xref: /linux/rust/kernel/str.rs (revision 4c62348d5b845c9acb82378faf5aefdcb06c38be)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! String representations.
4 
5 use alloc::alloc::AllocError;
6 use alloc::vec::Vec;
7 use core::fmt::{self, Write};
8 use core::ops::{self, Deref, Index};
9 
10 use crate::{
11     bindings,
12     error::{code::*, Error},
13 };
14 
15 /// Byte string without UTF-8 validity guarantee.
16 ///
17 /// `BStr` is simply an alias to `[u8]`, but has a more evident semantical meaning.
18 pub type BStr = [u8];
19 
20 /// Creates a new [`BStr`] from a string literal.
21 ///
22 /// `b_str!` converts the supplied string literal to byte string, so non-ASCII
23 /// characters can be included.
24 ///
25 /// # Examples
26 ///
27 /// ```
28 /// # use kernel::b_str;
29 /// # use kernel::str::BStr;
30 /// const MY_BSTR: &BStr = b_str!("My awesome BStr!");
31 /// ```
32 #[macro_export]
33 macro_rules! b_str {
34     ($str:literal) => {{
35         const S: &'static str = $str;
36         const C: &'static $crate::str::BStr = S.as_bytes();
37         C
38     }};
39 }
40 
41 /// Possible errors when using conversion functions in [`CStr`].
42 #[derive(Debug, Clone, Copy)]
43 pub enum CStrConvertError {
44     /// Supplied bytes contain an interior `NUL`.
45     InteriorNul,
46 
47     /// Supplied bytes are not terminated by `NUL`.
48     NotNulTerminated,
49 }
50 
51 impl From<CStrConvertError> for Error {
52     #[inline]
53     fn from(_: CStrConvertError) -> Error {
54         EINVAL
55     }
56 }
57 
58 /// A string that is guaranteed to have exactly one `NUL` byte, which is at the
59 /// end.
60 ///
61 /// Used for interoperability with kernel APIs that take C strings.
62 #[repr(transparent)]
63 pub struct CStr([u8]);
64 
65 impl CStr {
66     /// Returns the length of this string excluding `NUL`.
67     #[inline]
68     pub const fn len(&self) -> usize {
69         self.len_with_nul() - 1
70     }
71 
72     /// Returns the length of this string with `NUL`.
73     #[inline]
74     pub const fn len_with_nul(&self) -> usize {
75         // SAFETY: This is one of the invariant of `CStr`.
76         // We add a `unreachable_unchecked` here to hint the optimizer that
77         // the value returned from this function is non-zero.
78         if self.0.is_empty() {
79             unsafe { core::hint::unreachable_unchecked() };
80         }
81         self.0.len()
82     }
83 
84     /// Returns `true` if the string only includes `NUL`.
85     #[inline]
86     pub const fn is_empty(&self) -> bool {
87         self.len() == 0
88     }
89 
90     /// Wraps a raw C string pointer.
91     ///
92     /// # Safety
93     ///
94     /// `ptr` must be a valid pointer to a `NUL`-terminated C string, and it must
95     /// last at least `'a`. When `CStr` is alive, the memory pointed by `ptr`
96     /// must not be mutated.
97     #[inline]
98     pub unsafe fn from_char_ptr<'a>(ptr: *const core::ffi::c_char) -> &'a Self {
99         // SAFETY: The safety precondition guarantees `ptr` is a valid pointer
100         // to a `NUL`-terminated C string.
101         let len = unsafe { bindings::strlen(ptr) } + 1;
102         // SAFETY: Lifetime guaranteed by the safety precondition.
103         let bytes = unsafe { core::slice::from_raw_parts(ptr as _, len as _) };
104         // SAFETY: As `len` is returned by `strlen`, `bytes` does not contain interior `NUL`.
105         // As we have added 1 to `len`, the last byte is known to be `NUL`.
106         unsafe { Self::from_bytes_with_nul_unchecked(bytes) }
107     }
108 
109     /// Creates a [`CStr`] from a `[u8]`.
110     ///
111     /// The provided slice must be `NUL`-terminated, does not contain any
112     /// interior `NUL` bytes.
113     pub const fn from_bytes_with_nul(bytes: &[u8]) -> Result<&Self, CStrConvertError> {
114         if bytes.is_empty() {
115             return Err(CStrConvertError::NotNulTerminated);
116         }
117         if bytes[bytes.len() - 1] != 0 {
118             return Err(CStrConvertError::NotNulTerminated);
119         }
120         let mut i = 0;
121         // `i + 1 < bytes.len()` allows LLVM to optimize away bounds checking,
122         // while it couldn't optimize away bounds checks for `i < bytes.len() - 1`.
