1 // SPDX-License-Identifier: GPL-2.0 2 3 //! String representations. 4 5 use crate::alloc::{flags::*, vec_ext::VecExt, AllocError}; 6 use alloc::vec::Vec; 7 use core::fmt::{self, Write}; 8 use core::ops::{self, Deref, DerefMut, Index}; 9 10 use crate::error::{code::*, Error}; 11 12 /// Byte string without UTF-8 validity guarantee. 13 #[repr(transparent)] 14 pub struct BStr([u8]); 15 16 impl BStr { 17 /// Returns the length of this string. 18 #[inline] 19 pub const fn len(&self) -> usize { 20 self.0.len() 21 } 22 23 /// Returns `true` if the string is empty. 24 #[inline] 25 pub const fn is_empty(&self) -> bool { 26 self.len() == 0 27 } 28 29 /// Creates a [`BStr`] from a `[u8]`. 30 #[inline] 31 pub const fn from_bytes(bytes: &[u8]) -> &Self { 32 // SAFETY: `BStr` is transparent to `[u8]`. 33 unsafe { &*(bytes as *const [u8] as *const BStr) } 34 } 35 } 36 37 impl fmt::Display for BStr { 38 /// Formats printable ASCII characters, escaping the rest. 39 /// 40 /// ``` 41 /// # use kernel::{fmt, b_str, str::{BStr, CString}}; 42 /// let ascii = b_str!("Hello, BStr!"); 43 /// let s = CString::try_from_fmt(fmt!("{}", ascii)).unwrap(); 44 /// assert_eq!(s.as_bytes(), "Hello, BStr!".as_bytes()); 45 /// 46 /// let non_ascii = b_str!(""); 47 /// let s = CString::try_from_fmt(fmt!("{}", non_ascii)).unwrap(); 48 /// assert_eq!(s.as_bytes(), "\\xf0\\x9f\\xa6\\x80".as_bytes()); 49 /// ``` 50 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 51 for &b in &self.0 { 52 match b { 53 // Common escape codes. 54 b'\t' => f.write_str("\\t")?, 55 b'\n' => f.write_str("\\n")?, 56 b'\r' => f.write_str("\\r")?, 57 // Printable characters. 58 0x20..=0x7e => f.write_char(b as char)?, 59 _ => write!(f, "\\x{:02x}", b)?, 60 } 61 } 62 Ok(()) 63 } 64 } 65 66 impl fmt::Debug for BStr { 67 /// Formats printable ASCII characters with a double quote on either end, 68 /// escaping the rest. 69 /// 70 /// ``` 71 /// # use kernel::{fmt, b_str, str::{BStr, CString}}; 72 /// // Embedded double quotes are escaped. 73 /// let ascii = b_str!("Hello, \"BStr\"!"); 74 /// let s = CString::try_from_fmt(fmt!("{:?}", ascii)).unwrap(); 75 /// assert_eq!(s.as_bytes(), "\"Hello, \\\"BStr\\\"!\"".as_bytes()); 76 /// 77 /// let non_ascii = b_str!(""); 78 /// let s = CString::try_from_fmt(fmt!("{:?}", non_ascii)).unwrap(); 79 /// assert_eq!(s.as_bytes(), "\"\\xf0\\x9f\\x98\\xba\"".as_bytes()); 80 /// ``` 81 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 82 f.write_char('"')?; 83 for &b in &self.0 { 84 match b { 85 // Common escape codes. 86 b'\t' => f.write_str("\\t")?, 87 b'\n' => f.write_str("\\n")?, 88 b'\r' => f.write_str("\\r")?, 89 // String escape characters. 90 b'\"' => f.write_str("\\\"")?, 91 b'\\' => f.write_str("\\\\")?, 92 // Printable characters. 93 0x20..=0x7e => f.write_char(b as char)?, 94 _ => write!(f, "\\x{:02x}", b)?, 95 } 96 } 97 f.write_char('"') 98 } 99 } 100 101 impl Deref for BStr { 102 type Target = [u8]; 103 104 #[inline] 105 fn deref(&self) -> &Self::Target { 106 &self.0 107 } 108 } 109 110 /// Creates a new [`BStr`] from a string literal. 111 /// 112 /// `b_str!` converts the supplied string literal to byte string, so non-ASCII 113 /// characters can be included. 114 /// 115 /// # Examples 116 /// 117 /// ``` 118 /// # use kernel::b_str; 119 /// # use kernel::str::BStr; 120 /// const MY_BSTR: &BStr = b_str!("My awesome BStr!"); 121 /// ``` 122 #[macro_export] 123 macro_rules! b_str { 124 ($str:literal) => {{ 125 const S: &'static str = $str; 126 const C: &'static $crate::str::BStr = $crate::str::BStr::from_bytes(S.as_bytes()); 127 C 128 }}; 129 } 130 131 /// Possible errors when using conversion functions in [`CStr`]. 