xref: /linux/rust/kernel/str.rs (revision 95f68e06b41b9e88291796efa3969409d13fdd4c)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! String representations.
4 
5 use crate::alloc::{flags::*, AllocError, KVec};
6 use core::fmt::{self, Write};
7 use core::ops::{self, Deref, DerefMut, Index};
8 
9 use crate::error::{code::*, Error};
10 
11 /// Byte string without UTF-8 validity guarantee.
12 #[repr(transparent)]
13 pub struct BStr([u8]);
14 
15 impl BStr {
16     /// Returns the length of this string.
17     #[inline]
18     pub const fn len(&self) -> usize {
19         self.0.len()
20     }
21 
22     /// Returns `true` if the string is empty.
23     #[inline]
24     pub const fn is_empty(&self) -> bool {
25         self.len() == 0
26     }
27 
28     /// Creates a [`BStr`] from a `[u8]`.
29     #[inline]
30     pub const fn from_bytes(bytes: &[u8]) -> &Self {
31         // SAFETY: `BStr` is transparent to `[u8]`.
32         unsafe { &*(bytes as *const [u8] as *const BStr) }
33     }
34 }
35 
36 impl fmt::Display for BStr {
37     /// Formats printable ASCII characters, escaping the rest.
38     ///
39     /// ```
40     /// # use kernel::{fmt, b_str, str::{BStr, CString}};
41     /// let ascii = b_str!("Hello, BStr!");
42     /// let s = CString::try_from_fmt(fmt!("{}", ascii)).unwrap();
43     /// assert_eq!(s.as_bytes(), "Hello, BStr!".as_bytes());
44     ///
45     /// let non_ascii = b_str!("��");
46     /// let s = CString::try_from_fmt(fmt!("{}", non_ascii)).unwrap();
47     /// assert_eq!(s.as_bytes(), "\\xf0\\x9f\\xa6\\x80".as_bytes());
48     /// ```
49     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
50         for &b in &self.0 {
51             match b {
52                 // Common escape codes.
53                 b'\t' => f.write_str("\\t")?,
54                 b'\n' => f.write_str("\\n")?,
55                 b'\r' => f.write_str("\\r")?,
56                 // Printable characters.
57                 0x20..=0x7e => f.write_char(b as char)?,
58                 _ => write!(f, "\\x{:02x}", b)?,
59             }
60         }
61         Ok(())
62     }
63 }
64 
65 impl fmt::Debug for BStr {
66     /// Formats printable ASCII characters with a double quote on either end,
67     /// escaping the rest.
68     ///
69     /// ```
70     /// # use kernel::{fmt, b_str, str::{BStr, CString}};
71     /// // Embedded double quotes are escaped.
72     /// let ascii = b_str!("Hello, \"BStr\"!");
73     /// let s = CString::try_from_fmt(fmt!("{:?}", ascii)).unwrap();
74     /// assert_eq!(s.as_bytes(), "\"Hello, \\\"BStr\\\"!\"".as_bytes());
75     ///
76     /// let non_ascii = b_str!("��");
77     /// let s = CString::try_from_fmt(fmt!("{:?}", non_ascii)).unwrap();
78     /// assert_eq!(s.as_bytes(), "\"\\xf0\\x9f\\x98\\xba\"".as_bytes());
79     /// ```
80     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
81         f.write_char('"')?;
82         for &b in &self.0 {
83             match b {
84                 // Common escape codes.
85                 b'\t' => f.write_str("\\t")?,
86                 b'\n' => f.write_str("\\n")?,
87                 b'\r' => f.write_str("\\r")?,
88                 // String escape characters.
89                 b'\"' => f.write_str("\\\"")?,
90                 b'\\' => f.write_str("\\\\")?,
91                 // Printable characters.
92                 0x20..=0x7e => f.write_char(b as char)?,
93                 _ => write!(f, "\\x{:02x}", b)?,
94             }
95         }
96         f.write_char('"')
97     }
98 }
99 
100 impl Deref for BStr {
101     type Target = [u8];
102 
103     #[inline]
104     fn deref(&self) -> &Self::Target {
105         &self.0
106     }
107 }
108 
109 /// Creates a new [`BStr`] from a string literal.
110 ///
111 /// `b_str!` converts the supplied string literal to byte string, so non-ASCII
112 /// characters can be included.
