 _ => write!(f, "\\x{:02x}", c)?,
358             }
359         }
360         f.write_str("\"")
361     }
362 }
363 
364 impl AsRef<BStr> for CStr {
365     #[inline]
366     fn as_ref(&self) -> &BStr {
367         BStr::from_bytes(self.as_bytes())
368     }
369 }
370 
371 impl Deref for CStr {
372     type Target = BStr;
373 
374     #[inline]
375     fn deref(&self) -> &Self::Target {
376         self.as_ref()
377     }
378 }
379 
380 impl Index<ops::RangeFrom<usize>> for CStr {
381     type Output = CStr;
382 
383     #[inline]
384     fn index(&self, index: ops::RangeFrom<usize>) -> &Self::Output {
385         // Delegate bounds checking to slice.
386         // Assign to _ to mute clippy's unnecessary operation warning.
387         let _ = &self.as_bytes()[index.start..];
388         // SAFETY: We just checked the bounds.
389         unsafe { Self::from_bytes_with_nul_unchecked(&self.0[index.start..]) }
390     }
391 }
392 
393 impl Index<ops::RangeFull> for CStr {
394     type Output = CStr;
395 
396     #[inline]
397     fn index(&self, _index: ops::RangeFull) -> &Self::Output {
398         self
399     }
400 }
401 
402 mod private {
403     use core::ops;
404 
405     // Marker trait for index types that can be forward to `BStr`.
406     pub trait CStrIndex {}
407 
408     impl CStrIndex for usize {}
409     impl CStrIndex for ops::Range<usize> {}
410     impl CStrIndex for ops::RangeInclusive<usize> {}
411     impl CStrIndex for ops::RangeToInclusive<usize> {}
412 }
413 
414 impl<Idx> Index<Idx> for CStr
415 where
416     Idx: private::CStrIndex,
417     BStr: Index<Idx>,
418 {
419     type Output = <BStr as Index<Idx>>::Output;
420 
421     #[inline]
422     fn index(&self, index: Idx) -> &Self::Output {
423         &self.as_ref()[index]
424     }
425 }
426 
427 /// Creates a new [`CStr`] from a string literal.
428 ///
429 /// The string literal should not contain any `NUL` bytes.
430 ///
431 /// # Examples
432 ///
433 /// ```
434 /// # use kernel::c_str;
435 /// # use kernel::str::CStr;
436 /// const MY_CSTR: &CStr = c_str!("My awesome CStr!");
437 /// ```
438 #[macro_export]
439 macro_rules! c_str {
440     ($str:expr) => {{
441         const S: &str = concat!($str, "\0");
442         const C: &$crate::str::CStr = match $crate::str::CStr::from_bytes_with_nul(S.as_bytes()) {
443             Ok(v) => v,
444             Err(_) => panic!("string contains interior NUL"),
445         };
446         C
447     }};
448 }
449 
450 #[cfg(test)]
451 mod tests {
452     use super::*;
453     use alloc::format;
454 
455     const ALL_ASCII_CHARS: &'static str =
456         "\\x01\\x02\\x03\\x04\\x05\\x06\\x07\\x08\\x09\\x0a\\x0b\\x0c\\x0d\\x0e\\x0f\
457         \\x10\\x11\\x12\\x13\\x14\\x15\\x16\\x17\\x18\\x19\\x1a\\x1b\\x1c\\x1d\\x1e\\x1f \
458         !\"#$%&'()*+,-./0123456789:;<=>?@\
459         ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~\\x7f\
460         \\x80\\x81\\x82\\x83\\x84\\x85\\x86\\x87\\x88\\x89\\x8a\\x8b\\x8c\\x8d\\x8e\\x8f\
461         \\x90\\x91\\x92\\x93\\x94\\x95\\x96\\x97\\x98\\x99\\x9a\\x9b\\x9c\\x9d\\x9e\\x9f\
462         \\xa0\\xa1\\xa2\\xa3\\xa4\\xa5\\xa6\\xa7\\xa8\\xa9\\xaa\\xab\\xac\\xad\\xae\\xaf\
463         \\xb0\\xb1\\xb2\\xb3\\xb4\\xb5\\xb6\\xb7\\xb8\\xb9\\xba\\xbb\\xbc\\xbd\\xbe\\xbf\
464         \\xc0\\xc1\\xc2\\xc3\\xc4\\xc5\\xc6\\xc7\\xc8\\xc9\\xca\\xcb\\xcc\\xcd\\xce\\xcf\
465         \\xd0\\xd1\\xd2\\xd3\\xd4\\xd5\\xd6\\xd7\\xd8\\xd9\\xda\\xdb\\xdc\\xdd\\xde\\xdf\
466         \\xe0\\xe1\\xe2\\xe3\\xe4\\xe5\\xe6\\xe7\\xe8\\xe9\\xea\\xeb\\xec\\xed\\xee\\xef\
467         \\xf0\\xf1\\xf2\\xf3\\xf4\\xf5\\xf6\\xf7\\xf8\\xf9\\xfa\\xfb\\xfc\\xfd\\xfe\\xff";
468 
469     #[test]
470     fn test_cstr_to_str() {
471         let good_bytes = b"\xf0\x9f\xa6\x80\0";
472         let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap();
473         let checked_str = checked_cstr.to_str().unwrap();
474         assert_eq!(checked_str, "��");
475     }
476 
477     #[test]