132 #[derive(Debug, Clone, Copy)] 133 pub enum CStrConvertError { 134 /// Supplied bytes contain an interior `NUL`. 135 InteriorNul, 136 137 /// Supplied bytes are not terminated by `NUL`. 138 NotNulTerminated, 139 } 140 141 impl From<CStrConvertError> for Error { 142 #[inline] 143 fn from(_: CStrConvertError) -> Error { 144 EINVAL 145 } 146 } 147 148 /// A string that is guaranteed to have exactly one `NUL` byte, which is at the 149 /// end. 150 /// 151 /// Used for interoperability with kernel APIs that take C strings. 152 #[repr(transparent)] 153 pub struct CStr([u8]); 154 155 impl CStr { 156 /// Returns the length of this string excluding `NUL`. 157 #[inline] 158 pub const fn len(&self) -> usize { 159 self.len_with_nul() - 1 160 } 161 162 /// Returns the length of this string with `NUL`. 163 #[inline] 164 pub const fn len_with_nul(&self) -> usize { 165 if self.0.is_empty() { 166 // SAFETY: This is one of the invariant of `CStr`. 167 // We add a `unreachable_unchecked` here to hint the optimizer that 168 // the value returned from this function is non-zero. 169 unsafe { core::hint::unreachable_unchecked() }; 170 } 171 self.0.len() 172 } 173 174 /// Returns `true` if the string only includes `NUL`. 175 #[inline] 176 pub const fn is_empty(&self) -> bool { 177 self.len() == 0 178 } 179 180 /// Wraps a raw C string pointer. 181 /// 182 /// # Safety 183 /// 184 /// `ptr` must be a valid pointer to a `NUL`-terminated C string, and it must 185 /// last at least `'a`. When `CStr` is alive, the memory pointed by `ptr` 186 /// must not be mutated. 187 #[inline] 188 pub unsafe fn from_char_ptr<'a>(ptr: *const core::ffi::c_char) -> &'a Self { 189 // SAFETY: The safety precondition guarantees `ptr` is a valid pointer 190 // to a `NUL`-terminated C string. 191 let len = unsafe { bindings::strlen(ptr) } + 1; 192 // SAFETY: Lifetime guaranteed by the safety precondition. 193 let bytes = unsafe { core::slice::from_raw_parts(ptr as _, len as _) }; 194 // SAFETY: As `len` is returned by `strlen`, `bytes` does not contain interior `NUL`. 195 // As we have added 1 to `len`, the last byte is known to be `NUL`. 196 unsafe { Self::from_bytes_with_nul_unchecked(bytes) } 197 } 198 199 /// Creates a [`CStr`] from a `[u8]`. 200 /// 201 /// The provided slice must be `NUL`-terminated, does not contain any 202 /// interior `NUL` bytes. 203 pub const fn from_bytes_with_nul(bytes: &[u8]) -> Result<&Self, CStrConvertError> { 204 if bytes.is_empty() { 205 return Err(CStrConvertError::NotNulTerminated); 206 } 207 if bytes[bytes.len() - 1] != 0 { 208 return Err(CStrConvertError::NotNulTerminated); 209 } 210 let mut i = 0; 211 // `i + 1 < bytes.len()` allows LLVM to optimize away bounds checking, 212 // while it couldn't optimize away bounds checks for `i < bytes.len() - 1`. 213 while i + 1 < bytes.len() { 214 if bytes[i] == 0 { 215 return Err(CStrConvertError::InteriorNul); 216 } 217 i += 1; 218 } 219 // SAFETY: We just checked that all properties hold. 220 Ok(unsafe { Self::from_bytes_with_nul_unchecked(bytes) }) 221 } 222 223 /// Creates a [`CStr`] from a `[u8]` without performing any additional 224 /// checks. 225 /// 226 /// # Safety 227 /// 228 /// `bytes` *must* end with a `NUL` byte, and should only have a single 229 /// `NUL` byte (or the string will be truncated). 230 #[inline] 231 pub const unsafe fn from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr { 232 // SAFETY: Properties of `bytes` guaranteed by the safety precondition. 