113 ///
114 /// # Examples
115 ///
116 /// ```
117 /// # use kernel::b_str;
118 /// # use kernel::str::BStr;
119 /// const MY_BSTR: &BStr = b_str!("My awesome BStr!");
120 /// ```
121 #[macro_export]
122 macro_rules! b_str {
123     ($str:literal) => {{
124         const S: &'static str = $str;
125         const C: &'static $crate::str::BStr = $crate::str::BStr::from_bytes(S.as_bytes());
126         C
127     }};
128 }
129 
130 /// Possible errors when using conversion functions in [`CStr`].
131 #[derive(Debug, Clone, Copy)]
132 pub enum CStrConvertError {
133     /// Supplied bytes contain an interior `NUL`.
134     InteriorNul,
135 
136     /// Supplied bytes are not terminated by `NUL`.
137     NotNulTerminated,
138 }
139 
140 impl From<CStrConvertError> for Error {
141     #[inline]
142     fn from(_: CStrConvertError) -> Error {
143         EINVAL
144     }
145 }
146 
147 /// A string that is guaranteed to have exactly one `NUL` byte, which is at the
148 /// end.
149 ///
150 /// Used for interoperability with kernel APIs that take C strings.
151 #[repr(transparent)]
152 pub struct CStr([u8]);
153 
154 impl CStr {
155     /// Returns the length of this string excluding `NUL`.
156     #[inline]
157     pub const fn len(&self) -> usize {
158         self.len_with_nul() - 1
159     }
160 
161     /// Returns the length of this string with `NUL`.
162     #[inline]
163     pub const fn len_with_nul(&self) -> usize {
164         if self.0.is_empty() {
165             // SAFETY: This is one of the invariant of `CStr`.
166             // We add a `unreachable_unchecked` here to hint the optimizer that
167             // the value returned from this function is non-zero.
168             unsafe { core::hint::unreachable_unchecked() };
169         }
170         self.0.len()
171     }
172 
173     /// Returns `true` if the string only includes `NUL`.
174     #[inline]
175     pub const fn is_empty(&self) -> bool {
176         self.len() == 0
177     }
178 
179     /// Wraps a raw C string pointer.
180     ///
181     /// # Safety
182     ///
183     /// `ptr` must be a valid pointer to a `NUL`-terminated C string, and it must
184     /// last at least `'a`. When `CStr` is alive, the memory pointed by `ptr`
185     /// must not be mutated.
186     #[inline]
187     pub unsafe fn from_char_ptr<'a>(ptr: *const crate::ffi::c_char) -> &'a Self {
188         // SAFETY: The safety precondition guarantees `ptr` is a valid pointer
189         // to a `NUL`-terminated C string.
190         let len = unsafe { bindings::strlen(ptr) } + 1;
191         // SAFETY: Lifetime guaranteed by the safety precondition.
192         let bytes = unsafe { core::slice::from_raw_parts(ptr as _, len as _) };
193         // SAFETY: As `len` is returned by `strlen`, `bytes` does not contain interior `NUL`.
194         // As we have added 1 to `len`, the last byte is known to be `NUL`.
195         unsafe { Self::from_bytes_with_nul_unchecked(bytes) }
196     }
197 
198     /// Creates a [`CStr`] from a `[u8]`.
199     ///
200     /// The provided slice must be `NUL`-terminated, does not contain any
201     /// interior `NUL` bytes.
202     pub const fn from_bytes_with_nul(bytes: &[u8]) -> Result<&Self, CStrConvertError> {
203         if bytes.is_empty() {
204             return Err(CStrConvertError::NotNulTerminated);
205         }
206         if bytes[bytes.len() - 1] != 0 {
207             return Err(CStrConvertError::NotNulTerminated);
208         }
209         let mut i = 0;
210         // `i + 1 < bytes.len()` allows LLVM to optimize away bounds checking,
211         // while it couldn't optimize away bounds checks for `i < bytes.len() - 1`.
212         while i + 1 < bytes.len() {
213             if bytes[i] == 0 {
214                 return Err(CStrConvertError::InteriorNul);
215             }
216             i += 1;
217         }
218         // SAFETY: We just checked that all properties hold.
219         Ok(unsafe { Self::from_bytes_with_nul_unchecked(bytes) })
220     }
221 
222     /// Creates a [`CStr`] from a `[u8]` without performing any additional
223     /// checks.
224     ///
225     /// # Safety
226     ///
227     /// `bytes` *must* end with a `NUL` byte, and should only have a single
228     /// `NUL` byte (or the string will be truncated).
229     #[inline]
230     pub const unsafe fn from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr {
231         // SAFETY: Properties of `bytes` guaranteed by the safety precondition.
232         unsafe { core::mem::transmute(bytes) }
233     }
234 
235     /// Creates a mutable [`CStr`] from a `[u8]` without performing any
236     /// additional checks.