123         while i + 1 < bytes.len() {
124             if bytes[i] == 0 {
125                 return Err(CStrConvertError::InteriorNul);
126             }
127             i += 1;
128         }
129         // SAFETY: We just checked that all properties hold.
130         Ok(unsafe { Self::from_bytes_with_nul_unchecked(bytes) })
131     }
132 
133     /// Creates a [`CStr`] from a `[u8]` without performing any additional
134     /// checks.
135     ///
136     /// # Safety
137     ///
138     /// `bytes` *must* end with a `NUL` byte, and should only have a single
139     /// `NUL` byte (or the string will be truncated).
140     #[inline]
141     pub const unsafe fn from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr {
142         // SAFETY: Properties of `bytes` guaranteed by the safety precondition.
143         unsafe { core::mem::transmute(bytes) }
144     }
145 
146     /// Returns a C pointer to the string.
147     #[inline]
148     pub const fn as_char_ptr(&self) -> *const core::ffi::c_char {
149         self.0.as_ptr() as _
150     }
151 
152     /// Convert the string to a byte slice without the trailing `NUL` byte.
153     #[inline]
154     pub fn as_bytes(&self) -> &[u8] {
155         &self.0[..self.len()]
156     }
157 
158     /// Convert the string to a byte slice containing the trailing `NUL` byte.
159     #[inline]
160     pub const fn as_bytes_with_nul(&self) -> &[u8] {
161         &self.0
162     }
163 
164     /// Yields a [`&str`] slice if the [`CStr`] contains valid UTF-8.
165     ///
166     /// If the contents of the [`CStr`] are valid UTF-8 data, this
167     /// function will return the corresponding [`&str`] slice. Otherwise,
168     /// it will return an error with details of where UTF-8 validation failed.
169     ///
170     /// # Examples
171     ///
172     /// ```
173     /// # use kernel::str::CStr;
174     /// let cstr = CStr::from_bytes_with_nul(b"foo\0").unwrap();
175     /// assert_eq!(cstr.to_str(), Ok("foo"));
176     /// ```
177     #[inline]
178     pub fn to_str(&self) -> Result<&str, core::str::Utf8Error> {
179         core::str::from_utf8(self.as_bytes())
180     }
181 
182     /// Unsafely convert this [`CStr`] into a [`&str`], without checking for
183     /// valid UTF-8.
184     ///
185     /// # Safety
186     ///
187     /// The contents must be valid UTF-8.
188     ///
189     /// # Examples
190     ///
191     /// ```
192     /// # use kernel::c_str;
193     /// # use kernel::str::CStr;
194     /// let bar = c_str!("ツ");
195     /// // SAFETY: String literals are guaranteed to be valid UTF-8
196     /// // by the Rust compiler.
197     /// assert_eq!(unsafe { bar.as_str_unchecked() }, "ツ");
198     /// ```
199     #[inline]
200     pub unsafe fn as_str_unchecked(&self) -> &str {
201         unsafe { core::str::from_utf8_unchecked(self.as_bytes()) }
202     }
203 
204     /// Convert this [`CStr`] into a [`CString`] by allocating memory and
205     /// copying over the string data.
206     pub fn to_cstring(&self) -> Result<CString, AllocError> {
207         CString::try_from(self)
208     }
209 }
210 
211 impl fmt::Display for CStr {
212     /// Formats printable ASCII characters, escaping the rest.
213     ///
214     /// ```
215     /// # use kernel::c_str;
216     /// # use kernel::fmt;
217     /// # use kernel::str::CStr;
218     /// # use kernel::str::CString;
219     /// let penguin = c_str!("��");
220     /// let s = CString::try_from_fmt(fmt!("{}", penguin)).unwrap();
221     /// assert_eq!(s.as_bytes_with_nul(), "\\xf0\\x9f\\x90\\xa7\0".as_bytes());
222     ///
223     /// let ascii = c_str!("so \"cool\"");
224     /// let s = CString::try_from_fmt(fmt!("{}", ascii)).unwrap();
225     /// assert_eq!(s.as_bytes_with_nul(), "so \"cool\"\0".as_bytes());
226     /// ```
227     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
228         for &c in self.as_bytes() {
229             if (0x20..0x7f).contains(&c) {
230                 // Printable character.
231                 f.write_char(c as char)?;
232             } else {
233                 write!(f, "\\x{:02x}", c)?;
234             }
235         }
236         Ok(())
237     }
238 }
239 
240 impl fmt::Debug for CStr {
241     /// Formats printable ASCII characters with a double quote on either end, escaping the rest.