233 unsafe { core::mem::transmute(bytes) } 234 } 235 236 /// Creates a mutable [`CStr`] from a `[u8]` without performing any 237 /// additional checks. 238 /// 239 /// # Safety 240 /// 241 /// `bytes` *must* end with a `NUL` byte, and should only have a single 242 /// `NUL` byte (or the string will be truncated). 243 #[inline] 244 pub unsafe fn from_bytes_with_nul_unchecked_mut(bytes: &mut [u8]) -> &mut CStr { 245 // SAFETY: Properties of `bytes` guaranteed by the safety precondition. 246 unsafe { &mut *(bytes as *mut [u8] as *mut CStr) } 247 } 248 249 /// Returns a C pointer to the string. 250 #[inline] 251 pub const fn as_char_ptr(&self) -> *const core::ffi::c_char { 252 self.0.as_ptr() as _ 253 } 254 255 /// Convert the string to a byte slice without the trailing `NUL` byte. 256 #[inline] 257 pub fn as_bytes(&self) -> &[u8] { 258 &self.0[..self.len()] 259 } 260 261 /// Convert the string to a byte slice containing the trailing `NUL` byte. 262 #[inline] 263 pub const fn as_bytes_with_nul(&self) -> &[u8] { 264 &self.0 265 } 266 267 /// Yields a [`&str`] slice if the [`CStr`] contains valid UTF-8. 268 /// 269 /// If the contents of the [`CStr`] are valid UTF-8 data, this 270 /// function will return the corresponding [`&str`] slice. Otherwise, 271 /// it will return an error with details of where UTF-8 validation failed. 272 /// 273 /// # Examples 274 /// 275 /// ``` 276 /// # use kernel::str::CStr; 277 /// let cstr = CStr::from_bytes_with_nul(b"foo\0").unwrap(); 278 /// assert_eq!(cstr.to_str(), Ok("foo")); 279 /// ``` 280 #[inline] 281 pub fn to_str(&self) -> Result<&str, core::str::Utf8Error> { 282 core::str::from_utf8(self.as_bytes()) 283 } 284 285 /// Unsafely convert this [`CStr`] into a [`&str`], without checking for 286 /// valid UTF-8. 287 /// 288 /// # Safety 289 /// 290 /// The contents must be valid UTF-8. 291 /// 292 /// # Examples 293 /// 294 /// ``` 295 /// # use kernel::c_str; 296 /// # use kernel::str::CStr; 297 /// let bar = c_str!("ツ"); 298 /// // SAFETY: String literals are guaranteed to be valid UTF-8 299 /// // by the Rust compiler. 300 /// assert_eq!(unsafe { bar.as_str_unchecked() }, "ツ"); 301 /// ``` 302 #[inline] 303 pub unsafe fn as_str_unchecked(&self) -> &str { 304 // SAFETY: TODO. 305 unsafe { core::str::from_utf8_unchecked(self.as_bytes()) } 306 } 307 308 /// Convert this [`CStr`] into a [`CString`] by allocating memory and 309 /// copying over the string data. 310 pub fn to_cstring(&self) -> Result<CString, AllocError> { 311 CString::try_from(self) 312 } 313 314 /// Converts this [`CStr`] to its ASCII lower case equivalent in-place. 315 /// 316 /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', 317 /// but non-ASCII letters are unchanged. 318 /// 319 /// To return a new lowercased value without modifying the existing one, use 320 /// [`to_ascii_lowercase()`]. 321 /// 322 /// [`to_ascii_lowercase()`]: #method.to_ascii_lowercase 323 pub fn make_ascii_lowercase(&mut self) { 324 // INVARIANT: This doesn't introduce or remove NUL bytes in the C 325 // string. 326 self.0.make_ascii_lowercase(); 327 } 328 329 /// Converts this [`CStr`] to its ASCII upper case equivalent in-place. 330 /// 331 /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', 332 /// but non-ASCII letters are unchanged. 333 /// 334 /// To return a new uppercased value without modifying the existing one, use 335 /// [`to_ascii_uppercase()`]. 336 /// 337 /// [`to_ascii_uppercase()`]: #method.to_ascii_uppercase 338 pub fn make_ascii_uppercase(&mut self) { 339 // INVARIANT: This doesn't introduce or remove NUL bytes in the C 340 // string. 