237     ///
238     /// # Safety
239     ///
240     /// `bytes` *must* end with a `NUL` byte, and should only have a single
241     /// `NUL` byte (or the string will be truncated).
242     #[inline]
243     pub unsafe fn from_bytes_with_nul_unchecked_mut(bytes: &mut [u8]) -> &mut CStr {
244         // SAFETY: Properties of `bytes` guaranteed by the safety precondition.
245         unsafe { &mut *(bytes as *mut [u8] as *mut CStr) }
246     }
247 
248     /// Returns a C pointer to the string.
249     #[inline]
250     pub const fn as_char_ptr(&self) -> *const crate::ffi::c_char {
251         self.0.as_ptr() as _
252     }
253 
254     /// Convert the string to a byte slice without the trailing `NUL` byte.
255     #[inline]
256     pub fn as_bytes(&self) -> &[u8] {
257         &self.0[..self.len()]
258     }
259 
260     /// Convert the string to a byte slice containing the trailing `NUL` byte.
261     #[inline]
262     pub const fn as_bytes_with_nul(&self) -> &[u8] {
263         &self.0
264     }
265 
266     /// Yields a [`&str`] slice if the [`CStr`] contains valid UTF-8.
267     ///
268     /// If the contents of the [`CStr`] are valid UTF-8 data, this
269     /// function will return the corresponding [`&str`] slice. Otherwise,
270     /// it will return an error with details of where UTF-8 validation failed.
271     ///
272     /// # Examples
273     ///
274     /// ```
275     /// # use kernel::str::CStr;
276     /// let cstr = CStr::from_bytes_with_nul(b"foo\0").unwrap();
277     /// assert_eq!(cstr.to_str(), Ok("foo"));
278     /// ```
279     #[inline]
280     pub fn to_str(&self) -> Result<&str, core::str::Utf8Error> {
281         core::str::from_utf8(self.as_bytes())
282     }
283 
284     /// Unsafely convert this [`CStr`] into a [`&str`], without checking for
285     /// valid UTF-8.
286     ///
287     /// # Safety
288     ///
289     /// The contents must be valid UTF-8.
290     ///
291     /// # Examples
292     ///
293     /// ```
294     /// # use kernel::c_str;
295     /// # use kernel::str::CStr;
296     /// let bar = c_str!("ツ");
297     /// // SAFETY: String literals are guaranteed to be valid UTF-8
298     /// // by the Rust compiler.
299     /// assert_eq!(unsafe { bar.as_str_unchecked() }, "ツ");
300     /// ```
301     #[inline]
302     pub unsafe fn as_str_unchecked(&self) -> &str {
303         // SAFETY: TODO.
304         unsafe { core::str::from_utf8_unchecked(self.as_bytes()) }
305     }
306 
307     /// Convert this [`CStr`] into a [`CString`] by allocating memory and
308     /// copying over the string data.
309     pub fn to_cstring(&self) -> Result<CString, AllocError> {
310         CString::try_from(self)
311     }
312 
313     /// Converts this [`CStr`] to its ASCII lower case equivalent in-place.
314     ///
315     /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
316     /// but non-ASCII letters are unchanged.
317     ///
318     /// To return a new lowercased value without modifying the existing one, use
319     /// [`to_ascii_lowercase()`].
320     ///
321     /// [`to_ascii_lowercase()`]: #method.to_ascii_lowercase
322     pub fn make_ascii_lowercase(&mut self) {
323         // INVARIANT: This doesn't introduce or remove NUL bytes in the C
324         // string.
325         self.0.make_ascii_lowercase();
326     }
327 
328     /// Converts this [`CStr`] to its ASCII upper case equivalent in-place.
329     ///
330     /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
331     /// but non-ASCII letters are unchanged.
332     ///
333     /// To return a new uppercased value without modifying the existing one, use
334     /// [`to_ascii_uppercase()`].
335     ///
336     /// [`to_ascii_uppercase()`]: #method.to_ascii_uppercase
337     pub fn make_ascii_uppercase(&mut self) {
338         // INVARIANT: This doesn't introduce or remove NUL bytes in the C
339         // string.
340         self.0.make_ascii_uppercase();
341     }
342 
343     /// Returns a copy of this [`CString`] where each character is mapped to its
344     /// ASCII lower case equivalent.
345     ///
346     /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
347     /// but non-ASCII letters are unchanged.
348     ///
349     /// To lowercase the value in-place, use [`make_ascii_lowercase`].