478     #[should_panic]
479     fn test_cstr_to_str_panic() {
480         let bad_bytes = b"\xc3\x28\0";
481         let checked_cstr = CStr::from_bytes_with_nul(bad_bytes).unwrap();
482         checked_cstr.to_str().unwrap();
483     }
484 
485     #[test]
486     fn test_cstr_as_str_unchecked() {
487         let good_bytes = b"\xf0\x9f\x90\xA7\0";
488         let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap();
489         let unchecked_str = unsafe { checked_cstr.as_str_unchecked() };
490         assert_eq!(unchecked_str, "��");
491     }
492 
493     #[test]
494     fn test_cstr_display() {
495         let hello_world = CStr::from_bytes_with_nul(b"hello, world!\0").unwrap();
496         assert_eq!(format!("{}", hello_world), "hello, world!");
497         let non_printables = CStr::from_bytes_with_nul(b"\x01\x09\x0a\0").unwrap();
498         assert_eq!(format!("{}", non_printables), "\\x01\\x09\\x0a");
499         let non_ascii = CStr::from_bytes_with_nul(b"d\xe9j\xe0 vu\0").unwrap();
500         assert_eq!(format!("{}", non_ascii), "d\\xe9j\\xe0 vu");
501         let good_bytes = CStr::from_bytes_with_nul(b"\xf0\x9f\xa6\x80\0").unwrap();
502         assert_eq!(format!("{}", good_bytes), "\\xf0\\x9f\\xa6\\x80");
503     }
504 
505     #[test]
506     fn test_cstr_display_all_bytes() {
507         let mut bytes: [u8; 256] = [0; 256];
508         // fill `bytes` with [1..=255] + [0]
509         for i in u8::MIN..=u8::MAX {
510             bytes[i as usize] = i.wrapping_add(1);
511         }
512         let cstr = CStr::from_bytes_with_nul(&bytes).unwrap();
513         assert_eq!(format!("{}", cstr), ALL_ASCII_CHARS);
514     }
515 
516     #[test]
517     fn test_cstr_debug() {
518         let hello_world = CStr::from_bytes_with_nul(b"hello, world!\0").unwrap();
519         assert_eq!(format!("{:?}", hello_world), "\"hello, world!\"");
520         let non_printables = CStr::from_bytes_with_nul(b"\x01\x09\x0a\0").unwrap();
521         assert_eq!(format!("{:?}", non_printables), "\"\\x01\\x09\\x0a\"");
522         let non_ascii = CStr::from_bytes_with_nul(b"d\xe9j\xe0 vu\0").unwrap();
523         assert_eq!(format!("{:?}", non_ascii), "\"d\\xe9j\\xe0 vu\"");
524         let good_bytes = CStr::from_bytes_with_nul(b"\xf0\x9f\xa6\x80\0").unwrap();
525         assert_eq!(format!("{:?}", good_bytes), "\"\\xf0\\x9f\\xa6\\x80\"");
526     }
527 
528     #[test]
529     fn test_bstr_display() {
530         let hello_world = BStr::from_bytes(b"hello, world!");
531         assert_eq!(format!("{}", hello_world), "hello, world!");
532         let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_");
533         assert_eq!(format!("{}", escapes), "_\\t_\\n_\\r_\\_'_\"_");
534         let others = BStr::from_bytes(b"\x01");
535         assert_eq!(format!("{}", others), "\\x01");
536         let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu");
537         assert_eq!(format!("{}", non_ascii), "d\\xe9j\\xe0 vu");
538         let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80");
539         assert_eq!(format!("{}", good_bytes), "\\xf0\\x9f\\xa6\\x80");
540     }
541 
542     #[test]
543     fn test_bstr_debug() {
544         let hello_world = BStr::from_bytes(b"hello, world!");
545         assert_eq!(format!("{:?}", hello_world), "\"hello, world!\"");
546         let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_");
547         assert_eq!(format!("{:?}", escapes), "\"_\\t_\\n_\\r_\\\\_'_\\\"_\"");
548         let others = BStr::from_bytes(b"\x01");
549         assert_eq!(format!("{:?}", others), "\"\\x01\"");
550         let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu");
551         assert_eq!(format!("{:?}", non_ascii), "\"d\\xe9j\\xe0 vu\"");
552         let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80");
553         assert_eq!(format!("{:?}", good_bytes), "\"\\xf0\\x9f\\xa6\\x80\"");
554     }
555 }
556 
557 /// Allows formatting of [`fmt::Arguments`] into a raw buffer.