341 self.0.make_ascii_uppercase(); 342 } 343 344 /// Returns a copy of this [`CString`] where each character is mapped to its 345 /// ASCII lower case equivalent. 346 /// 347 /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', 348 /// but non-ASCII letters are unchanged. 349 /// 350 /// To lowercase the value in-place, use [`make_ascii_lowercase`]. 351 /// 352 /// [`make_ascii_lowercase`]: str::make_ascii_lowercase 353 pub fn to_ascii_lowercase(&self) -> Result<CString, AllocError> { 354 let mut s = self.to_cstring()?; 355 356 s.make_ascii_lowercase(); 357 358 Ok(s) 359 } 360 361 /// Returns a copy of this [`CString`] where each character is mapped to its 362 /// ASCII upper case equivalent. 363 /// 364 /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', 365 /// but non-ASCII letters are unchanged. 366 /// 367 /// To uppercase the value in-place, use [`make_ascii_uppercase`]. 368 /// 369 /// [`make_ascii_uppercase`]: str::make_ascii_uppercase 370 pub fn to_ascii_uppercase(&self) -> Result<CString, AllocError> { 371 let mut s = self.to_cstring()?; 372 373 s.make_ascii_uppercase(); 374 375 Ok(s) 376 } 377 } 378 379 impl fmt::Display for CStr { 380 /// Formats printable ASCII characters, escaping the rest. 381 /// 382 /// ``` 383 /// # use kernel::c_str; 384 /// # use kernel::fmt; 385 /// # use kernel::str::CStr; 386 /// # use kernel::str::CString; 387 /// let penguin = c_str!(""); 388 /// let s = CString::try_from_fmt(fmt!("{}", penguin)).unwrap(); 389 /// assert_eq!(s.as_bytes_with_nul(), "\\xf0\\x9f\\x90\\xa7\0".as_bytes()); 390 /// 391 /// let ascii = c_str!("so \"cool\""); 392 /// let s = CString::try_from_fmt(fmt!("{}", ascii)).unwrap(); 393 /// assert_eq!(s.as_bytes_with_nul(), "so \"cool\"\0".as_bytes()); 394 /// ``` 395 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 396 for &c in self.as_bytes() { 397 if (0x20..0x7f).contains(&c) { 398 // Printable character. 399 f.write_char(c as char)?; 400 } else { 401 write!(f, "\\x{:02x}", c)?; 402 } 403 } 404 Ok(()) 405 } 406 } 407 408 impl fmt::Debug for CStr { 409 /// Formats printable ASCII characters with a double quote on either end, escaping the rest. 410 /// 411 /// ``` 412 /// # use kernel::c_str; 413 /// # use kernel::fmt; 414 /// # use kernel::str::CStr; 415 /// # use kernel::str::CString; 416 /// let penguin = c_str!(""); 417 /// let s = CString::try_from_fmt(fmt!("{:?}", penguin)).unwrap(); 418 /// assert_eq!(s.as_bytes_with_nul(), "\"\\xf0\\x9f\\x90\\xa7\"\0".as_bytes()); 419 /// 420 /// // Embedded double quotes are escaped. 421 /// let ascii = c_str!("so \"cool\""); 422 /// let s = CString::try_from_fmt(fmt!("{:?}", ascii)).unwrap(); 423 /// assert_eq!(s.as_bytes_with_nul(), "\"so \\\"cool\\\"\"\0".as_bytes()); 424 /// ``` 425 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 426 f.write_str("\"")?; 427 for &c in self.as_bytes() { 428 match c { 429 // Printable characters. 430 b'\"' => f.write_str("\\\"")?, 431 0x20..=0x7e => f.write_char(c as char)?, 432 _ => write!(f, "\\x{:02x}", c)?, 433 } 434 } 435 f.write_str("\"") 436 } 437 } 438 439 impl AsRef<BStr> for CStr { 440 #[inline] 441 fn as_ref(&self) -> &BStr { 442 BStr::from_bytes(self.as_bytes()) 443 } 444 } 445 446 impl Deref for CStr { 447 type Target = BStr; 448 449 #[inline] 450 fn deref(&self) -> &Self::Target { 451 self.as_ref() 452 } 453 } 454 455 impl Index<ops::RangeFrom<usize>> for CStr { 456 type Output = CStr; 457 458 #[inline] 459 fn index(&self, index: ops::RangeFrom<usize>) -> &Self::Output { 460 // Delegate bounds checking to slice. 461 // Assign to _ to mute clippy's unnecessary operation warning. 