350     ///
351     /// [`make_ascii_lowercase`]: str::make_ascii_lowercase
352     pub fn to_ascii_lowercase(&self) -> Result<CString, AllocError> {
353         let mut s = self.to_cstring()?;
354 
355         s.make_ascii_lowercase();
356 
357         Ok(s)
358     }
359 
360     /// Returns a copy of this [`CString`] where each character is mapped to its
361     /// ASCII upper case equivalent.
362     ///
363     /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
364     /// but non-ASCII letters are unchanged.
365     ///
366     /// To uppercase the value in-place, use [`make_ascii_uppercase`].
367     ///
368     /// [`make_ascii_uppercase`]: str::make_ascii_uppercase
369     pub fn to_ascii_uppercase(&self) -> Result<CString, AllocError> {
370         let mut s = self.to_cstring()?;
371 
372         s.make_ascii_uppercase();
373 
374         Ok(s)
375     }
376 }
377 
378 impl fmt::Display for CStr {
379     /// Formats printable ASCII characters, escaping the rest.
380     ///
381     /// ```
382     /// # use kernel::c_str;
383     /// # use kernel::fmt;
384     /// # use kernel::str::CStr;
385     /// # use kernel::str::CString;
386     /// let penguin = c_str!("��");
387     /// let s = CString::try_from_fmt(fmt!("{}", penguin)).unwrap();
388     /// assert_eq!(s.as_bytes_with_nul(), "\\xf0\\x9f\\x90\\xa7\0".as_bytes());
389     ///
390     /// let ascii = c_str!("so \"cool\"");
391     /// let s = CString::try_from_fmt(fmt!("{}", ascii)).unwrap();
392     /// assert_eq!(s.as_bytes_with_nul(), "so \"cool\"\0".as_bytes());
393     /// ```
394     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
395         for &c in self.as_bytes() {
396             if (0x20..0x7f).contains(&c) {
397                 // Printable character.
398                 f.write_char(c as char)?;
399             } else {
400                 write!(f, "\\x{:02x}", c)?;
401             }
402         }
403         Ok(())
404     }
405 }
406 
407 impl fmt::Debug for CStr {
408     /// Formats printable ASCII characters with a double quote on either end, escaping the rest.
409     ///
410     /// ```
411     /// # use kernel::c_str;
412     /// # use kernel::fmt;
413     /// # use kernel::str::CStr;
414     /// # use kernel::str::CString;
415     /// let penguin = c_str!("��");
416     /// let s = CString::try_from_fmt(fmt!("{:?}", penguin)).unwrap();
417     /// assert_eq!(s.as_bytes_with_nul(), "\"\\xf0\\x9f\\x90\\xa7\"\0".as_bytes());
418     ///
419     /// // Embedded double quotes are escaped.
420     /// let ascii = c_str!("so \"cool\"");
421     /// let s = CString::try_from_fmt(fmt!("{:?}", ascii)).unwrap();
422     /// assert_eq!(s.as_bytes_with_nul(), "\"so \\\"cool\\\"\"\0".as_bytes());
423     /// ```
424     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
425         f.write_str("\"")?;
426         for &c in self.as_bytes() {
427             match c {
428                 // Printable characters.
429                 b'\"' => f.write_str("\\\"")?,
430                 0x20..=0x7e => f.write_char(c as char)?,
431                 _ => write!(f, "\\x{:02x}", c)?,
432             }
433         }
434         f.write_str("\"")
435     }
436 }
437 
438 impl AsRef<BStr> for CStr {
439     #[inline]
440     fn as_ref(&self) -> &BStr {
441         BStr::from_bytes(self.as_bytes())
442     }
443 }
444 
445 impl Deref for CStr {
446     type Target = BStr;
447 
448     #[inline]
449     fn deref(&self) -> &Self::Target {
450         self.as_ref()
451     }
452 }
453 
454 impl Index<ops::RangeFrom<usize>> for CStr {
455     type Output = CStr;
456 
457     #[inline]
458     fn index(&self, index: ops::RangeFrom<usize>) -> &Self::Output {
459         // Delegate bounds checking to slice.
460         // Assign to _ to mute clippy's unnecessary operation warning.
461         let _ = &self.as_bytes()[index.start..];
462         // SAFETY: We just checked the bounds.
463         unsafe { Self::from_bytes_with_nul_unchecked(&self.0[index.start..]) }
464     }
465 }
466 
467 impl Index<ops::RangeFull> for CStr {
468     type Output = CStr;
469 
470     #[inline]
471     fn index(&self, _index: ops::RangeFull) -> &Self::Output {
472         self
473     }
474 }
475 
476 mod private {
477     use core::ops;
478 
479     // Marker trait for index types that can be forward to `BStr`.