558 ///
559 /// It does not fail if callers write past the end of the buffer so that they can calculate the
560 /// size required to fit everything.
561 ///
562 /// # Invariants
563 ///
564 /// The memory region between `pos` (inclusive) and `end` (exclusive) is valid for writes if `pos`
565 /// is less than `end`.
566 pub(crate) struct RawFormatter {
567     // Use `usize` to use `saturating_*` functions.
568     beg: usize,
569     pos: usize,
570     end: usize,
571 }
572 
573 impl RawFormatter {
574     /// Creates a new instance of [`RawFormatter`] with an empty buffer.
575     fn new() -> Self {
576         // INVARIANT: The buffer is empty, so the region that needs to be writable is empty.
577         Self {
578             beg: 0,
579             pos: 0,
580             end: 0,
581         }
582     }
583 
584     /// Creates a new instance of [`RawFormatter`] with the given buffer pointers.
585     ///
586     /// # Safety
587     ///
588     /// If `pos` is less than `end`, then the region between `pos` (inclusive) and `end`
589     /// (exclusive) must be valid for writes for the lifetime of the returned [`RawFormatter`].
590     pub(crate) unsafe fn from_ptrs(pos: *mut u8, end: *mut u8) -> Self {
591         // INVARIANT: The safety requirements guarantee the type invariants.
592         Self {
593             beg: pos as _,
594             pos: pos as _,
595             end: end as _,
596         }
597     }
598 
599     /// Creates a new instance of [`RawFormatter`] with the given buffer.
600     ///
601     /// # Safety
602     ///
603     /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes
604     /// for the lifetime of the returned [`RawFormatter`].
605     pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self {
606         let pos = buf as usize;
607         // INVARIANT: We ensure that `end` is never less then `buf`, and the safety requirements
608         // guarantees that the memory region is valid for writes.
609         Self {
610             pos,
611             beg: pos,
612             end: pos.saturating_add(len),
613         }
614     }
615 
616     /// Returns the current insert position.
617     ///
618     /// N.B. It may point to invalid memory.
619     pub(crate) fn pos(&self) -> *mut u8 {
620         self.pos as _
621     }
622 
623     /// Returns the number of bytes written to the formatter.
624     pub(crate) fn bytes_written(&self) -> usize {
625         self.pos - self.beg
626     }
627 }
628 
629 impl fmt::Write for RawFormatter {
630     fn write_str(&mut self, s: &str) -> fmt::Result {
631         // `pos` value after writing `len` bytes. This does not have to be bounded by `end`, but we
632         // don't want it to wrap around to 0.
633         let pos_new = self.pos.saturating_add(s.len());
634 
635         // Amount that we can copy. `saturating_sub` ensures we get 0 if `pos` goes past `end`.
636         let len_to_copy = core::cmp::min(pos_new, self.end).saturating_sub(self.pos);
637 
638         if len_to_copy > 0 {
639             // SAFETY: If `len_to_copy` is non-zero, then we know `pos` has not gone past `end`
640             // yet, so it is valid for write per the type invariants.
641             unsafe {
642                 core::ptr::copy_nonoverlapping(
643                     s.as_bytes().as_ptr(),
644                     self.pos as *mut u8,
645                     len_to_copy,
646                 )
647             };
648         }
649 
650         self.pos = pos_new;
651         Ok(())
652     }
653 }
654 
655 /// Allows formatting of [`fmt::Arguments`] into a raw buffer.
656 ///
657 /// Fails if callers attempt to write more than will fit in the buffer.
658 pub(crate) struct Formatter(RawFormatter);
659 
660 impl Formatter {
661     /// Creates a new instance of [`Formatter`] with the given buffer.
662     ///
663     /// # Safety
664     ///
665     /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes
666     /// for the lifetime of the returned [`Formatter`].
667     pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self {
668         // SAFETY: The safety requirements of this function satisfy those of the callee.