242     ///
243     /// ```
244     /// # use kernel::c_str;
245     /// # use kernel::fmt;
246     /// # use kernel::str::CStr;
247     /// # use kernel::str::CString;
248     /// let penguin = c_str!("��");
249     /// let s = CString::try_from_fmt(fmt!("{:?}", penguin)).unwrap();
250     /// assert_eq!(s.as_bytes_with_nul(), "\"\\xf0\\x9f\\x90\\xa7\"\0".as_bytes());
251     ///
252     /// // Embedded double quotes are escaped.
253     /// let ascii = c_str!("so \"cool\"");
254     /// let s = CString::try_from_fmt(fmt!("{:?}", ascii)).unwrap();
255     /// assert_eq!(s.as_bytes_with_nul(), "\"so \\\"cool\\\"\"\0".as_bytes());
256     /// ```
257     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
258         f.write_str("\"")?;
259         for &c in self.as_bytes() {
260             match c {
261                 // Printable characters.
262                 b'\"' => f.write_str("\\\"")?,
263                 0x20..=0x7e => f.write_char(c as char)?,
264                 _ => write!(f, "\\x{:02x}", c)?,
265             }
266         }
267         f.write_str("\"")
268     }
269 }
270 
271 impl AsRef<BStr> for CStr {
272     #[inline]
273     fn as_ref(&self) -> &BStr {
274         self.as_bytes()
275     }
276 }
277 
278 impl Deref for CStr {
279     type Target = BStr;
280 
281     #[inline]
282     fn deref(&self) -> &Self::Target {
283         self.as_bytes()
284     }
285 }
286 
287 impl Index<ops::RangeFrom<usize>> for CStr {
288     type Output = CStr;
289 
290     #[inline]
291     fn index(&self, index: ops::RangeFrom<usize>) -> &Self::Output {
292         // Delegate bounds checking to slice.
293         // Assign to _ to mute clippy's unnecessary operation warning.
294         let _ = &self.as_bytes()[index.start..];
295         // SAFETY: We just checked the bounds.
296         unsafe { Self::from_bytes_with_nul_unchecked(&self.0[index.start..]) }
297     }
298 }
299 
300 impl Index<ops::RangeFull> for CStr {
301     type Output = CStr;
302 
303     #[inline]
304     fn index(&self, _index: ops::RangeFull) -> &Self::Output {
305         self
306     }
307 }
308 
309 mod private {
310     use core::ops;
311 
312     // Marker trait for index types that can be forward to `BStr`.
313     pub trait CStrIndex {}
314 
315     impl CStrIndex for usize {}
316     impl CStrIndex for ops::Range<usize> {}
317     impl CStrIndex for ops::RangeInclusive<usize> {}
318     impl CStrIndex for ops::RangeToInclusive<usize> {}
319 }
320 
321 impl<Idx> Index<Idx> for CStr
322 where
323     Idx: private::CStrIndex,
324     BStr: Index<Idx>,
325 {
326     type Output = <BStr as Index<Idx>>::Output;
327 
328     #[inline]
329     fn index(&self, index: Idx) -> &Self::Output {
330         &self.as_bytes()[index]
331     }
332 }
333 
334 /// Creates a new [`CStr`] from a string literal.
335 ///
336 /// The string literal should not contain any `NUL` bytes.
337 ///
338 /// # Examples
339 ///
340 /// ```
341 /// # use kernel::c_str;
342 /// # use kernel::str::CStr;
343 /// const MY_CSTR: &CStr = c_str!("My awesome CStr!");
344 /// ```
345 #[macro_export]
346 macro_rules! c_str {
347     ($str:expr) => {{
348         const S: &str = concat!($str, "\0");
349         const C: &$crate::str::CStr = match $crate::str::CStr::from_bytes_with_nul(S.as_bytes()) {
350             Ok(v) => v,
351             Err(_) => panic!("string contains interior NUL"),
352         };
353         C
354     }};
355 }
356 
357 #[cfg(test)]
358 mod tests {
359     use super::*;
360 
361     #[test]
362     fn test_cstr_to_str() {
363         let good_bytes = b"\xf0\x9f\xa6\x80\0";
364         let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap();
365         let checked_str = checked_cstr.to_str().unwrap();
366         assert_eq!(checked_str, "��");
367     }
368 
369     #[test]
370     #[should_panic]
371     fn test_cstr_to_str_panic() {
372         let bad_bytes = b"\xc3\x28\0";
373         let checked_cstr = CStr::from_bytes_with_nul(bad_bytes).unwrap();
374         checked_cstr.to_str().unwrap();
375     }
376 
377     #[test]
378     fn test_cstr_as_str_unchecked() {
379         let good_bytes = b"\xf0\x9f\x90\xA7\0";
380         let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap();
381         let unchecked_str = unsafe { checked_cstr.as_str_unchecked() };
382         assert_eq!(unchecked_str, "��");
383     }
384 }
385 
386 /// Allows formatting of [`fmt::Arguments`] into a raw buffer.