480     pub trait CStrIndex {}
481 
482     impl CStrIndex for usize {}
483     impl CStrIndex for ops::Range<usize> {}
484     impl CStrIndex for ops::RangeInclusive<usize> {}
485     impl CStrIndex for ops::RangeToInclusive<usize> {}
486 }
487 
488 impl<Idx> Index<Idx> for CStr
489 where
490     Idx: private::CStrIndex,
491     BStr: Index<Idx>,
492 {
493     type Output = <BStr as Index<Idx>>::Output;
494 
495     #[inline]
496     fn index(&self, index: Idx) -> &Self::Output {
497         &self.as_ref()[index]
498     }
499 }
500 
501 /// Creates a new [`CStr`] from a string literal.
502 ///
503 /// The string literal should not contain any `NUL` bytes.
504 ///
505 /// # Examples
506 ///
507 /// ```
508 /// # use kernel::c_str;
509 /// # use kernel::str::CStr;
510 /// const MY_CSTR: &CStr = c_str!("My awesome CStr!");
511 /// ```
512 #[macro_export]
513 macro_rules! c_str {
514     ($str:expr) => {{
515         const S: &str = concat!($str, "\0");
516         const C: &$crate::str::CStr = match $crate::str::CStr::from_bytes_with_nul(S.as_bytes()) {
517             Ok(v) => v,
518             Err(_) => panic!("string contains interior NUL"),
519         };
520         C
521     }};
522 }
523 
524 #[cfg(test)]
525 mod tests {
526     use super::*;
527 
528     struct String(CString);
529 
530     impl String {
531         fn from_fmt(args: fmt::Arguments<'_>) -> Self {
532             String(CString::try_from_fmt(args).unwrap())
533         }
534     }
535 
536     impl Deref for String {
537         type Target = str;
538 
539         fn deref(&self) -> &str {
540             self.0.to_str().unwrap()
541         }
542     }
543 
544     macro_rules! format {
545         ($($f:tt)*) => ({
546             &*String::from_fmt(kernel::fmt!($($f)*))
547         })
548     }
549 
550     const ALL_ASCII_CHARS: &'static str =
551         "\\x01\\x02\\x03\\x04\\x05\\x06\\x07\\x08\\x09\\x0a\\x0b\\x0c\\x0d\\x0e\\x0f\
552         \\x10\\x11\\x12\\x13\\x14\\x15\\x16\\x17\\x18\\x19\\x1a\\x1b\\x1c\\x1d\\x1e\\x1f \
553         !\"#$%&'()*+,-./0123456789:;<=>?@\
554         ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~\\x7f\
555         \\x80\\x81\\x82\\x83\\x84\\x85\\x86\\x87\\x88\\x89\\x8a\\x8b\\x8c\\x8d\\x8e\\x8f\
556         \\x90\\x91\\x92\\x93\\x94\\x95\\x96\\x97\\x98\\x99\\x9a\\x9b\\x9c\\x9d\\x9e\\x9f\
557         \\xa0\\xa1\\xa2\\xa3\\xa4\\xa5\\xa6\\xa7\\xa8\\xa9\\xaa\\xab\\xac\\xad\\xae\\xaf\
558         \\xb0\\xb1\\xb2\\xb3\\xb4\\xb5\\xb6\\xb7\\xb8\\xb9\\xba\\xbb\\xbc\\xbd\\xbe\\xbf\
559         \\xc0\\xc1\\xc2\\xc3\\xc4\\xc5\\xc6\\xc7\\xc8\\xc9\\xca\\xcb\\xcc\\xcd\\xce\\xcf\
560         \\xd0\\xd1\\xd2\\xd3\\xd4\\xd5\\xd6\\xd7\\xd8\\xd9\\xda\\xdb\\xdc\\xdd\\xde\\xdf\
561         \\xe0\\xe1\\xe2\\xe3\\xe4\\xe5\\xe6\\xe7\\xe8\\xe9\\xea\\xeb\\xec\\xed\\xee\\xef\
562         \\xf0\\xf1\\xf2\\xf3\\xf4\\xf5\\xf6\\xf7\\xf8\\xf9\\xfa\\xfb\\xfc\\xfd\\xfe\\xff";
563 
564     #[test]
565     fn test_cstr_to_str() {
566         let good_bytes = b"\xf0\x9f\xa6\x80\0";
567         let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap();
568         let checked_str = checked_cstr.to_str().unwrap();
569         assert_eq!(checked_str, "��");
570     }
571 
572     #[test]
573     #[should_panic]
574     fn test_cstr_to_str_panic() {
575         let bad_bytes = b"\xc3\x28\0";
576         let checked_cstr = CStr::from_bytes_with_nul(bad_bytes).unwrap();
577         checked_cstr.to_str().unwrap();
578     }
579 
580     #[test]
581     fn test_cstr_as_str_unchecked() {
582         let good_bytes = b"\xf0\x9f\x90\xA7\0";