462 let _ = &self.as_bytes()[index.start..]; 463 // SAFETY: We just checked the bounds. 464 unsafe { Self::from_bytes_with_nul_unchecked(&self.0[index.start..]) } 465 } 466 } 467 468 impl Index<ops::RangeFull> for CStr { 469 type Output = CStr; 470 471 #[inline] 472 fn index(&self, _index: ops::RangeFull) -> &Self::Output { 473 self 474 } 475 } 476 477 mod private { 478 use core::ops; 479 480 // Marker trait for index types that can be forward to `BStr`. 481 pub trait CStrIndex {} 482 483 impl CStrIndex for usize {} 484 impl CStrIndex for ops::Range<usize> {} 485 impl CStrIndex for ops::RangeInclusive<usize> {} 486 impl CStrIndex for ops::RangeToInclusive<usize> {} 487 } 488 489 impl<Idx> Index<Idx> for CStr 490 where 491 Idx: private::CStrIndex, 492 BStr: Index<Idx>, 493 { 494 type Output = <BStr as Index<Idx>>::Output; 495 496 #[inline] 497 fn index(&self, index: Idx) -> &Self::Output { 498 &self.as_ref()[index] 499 } 500 } 501 502 /// Creates a new [`CStr`] from a string literal. 503 /// 504 /// The string literal should not contain any `NUL` bytes. 505 /// 506 /// # Examples 507 /// 508 /// ``` 509 /// # use kernel::c_str; 510 /// # use kernel::str::CStr; 511 /// const MY_CSTR: &CStr = c_str!("My awesome CStr!"); 512 /// ``` 513 #[macro_export] 514 macro_rules! c_str { 515 ($str:expr) => {{ 516 const S: &str = concat!($str, "\0"); 517 const C: &$crate::str::CStr = match $crate::str::CStr::from_bytes_with_nul(S.as_bytes()) { 518 Ok(v) => v, 519 Err(_) => panic!("string contains interior NUL"), 520 }; 521 C 522 }}; 523 } 524 525 #[cfg(test)] 526 mod tests { 527 use super::*; 528 use alloc::format; 529 530 const ALL_ASCII_CHARS: &'static str = 531 "\\x01\\x02\\x03\\x04\\x05\\x06\\x07\\x08\\x09\\x0a\\x0b\\x0c\\x0d\\x0e\\x0f\ 532 \\x10\\x11\\x12\\x13\\x14\\x15\\x16\\x17\\x18\\x19\\x1a\\x1b\\x1c\\x1d\\x1e\\x1f \ 533 !\"#$%&'()*+,-./0123456789:;<=>?@\ 534 ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~\\x7f\ 535 \\x80\\x81\\x82\\x83\\x84\\x85\\x86\\x87\\x88\\x89\\x8a\\x8b\\x8c\\x8d\\x8e\\x8f\ 536 \\x90\\x91\\x92\\x93\\x94\\x95\\x96\\x97\\x98\\x99\\x9a\\x9b\\x9c\\x9d\\x9e\\x9f\ 537 \\xa0\\xa1\\xa2\\xa3\\xa4\\xa5\\xa6\\xa7\\xa8\\xa9\\xaa\\xab\\xac\\xad\\xae\\xaf\ 538 \\xb0\\xb1\\xb2\\xb3\\xb4\\xb5\\xb6\\xb7\\xb8\\xb9\\xba\\xbb\\xbc\\xbd\\xbe\\xbf\ 539 \\xc0\\xc1\\xc2\\xc3\\xc4\\xc5\\xc6\\xc7\\xc8\\xc9\\xca\\xcb\\xcc\\xcd\\xce\\xcf\ 540 \\xd0\\xd1\\xd2\\xd3\\xd4\\xd5\\xd6\\xd7\\xd8\\xd9\\xda\\xdb\\xdc\\xdd\\xde\\xdf\ 541 \\xe0\\xe1\\xe2\\xe3\\xe4\\xe5\\xe6\\xe7\\xe8\\xe9\\xea\\xeb\\xec\\xed\\xee\\xef\ 542 \\xf0\\xf1\\xf2\\xf3\\xf4\\xf5\\xf6\\xf7\\xf8\\xf9\\xfa\\xfb\\xfc\\xfd\\xfe\\xff"; 543 544 #[test] 545 fn test_cstr_to_str() { 546 let good_bytes = b"\xf0\x9f\xa6\x80\0"; 547 let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap(); 548 let checked_str = checked_cstr.to_str().unwrap(); 549 assert_eq!(checked_str, ""); 550 } 551 552 #[test] 553 #[should_panic] 554 fn test_cstr_to_str_panic() { 555 let bad_bytes = b"\xc3\x28\0"; 556 let checked_cstr = CStr::from_bytes_with_nul(bad_bytes).unwrap(); 557 checked_cstr.to_str().unwrap(); 558 } 559 560 #[test] 561 fn test_cstr_as_str_unchecked() { 562 let good_bytes = b"\xf0\x9f\x90\xA7\0"; 563 let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap(); 564 let unchecked_str = unsafe { checked_cstr.as_str_unchecked() }; 565 assert_eq!(unchecked_str, ""); 566 } 567 568 #[test] 569 fn test_cstr_display() { 570 let hello_world = CStr::from_bytes_with_nul(b"hello, world!\0").unwrap(); 571 assert_eq!(format!