387 ///
388 /// It does not fail if callers write past the end of the buffer so that they can calculate the
389 /// size required to fit everything.
390 ///
391 /// # Invariants
392 ///
393 /// The memory region between `pos` (inclusive) and `end` (exclusive) is valid for writes if `pos`
394 /// is less than `end`.
395 pub(crate) struct RawFormatter {
396     // Use `usize` to use `saturating_*` functions.
397     beg: usize,
398     pos: usize,
399     end: usize,
400 }
401 
402 impl RawFormatter {
403     /// Creates a new instance of [`RawFormatter`] with an empty buffer.
404     fn new() -> Self {
405         // INVARIANT: The buffer is empty, so the region that needs to be writable is empty.
406         Self {
407             beg: 0,
408             pos: 0,
409             end: 0,
410         }
411     }
412 
413     /// Creates a new instance of [`RawFormatter`] with the given buffer pointers.
414     ///
415     /// # Safety
416     ///
417     /// If `pos` is less than `end`, then the region between `pos` (inclusive) and `end`
418     /// (exclusive) must be valid for writes for the lifetime of the returned [`RawFormatter`].
419     pub(crate) unsafe fn from_ptrs(pos: *mut u8, end: *mut u8) -> Self {
420         // INVARIANT: The safety requirements guarantee the type invariants.
421         Self {
422             beg: pos as _,
423             pos: pos as _,
424             end: end as _,
425         }
426     }
427 
428     /// Creates a new instance of [`RawFormatter`] with the given buffer.
429     ///
430     /// # Safety
431     ///
432     /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes
433     /// for the lifetime of the returned [`RawFormatter`].
434     pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self {
435         let pos = buf as usize;
436         // INVARIANT: We ensure that `end` is never less then `buf`, and the safety requirements
437         // guarantees that the memory region is valid for writes.
438         Self {
439             pos,
440             beg: pos,
441             end: pos.saturating_add(len),
442         }
443     }
444 
445     /// Returns the current insert position.
446     ///
447     /// N.B. It may point to invalid memory.
448     pub(crate) fn pos(&self) -> *mut u8 {
449         self.pos as _
450     }
451 
452     /// Returns the number of bytes written to the formatter.
453     pub(crate) fn bytes_written(&self) -> usize {
454         self.pos - self.beg
455     }
456 }
457 
458 impl fmt::Write for RawFormatter {
459     fn write_str(&mut self, s: &str) -> fmt::Result {
460         // `pos` value after writing `len` bytes. This does not have to be bounded by `end`, but we
461         // don't want it to wrap around to 0.
462         let pos_new = self.pos.saturating_add(s.len());
463 
464         // Amount that we can copy. `saturating_sub` ensures we get 0 if `pos` goes past `end`.
465         let len_to_copy = core::cmp::min(pos_new, self.end).saturating_sub(self.pos);
466 
467         if len_to_copy > 0 {
468             // SAFETY: If `len_to_copy` is non-zero, then we know `pos` has not gone past `end`
469             // yet, so it is valid for write per the type invariants.
470             unsafe {
471                 core::ptr::copy_nonoverlapping(
472                     s.as_bytes().as_ptr(),
473                     self.pos as *mut u8,
474                     len_to_copy,
475                 )
476             };
477         }
478 
479         self.pos = pos_new;
480         Ok(())
481     }
482 }
483 
484 /// Allows formatting of [`fmt::Arguments`] into a raw buffer.
485 ///
486 /// Fails if callers attempt to write more than will fit in the buffer.
487 pub(crate) struct Formatter(RawFormatter);
488 
489 impl Formatter {
490     /// Creates a new instance of [`Formatter`] with the given buffer.
491     ///
492     /// # Safety
493     ///
494     /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes
495     /// for the lifetime of the returned [`Formatter`].
496     pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self {
497         // SAFETY: The safety requirements of this function satisfy those of the callee.
498         Self(unsafe { RawFormatter::from_buffer(buf, len) })
499     }
500 }
501 
502 impl Deref for Formatter {
503     type Target = RawFormatter;
504 
505     fn deref(&self) -> &Self::Target {
506         &self.0
507     }
508 }
509 
510 impl fmt::Write for Formatter {
511     fn write_str(&mut self, s: &str) -> fmt::Result {
512         self.0.write_str(s)?;
513 
514         // Fail the request if we go past the end of the buffer.