583         let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap();
584         let unchecked_str = unsafe { checked_cstr.as_str_unchecked() };
585         assert_eq!(unchecked_str, "��");
586     }
587 
588     #[test]
589     fn test_cstr_display() {
590         let hello_world = CStr::from_bytes_with_nul(b"hello, world!\0").unwrap();
591         assert_eq!(format!("{}", hello_world), "hello, world!");
592         let non_printables = CStr::from_bytes_with_nul(b"\x01\x09\x0a\0").unwrap();
593         assert_eq!(format!("{}", non_printables), "\\x01\\x09\\x0a");
594         let non_ascii = CStr::from_bytes_with_nul(b"d\xe9j\xe0 vu\0").unwrap();
595         assert_eq!(format!("{}", non_ascii), "d\\xe9j\\xe0 vu");
596         let good_bytes = CStr::from_bytes_with_nul(b"\xf0\x9f\xa6\x80\0").unwrap();
597         assert_eq!(format!("{}", good_bytes), "\\xf0\\x9f\\xa6\\x80");
598     }
599 
600     #[test]
601     fn test_cstr_display_all_bytes() {
602         let mut bytes: [u8; 256] = [0; 256];
603         // fill `bytes` with [1..=255] + [0]
604         for i in u8::MIN..=u8::MAX {
605             bytes[i as usize] = i.wrapping_add(1);
606         }
607         let cstr = CStr::from_bytes_with_nul(&bytes).unwrap();
608         assert_eq!(format!("{}", cstr), ALL_ASCII_CHARS);
609     }
610 
611     #[test]
612     fn test_cstr_debug() {
613         let hello_world = CStr::from_bytes_with_nul(b"hello, world!\0").unwrap();
614         assert_eq!(format!("{:?}", hello_world), "\"hello, world!\"");
615         let non_printables = CStr::from_bytes_with_nul(b"\x01\x09\x0a\0").unwrap();
616         assert_eq!(format!("{:?}", non_printables), "\"\\x01\\x09\\x0a\"");
617         let non_ascii = CStr::from_bytes_with_nul(b"d\xe9j\xe0 vu\0").unwrap();
618         assert_eq!(format!("{:?}", non_ascii), "\"d\\xe9j\\xe0 vu\"");
619         let good_bytes = CStr::from_bytes_with_nul(b"\xf0\x9f\xa6\x80\0").unwrap();
620         assert_eq!(format!("{:?}", good_bytes), "\"\\xf0\\x9f\\xa6\\x80\"");
621     }
622 
623     #[test]
624     fn test_bstr_display() {
625         let hello_world = BStr::from_bytes(b"hello, world!");
626         assert_eq!(format!("{}", hello_world), "hello, world!");
627         let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_");
628         assert_eq!(format!("{}", escapes), "_\\t_\\n_\\r_\\_'_\"_");
629         let others = BStr::from_bytes(b"\x01");
630         assert_eq!(format!("{}", others), "\\x01");
631         let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu");
632         assert_eq!(format!("{}", non_ascii), "d\\xe9j\\xe0 vu");
633         let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80");
634         assert_eq!(format!("{}", good_bytes), "\\xf0\\x9f\\xa6\\x80");
635     }
636 
637     #[test]
638     fn test_bstr_debug() {
639         let hello_world = BStr::from_bytes(b"hello, world!");
640         assert_eq!(format!("{:?}", hello_world), "\"hello, world!\"");
641         let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_");
642         assert_eq!(format!("{:?}", escapes), "\"_\\t_\\n_\\r_\\\\_'_\\\"_\"");
643         let others = BStr::from_bytes(b"\x01");
644         assert_eq!(format!("{:?}", others), "\"\\x01\"");
645         let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu");
646         assert_eq!(format!("{:?}", non_ascii), "\"d\\xe9j\\xe0 vu\"");
647         let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80");
648         assert_eq!(format!("{:?}", good_bytes), "\"\\xf0\\x9f\\xa6\\x80\"");
649     }
650 }
651 
652 /// Allows formatting of [`fmt::Arguments`] into a raw buffer.