669         Self(unsafe { RawFormatter::from_buffer(buf, len) })
670     }
671 }
672 
673 impl Deref for Formatter {
674     type Target = RawFormatter;
675 
676     fn deref(&self) -> &Self::Target {
677         &self.0
678     }
679 }
680 
681 impl fmt::Write for Formatter {
682     fn write_str(&mut self, s: &str) -> fmt::Result {
683         self.0.write_str(s)?;
684 
685         // Fail the request if we go past the end of the buffer.
686         if self.0.pos > self.0.end {
687             Err(fmt::Error)
688         } else {
689             Ok(())
690         }
691     }
692 }
693 
694 /// An owned string that is guaranteed to have exactly one `NUL` byte, which is at the end.
695 ///
696 /// Used for interoperability with kernel APIs that take C strings.
697 ///
698 /// # Invariants
699 ///
700 /// The string is always `NUL`-terminated and contains no other `NUL` bytes.
701 ///
702 /// # Examples
703 ///
704 /// ```
705 /// use kernel::{str::CString, fmt};
706 ///
707 /// let s = CString::try_from_fmt(fmt!("{}{}{}", "abc", 10, 20)).unwrap();
708 /// assert_eq!(s.as_bytes_with_nul(), "abc1020\0".as_bytes());
709 ///
710 /// let tmp = "testing";
711 /// let s = CString::try_from_fmt(fmt!("{tmp}{}", 123)).unwrap();
712 /// assert_eq!(s.as_bytes_with_nul(), "testing123\0".as_bytes());
713 ///
714 /// // This fails because it has an embedded `NUL` byte.
715 /// let s = CString::try_from_fmt(fmt!("a\0b{}", 123));
716 /// assert_eq!(s.is_ok(), false);
717 /// ```
718 pub struct CString {
719     buf: Vec<u8>,
720 }
721 
722 impl CString {
723     /// Creates an instance of [`CString`] from the given formatted arguments.
724     pub fn try_from_fmt(args: fmt::Arguments<'_>) -> Result<Self, Error> {
725         // Calculate the size needed (formatted string plus `NUL` terminator).
726         let mut f = RawFormatter::new();
727         f.write_fmt(args)?;
728         f.write_str("\0")?;
729         let size = f.bytes_written();
730 
731         // Allocate a vector with the required number of bytes, and write to it.
732         let mut buf = Vec::try_with_capacity(size)?;
733         // SAFETY: The buffer stored in `buf` is at least of size `size` and is valid for writes.
734         let mut f = unsafe { Formatter::from_buffer(buf.as_mut_ptr(), size) };
735         f.write_fmt(args)?;
736         f.write_str("\0")?;
737 
738         // SAFETY: The number of bytes that can be written to `f` is bounded by `size`, which is
739         // `buf`'s capacity. The contents of the buffer have been initialised by writes to `f`.
740         unsafe { buf.set_len(f.bytes_written()) };
741 
742         // Check that there are no `NUL` bytes before the end.
743         // SAFETY: The buffer is valid for read because `f.bytes_written()` is bounded by `size`
744         // (which the minimum buffer size) and is non-zero (we wrote at least the `NUL` terminator)
745         // so `f.bytes_written() - 1` doesn't underflow.
746         let ptr = unsafe { bindings::memchr(buf.as_ptr().cast(), 0, (f.bytes_written() - 1) as _) };
747         if !ptr.is_null() {
748             return Err(EINVAL);
749         }
750 
751         // INVARIANT: We wrote the `NUL` terminator and checked above that no other `NUL` bytes
752         // exist in the buffer.
753         Ok(Self { buf })
754     }
755 }
756 
757 impl Deref for CString {
758     type Target = CStr;
759 
760     fn deref(&self) -> &Self::Target {
761         // SAFETY: The type invariants guarantee that the string is `NUL`-terminated and that no
762         // other `NUL` bytes exist.
763         unsafe { CStr::from_bytes_with_nul_unchecked(self.buf.as_slice()) }
764     }
765 }
766 
767 impl<'a> TryFrom<&'a CStr> for CString {
768     type Error = AllocError;
769 
770     fn try_from(cstr: &'a CStr) -> Result<CString, AllocError> {
771         let mut buf = Vec::new();
772 
773         buf.try_extend_from_slice(cstr.as_bytes_with_nul())
774             .map_err(|_| AllocError)?;
775 
776         // INVARIANT: The `CStr` and `CString` types have the same invariants for
777         // the string data, and we copied it over without changes.
778         Ok(CString { buf })
779     }
780 }
781 
782 impl fmt::Debug for CString {
783     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
784         fmt::Debug::fmt(&**self, f)
785     }
786 }
787 
788 /// A convenience alias for [`core::format_args`].
789 #[macro_export]
790 macro_rules! fmt {
791     ($($f:tt)*) => ( core::format_args!($($f)*) )
792 }
793