("{}", hello_world), "hello, world!"); 572 let non_printables = CStr::from_bytes_with_nul(b"\x01\x09\x0a\0").unwrap(); 573 assert_eq!(format!("{}", non_printables), "\\x01\\x09\\x0a"); 574 let non_ascii = CStr::from_bytes_with_nul(b"d\xe9j\xe0 vu\0").unwrap(); 575 assert_eq!(format!("{}", non_ascii), "d\\xe9j\\xe0 vu"); 576 let good_bytes = CStr::from_bytes_with_nul(b"\xf0\x9f\xa6\x80\0").unwrap(); 577 assert_eq!(format!("{}", good_bytes), "\\xf0\\x9f\\xa6\\x80"); 578 } 579 580 #[test] 581 fn test_cstr_display_all_bytes() { 582 let mut bytes: [u8; 256] = [0; 256]; 583 // fill `bytes` with [1..=255] + [0] 584 for i in u8::MIN..=u8::MAX { 585 bytes[i as usize] = i.wrapping_add(1); 586 } 587 let cstr = CStr::from_bytes_with_nul(&bytes).unwrap(); 588 assert_eq!(format!("{}", cstr), ALL_ASCII_CHARS); 589 } 590 591 #[test] 592 fn test_cstr_debug() { 593 let hello_world = CStr::from_bytes_with_nul(b"hello, world!\0").unwrap(); 594 assert_eq!(format!("{:?}", hello_world), "\"hello, world!\""); 595 let non_printables = CStr::from_bytes_with_nul(b"\x01\x09\x0a\0").unwrap(); 596 assert_eq!(format!("{:?}", non_printables), "\"\\x01\\x09\\x0a\""); 597 let non_ascii = CStr::from_bytes_with_nul(b"d\xe9j\xe0 vu\0").unwrap(); 598 assert_eq!(format!("{:?}", non_ascii), "\"d\\xe9j\\xe0 vu\""); 599 let good_bytes = CStr::from_bytes_with_nul(b"\xf0\x9f\xa6\x80\0").unwrap(); 600 assert_eq!(format!("{:?}", good_bytes), "\"\\xf0\\x9f\\xa6\\x80\""); 601 } 602 603 #[test] 604 fn test_bstr_display() { 605 let hello_world = BStr::from_bytes(b"hello, world!"); 606 assert_eq!(format!("{}", hello_world), "hello, world!"); 607 let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_"); 608 assert_eq!(format!("{}", escapes), "_\\t_\\n_\\r_\\_'_\"_"); 609 let others = BStr::from_bytes(b"\x01"); 610 assert_eq!(format!("{}", others), "\\x01"); 611 let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu"); 612 assert_eq!(format!("{}", non_ascii), "d\\xe9j\\xe0 vu"); 613 let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80"); 614 assert_eq!(format!("{}", good_bytes), "\\xf0\\x9f\\xa6\\x80"); 615 } 616 617 #[test] 618 fn test_bstr_debug() { 619 let hello_world = BStr::from_bytes(b"hello, world!"); 620 assert_eq!(format!("{:?}", hello_world), "\"hello, world!\""); 621 let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_"); 622 assert_eq!(format!("{:?}", escapes), "\"_\\t_\\n_\\r_\\\\_'_\\\"_\""); 623 let others = BStr::from_bytes(b"\x01"); 624 assert_eq!(format!("{:?}", others), "\"\\x01\""); 625 let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu"); 626 assert_eq!(format!("{:?}", non_ascii), "\"d\\xe9j\\xe0 vu\""); 627 let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80"); 628 assert_eq!(format!("{:?}", good_bytes), "\"\\xf0\\x9f\\xa6\\x80\""); 629 } 630 } 631 632 /// Allows formatting of [`fmt::Arguments`] into a raw buffer. 633 /// 634 /// It does not fail if callers write past the end of the buffer so that they can calculate the 635 /// size required to fit everything. 636 /// 637 /// # Invariants 638 /// 639 /// The memory region between `pos` (inclusive) and `end` (exclusive) is valid for writes if `pos` 640 /// is less than `end`. 641 pub(crate) struct RawFormatter { 642 // Use `usize` to use `saturating_*` functions. 643 beg: usize, 644 pos: usize, 645 end: usize, 646 } 647 648 impl RawFormatter { 649 /// Creates a new instance of [`RawFormatter`] with an empty buffer. 650 fn new() -> Self { 651 // INVARIANT: The buffer is empty, so the region that needs to be writable is empty. 652 Self { 653 beg: 0, 654 pos: 0, 655 end: 0, 656 } 657 } 658 659 /// Creates a new instance of [`RawFormatter`] with the given buffer pointers. 