653 ///
654 /// It does not fail if callers write past the end of the buffer so that they can calculate the
655 /// size required to fit everything.
656 ///
657 /// # Invariants
658 ///
659 /// The memory region between `pos` (inclusive) and `end` (exclusive) is valid for writes if `pos`
660 /// is less than `end`.
661 pub(crate) struct RawFormatter {
662     // Use `usize` to use `saturating_*` functions.
663     beg: usize,
664     pos: usize,
665     end: usize,
666 }
667 
668 impl RawFormatter {
669     /// Creates a new instance of [`RawFormatter`] with an empty buffer.
670     fn new() -> Self {
671         // INVARIANT: The buffer is empty, so the region that needs to be writable is empty.
672         Self {
673             beg: 0,
674             pos: 0,
675             end: 0,
676         }
677     }
678 
679     /// Creates a new instance of [`RawFormatter`] with the given buffer pointers.
680     ///
681     /// # Safety
682     ///
683     /// If `pos` is less than `end`, then the region between `pos` (inclusive) and `end`
684     /// (exclusive) must be valid for writes for the lifetime of the returned [`RawFormatter`].
685     pub(crate) unsafe fn from_ptrs(pos: *mut u8, end: *mut u8) -> Self {
686         // INVARIANT: The safety requirements guarantee the type invariants.
687         Self {
688             beg: pos as _,
689             pos: pos as _,
690             end: end as _,
691         }
692     }
693 
694     /// Creates a new instance of [`RawFormatter`] with the given buffer.
695     ///
696     /// # Safety
697     ///
698     /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes
699     /// for the lifetime of the returned [`RawFormatter`].
700     pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self {
701         let pos = buf as usize;
702         // INVARIANT: We ensure that `end` is never less then `buf`, and the safety requirements
703         // guarantees that the memory region is valid for writes.
704         Self {
705             pos,
706             beg: pos,
707             end: pos.saturating_add(len),
708         }
709     }
710 
711     /// Returns the current insert position.
712     ///
713     /// N.B. It may point to invalid memory.
714     pub(crate) fn pos(&self) -> *mut u8 {
715         self.pos as _
716     }
717 
718     /// Returns the number of bytes written to the formatter.
719     pub(crate) fn bytes_written(&self) -> usize {
720         self.pos - self.beg
721     }
722 }
723 
724 impl fmt::Write for RawFormatter {
725     fn write_str(&mut self, s: &str) -> fmt::Result {
726         // `pos` value after writing `len` bytes. This does not have to be bounded by `end`, but we
727         // don't want it to wrap around to 0.
728         let pos_new = self.pos.saturating_add(s.len());
729 
730         // Amount that we can copy. `saturating_sub` ensures we get 0 if `pos` goes past `end`.
731         let len_to_copy = core::cmp::min(pos_new, self.end).saturating_sub(self.pos);
732 
733         if len_to_copy > 0 {
734             // SAFETY: If `len_to_copy` is non-zero, then we know `pos` has not gone past `end`
735             // yet, so it is valid for write per the type invariants.
736             unsafe {
737                 core::ptr::copy_nonoverlapping(
738                     s.as_bytes().as_ptr(),
739                     self.pos as *mut u8,
740                     len_to_copy,
741                 )
742             };
743         }
744 
745         self.pos = pos_new;
746         Ok(())
747     }
748 }
749 
750 /// Allows formatting of [`fmt::Arguments`] into a raw buffer.
751 ///
752 /// Fails if callers attempt to write more than will fit in the buffer.
753 pub(crate) struct Formatter(RawFormatter);
754 
755 impl Formatter {
756     /// Creates a new instance of [`Formatter`] with the given buffer.
757     ///
758     /// # Safety
759     ///
760     /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes
761     /// for the lifetime of the returned [`Formatter`].
762     pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self {
763         // SAFETY: The safety requirements of this function satisfy those of the callee.
764         Self(unsafe { RawFormatter::from_buffer(buf, len) })
765     }
766 }
767 
768 impl Deref for Formatter {
769     type Target = RawFormatter;
770 
771     fn deref(&self) -> &Self::Target {
772         &self.0
773     }
774 }
775 
776 impl fmt::Write for Formatter {
777     fn write_str(&mut self, s: &str) -> fmt::Result {
778         self.0.write_str(s)?;
779 
780         // Fail the request if we go past the end of the buffer.
781         if self.0.pos > self.0.end {
782             Err(fmt::Error)
783         } else {
784             Ok(())
785         }
786     }
787 }
788 
789 /// An owned string that is guaranteed to have exactly one `NUL` byte, which is at the end.