515         if self.0.pos > self.0.end {
516             Err(fmt::Error)
517         } else {
518             Ok(())
519         }
520     }
521 }
522 
523 /// An owned string that is guaranteed to have exactly one `NUL` byte, which is at the end.
524 ///
525 /// Used for interoperability with kernel APIs that take C strings.
526 ///
527 /// # Invariants
528 ///
529 /// The string is always `NUL`-terminated and contains no other `NUL` bytes.
530 ///
531 /// # Examples
532 ///
533 /// ```
534 /// use kernel::{str::CString, fmt};
535 ///
536 /// let s = CString::try_from_fmt(fmt!("{}{}{}", "abc", 10, 20)).unwrap();
537 /// assert_eq!(s.as_bytes_with_nul(), "abc1020\0".as_bytes());
538 ///
539 /// let tmp = "testing";
540 /// let s = CString::try_from_fmt(fmt!("{tmp}{}", 123)).unwrap();
541 /// assert_eq!(s.as_bytes_with_nul(), "testing123\0".as_bytes());
542 ///
543 /// // This fails because it has an embedded `NUL` byte.
544 /// let s = CString::try_from_fmt(fmt!("a\0b{}", 123));
545 /// assert_eq!(s.is_ok(), false);
546 /// ```
547 pub struct CString {
548     buf: Vec<u8>,
549 }
550 
551 impl CString {
552     /// Creates an instance of [`CString`] from the given formatted arguments.
553     pub fn try_from_fmt(args: fmt::Arguments<'_>) -> Result<Self, Error> {
554         // Calculate the size needed (formatted string plus `NUL` terminator).
555         let mut f = RawFormatter::new();
556         f.write_fmt(args)?;
557         f.write_str("\0")?;
558         let size = f.bytes_written();
559 
560         // Allocate a vector with the required number of bytes, and write to it.
561         let mut buf = Vec::try_with_capacity(size)?;
562         // SAFETY: The buffer stored in `buf` is at least of size `size` and is valid for writes.
563         let mut f = unsafe { Formatter::from_buffer(buf.as_mut_ptr(), size) };
564         f.write_fmt(args)?;
565         f.write_str("\0")?;
566 
567         // SAFETY: The number of bytes that can be written to `f` is bounded by `size`, which is
568         // `buf`'s capacity. The contents of the buffer have been initialised by writes to `f`.
569         unsafe { buf.set_len(f.bytes_written()) };
570 
571         // Check that there are no `NUL` bytes before the end.
572         // SAFETY: The buffer is valid for read because `f.bytes_written()` is bounded by `size`
573         // (which the minimum buffer size) and is non-zero (we wrote at least the `NUL` terminator)
574         // so `f.bytes_written() - 1` doesn't underflow.
575         let ptr = unsafe { bindings::memchr(buf.as_ptr().cast(), 0, (f.bytes_written() - 1) as _) };
576         if !ptr.is_null() {
577             return Err(EINVAL);
578         }
579 
580         // INVARIANT: We wrote the `NUL` terminator and checked above that no other `NUL` bytes
581         // exist in the buffer.
582         Ok(Self { buf })
583     }
584 }
585 
586 impl Deref for CString {
587     type Target = CStr;
588 
589     fn deref(&self) -> &Self::Target {
590         // SAFETY: The type invariants guarantee that the string is `NUL`-terminated and that no
591         // other `NUL` bytes exist.
592         unsafe { CStr::from_bytes_with_nul_unchecked(self.buf.as_slice()) }
593     }
594 }
595 
596 impl<'a> TryFrom<&'a CStr> for CString {
597     type Error = AllocError;
598 
599     fn try_from(cstr: &'a CStr) -> Result<CString, AllocError> {
600         let mut buf = Vec::new();
601 
602         buf.try_extend_from_slice(cstr.as_bytes_with_nul())
603             .map_err(|_| AllocError)?;
604 
605         // INVARIANT: The `CStr` and `CString` types have the same invariants for
606         // the string data, and we copied it over without changes.
607         Ok(CString { buf })
608     }
609 }
610 
611 impl fmt::Debug for CString {
612     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
613         fmt::Debug::fmt(&**self, f)
614     }
615 }
616 
617 /// A convenience alias for [`core::format_args`].
618 #[macro_export]
619 macro_rules! fmt {
620     ($($f:tt)*) => ( core::format_args!($($f)*) )
621 }
622