660 /// 661 /// # Safety 662 /// 663 /// If `pos` is less than `end`, then the region between `pos` (inclusive) and `end` 664 /// (exclusive) must be valid for writes for the lifetime of the returned [`RawFormatter`]. 665 pub(crate) unsafe fn from_ptrs(pos: *mut u8, end: *mut u8) -> Self { 666 // INVARIANT: The safety requirements guarantee the type invariants. 667 Self { 668 beg: pos as _, 669 pos: pos as _, 670 end: end as _, 671 } 672 } 673 674 /// Creates a new instance of [`RawFormatter`] with the given buffer. 675 /// 676 /// # Safety 677 /// 678 /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes 679 /// for the lifetime of the returned [`RawFormatter`]. 680 pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self { 681 let pos = buf as usize; 682 // INVARIANT: We ensure that `end` is never less then `buf`, and the safety requirements 683 // guarantees that the memory region is valid for writes. 684 Self { 685 pos, 686 beg: pos, 687 end: pos.saturating_add(len), 688 } 689 } 690 691 /// Returns the current insert position. 692 /// 693 /// N.B. It may point to invalid memory. 694 pub(crate) fn pos(&self) -> *mut u8 { 695 self.pos as _ 696 } 697 698 /// Returns the number of bytes written to the formatter. 699 pub(crate) fn bytes_written(&self) -> usize { 700 self.pos - self.beg 701 } 702 } 703 704 impl fmt::Write for RawFormatter { 705 fn write_str(&mut self, s: &str) -> fmt::Result { 706 // `pos` value after writing `len` bytes. This does not have to be bounded by `end`, but we 707 // don't want it to wrap around to 0. 708 let pos_new = self.pos.saturating_add(s.len()); 709 710 // Amount that we can copy. `saturating_sub` ensures we get 0 if `pos` goes past `end`. 711 let len_to_copy = core::cmp::min(pos_new, self.end).saturating_sub(self.pos); 712 713 if len_to_copy > 0 { 714 // SAFETY: If `len_to_copy` is non-zero, then we know `pos` has not gone past `end` 715 // yet, so it is valid for write per the type invariants. 716 unsafe { 717 core::ptr::copy_nonoverlapping( 718 s.as_bytes().as_ptr(), 719 self.pos as *mut u8, 720 len_to_copy, 721 ) 722 }; 723 } 724 725 self.pos = pos_new; 726 Ok(()) 727 } 728 } 729 730 /// Allows formatting of [`fmt::Arguments`] into a raw buffer. 731 /// 732 /// Fails if callers attempt to write more than will fit in the buffer. 733 pub(crate) struct Formatter(RawFormatter); 734 735 impl Formatter { 736 /// Creates a new instance of [`Formatter`] with the given buffer. 737 /// 738 /// # Safety 739 /// 740 /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes 741 /// for the lifetime of the returned [`Formatter`]. 742 pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self { 743 // SAFETY: The safety requirements of this function satisfy those of the callee. 744 Self(unsafe { RawFormatter::from_buffer(buf, len) }) 745 } 746 } 747 748 impl Deref for Formatter { 749 type Target = RawFormatter; 750 751 fn deref(&self) -> &Self::Target { 752 &self.0 753 } 754 } 755 756 impl fmt::Write for Formatter { 757 fn write_str(&mut self, s: &str) -> fmt::Result { 758 self.0.write_str(s)?; 759 760 // Fail the request if we go past the end of the buffer. 761 if self.0.pos > self.0.end { 762 Err(fmt::Error) 763 } else { 764 Ok(()) 765 } 766 } 767 } 768 769 /// An owned string that is guaranteed to have exactly one `NUL` byte, which is at the end. 770 /// 771 /// Used for interoperability with kernel APIs that take C strings. 772 /// 773 /// # Invariants 774 /// 775 /// The string is always `NUL`-terminated and contains no other `NUL` bytes. 