790 ///
791 /// Used for interoperability with kernel APIs that take C strings.
792 ///
793 /// # Invariants
794 ///
795 /// The string is always `NUL`-terminated and contains no other `NUL` bytes.
796 ///
797 /// # Examples
798 ///
799 /// ```
800 /// use kernel::{str::CString, fmt};
801 ///
802 /// let s = CString::try_from_fmt(fmt!("{}{}{}", "abc", 10, 20)).unwrap();
803 /// assert_eq!(s.as_bytes_with_nul(), "abc1020\0".as_bytes());
804 ///
805 /// let tmp = "testing";
806 /// let s = CString::try_from_fmt(fmt!("{tmp}{}", 123)).unwrap();
807 /// assert_eq!(s.as_bytes_with_nul(), "testing123\0".as_bytes());
808 ///
809 /// // This fails because it has an embedded `NUL` byte.
810 /// let s = CString::try_from_fmt(fmt!("a\0b{}", 123));
811 /// assert_eq!(s.is_ok(), false);
812 /// ```
813 pub struct CString {
814     buf: KVec<u8>,
815 }
816 
817 impl CString {
818     /// Creates an instance of [`CString`] from the given formatted arguments.
819     pub fn try_from_fmt(args: fmt::Arguments<'_>) -> Result<Self, Error> {
820         // Calculate the size needed (formatted string plus `NUL` terminator).
821         let mut f = RawFormatter::new();
822         f.write_fmt(args)?;
823         f.write_str("\0")?;
824         let size = f.bytes_written();
825 
826         // Allocate a vector with the required number of bytes, and write to it.
827         let mut buf = KVec::with_capacity(size, GFP_KERNEL)?;
828         // SAFETY: The buffer stored in `buf` is at least of size `size` and is valid for writes.
829         let mut f = unsafe { Formatter::from_buffer(buf.as_mut_ptr(), size) };
830         f.write_fmt(args)?;
831         f.write_str("\0")?;
832 
833         // SAFETY: The number of bytes that can be written to `f` is bounded by `size`, which is
834         // `buf`'s capacity. The contents of the buffer have been initialised by writes to `f`.
835         unsafe { buf.set_len(f.bytes_written()) };
836 
837         // Check that there are no `NUL` bytes before the end.
838         // SAFETY: The buffer is valid for read because `f.bytes_written()` is bounded by `size`
839         // (which the minimum buffer size) and is non-zero (we wrote at least the `NUL` terminator)
840         // so `f.bytes_written() - 1` doesn't underflow.
841         let ptr = unsafe { bindings::memchr(buf.as_ptr().cast(), 0, (f.bytes_written() - 1) as _) };
842         if !ptr.is_null() {
843             return Err(EINVAL);
844         }
845 
846         // INVARIANT: We wrote the `NUL` terminator and checked above that no other `NUL` bytes
847         // exist in the buffer.
848         Ok(Self { buf })
849     }
850 }
851 
852 impl Deref for CString {
853     type Target = CStr;
854 
855     fn deref(&self) -> &Self::Target {
856         // SAFETY: The type invariants guarantee that the string is `NUL`-terminated and that no
857         // other `NUL` bytes exist.
858         unsafe { CStr::from_bytes_with_nul_unchecked(self.buf.as_slice()) }
859     }
860 }
861 
862 impl DerefMut for CString {
863     fn deref_mut(&mut self) -> &mut Self::Target {
864         // SAFETY: A `CString` is always NUL-terminated and contains no other
865         // NUL bytes.
866         unsafe { CStr::from_bytes_with_nul_unchecked_mut(self.buf.as_mut_slice()) }
867     }
868 }
869 
870 impl<'a> TryFrom<&'a CStr> for CString {
871     type Error = AllocError;
872 
873     fn try_from(cstr: &'a CStr) -> Result<CString, AllocError> {
874         let mut buf = KVec::new();
875 
876         buf.extend_from_slice(cstr.as_bytes_with_nul(), GFP_KERNEL)?;
877 
878         // INVARIANT: The `CStr` and `CString` types have the same invariants for
879         // the string data, and we copied it over without changes.
880         Ok(CString { buf })
881     }
882 }
883 
884 impl fmt::Debug for CString {
885     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
886         fmt::Debug::fmt(&**self, f)
887     }
888 }
889 
890 /// A convenience alias for [`core::format_args`].
891 #[macro_export]
892 macro_rules! fmt {
893     ($($f:tt)*) => ( core::format_args!($($f)*) )
894 }
895