776 /// 777 /// # Examples 778 /// 779 /// ``` 780 /// use kernel::{str::CString, fmt}; 781 /// 782 /// let s = CString::try_from_fmt(fmt!("{}{}{}", "abc", 10, 20)).unwrap(); 783 /// assert_eq!(s.as_bytes_with_nul(), "abc1020\0".as_bytes()); 784 /// 785 /// let tmp = "testing"; 786 /// let s = CString::try_from_fmt(fmt!("{tmp}{}", 123)).unwrap(); 787 /// assert_eq!(s.as_bytes_with_nul(), "testing123\0".as_bytes()); 788 /// 789 /// // This fails because it has an embedded `NUL` byte. 790 /// let s = CString::try_from_fmt(fmt!("a\0b{}", 123)); 791 /// assert_eq!(s.is_ok(), false); 792 /// ``` 793 pub struct CString { 794 buf: Vec<u8>, 795 } 796 797 impl CString { 798 /// Creates an instance of [`CString`] from the given formatted arguments. 799 pub fn try_from_fmt(args: fmt::Arguments<'_>) -> Result<Self, Error> { 800 // Calculate the size needed (formatted string plus `NUL` terminator). 801 let mut f = RawFormatter::new(); 802 f.write_fmt(args)?; 803 f.write_str("\0")?; 804 let size = f.bytes_written(); 805 806 // Allocate a vector with the required number of bytes, and write to it. 807 let mut buf = <Vec<_> as VecExt<_>>::with_capacity(size, GFP_KERNEL)?; 808 // SAFETY: The buffer stored in `buf` is at least of size `size` and is valid for writes. 809 let mut f = unsafe { Formatter::from_buffer(buf.as_mut_ptr(), size) }; 810 f.write_fmt(args)?; 811 f.write_str("\0")?; 812 813 // SAFETY: The number of bytes that can be written to `f` is bounded by `size`, which is 814 // `buf`'s capacity. The contents of the buffer have been initialised by writes to `f`. 815 unsafe { buf.set_len(f.bytes_written()) }; 816 817 // Check that there are no `NUL` bytes before the end. 818 // SAFETY: The buffer is valid for read because `f.bytes_written()` is bounded by `size` 819 // (which the minimum buffer size) and is non-zero (we wrote at least the `NUL` terminator) 820 // so `f.bytes_written() - 1` doesn't underflow. 821 let ptr = unsafe { bindings::memchr(buf.as_ptr().cast(), 0, (f.bytes_written() - 1) as _) }; 822 if !ptr.is_null() { 823 return Err(EINVAL); 824 } 825 826 // INVARIANT: We wrote the `NUL` terminator and checked above that no other `NUL` bytes 827 // exist in the buffer. 828 Ok(Self { buf }) 829 } 830 } 831 832 impl Deref for CString { 833 type Target = CStr; 834 835 fn deref(&self) -> &Self::Target { 836 // SAFETY: The type invariants guarantee that the string is `NUL`-terminated and that no 837 // other `NUL` bytes exist. 838 unsafe { CStr::from_bytes_with_nul_unchecked(self.buf.as_slice()) } 839 } 840 } 841 842 impl DerefMut for CString { 843 fn deref_mut(&mut self) -> &mut Self::Target { 844 // SAFETY: A `CString` is always NUL-terminated and contains no other 845 // NUL bytes. 846 unsafe { CStr::from_bytes_with_nul_unchecked_mut(self.buf.as_mut_slice()) } 847 } 848 } 849 850 impl<'a> TryFrom<&'a CStr> for CString { 851 type Error = AllocError; 852 853 fn try_from(cstr: &'a CStr) -> Result<CString, AllocError> { 854 let mut buf = Vec::new(); 855 856 <Vec<_> as VecExt<_>>::extend_from_slice(&mut buf, cstr.as_bytes_with_nul(), GFP_KERNEL) 857 .map_err(|_| AllocError)?; 858 859 // INVARIANT: The `CStr` and `CString` types have the same invariants for 860 // the string data, and we copied it over without changes. 861 Ok(CString { buf }) 862 } 863 } 864 865 impl fmt::Debug for CString { 866 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 867 fmt::Debug::fmt(&**self, f) 868 } 869 } 870 871 /// A convenience alias for [`core::format_args`]. 872 #[macro_export] 873 macro_rules! fmt { 874 ($($f:tt)*) => ( core::format_args!($($f)*) ) 875 } 876