1 // SPDX-License-Identifier: GPL-2.0 2 3 //! String representations. 4 5 use alloc::alloc::AllocError; 6 use alloc::vec::Vec; 7 use core::fmt::{self, Write}; 8 use core::ops::{self, Deref, Index}; 9 10 use crate::{ 11 bindings, 12 error::{code::*, Error}, 13 }; 14 15 /// Byte string without UTF-8 validity guarantee. 16 #[repr(transparent)] 17 pub struct BStr([u8]); 18 19 impl BStr { 20 /// Returns the length of this string. 21 #[inline] 22 pub const fn len(&self) -> usize { 23 self.0.len() 24 } 25 26 /// Returns `true` if the string is empty. 27 #[inline] 28 pub const fn is_empty(&self) -> bool { 29 self.len() == 0 30 } 31 32 /// Creates a [`BStr`] from a `[u8]`. 33 #[inline] 34 pub const fn from_bytes(bytes: &[u8]) -> &Self { 35 // SAFETY: `BStr` is transparent to `[u8]`. 36 unsafe { &*(bytes as *const [u8] as *const BStr) } 37 } 38 } 39 40 impl fmt::Display for BStr { 41 /// Formats printable ASCII characters, escaping the rest. 42 /// 43 /// ``` 44 /// # use kernel::{fmt, b_str, str::{BStr, CString}}; 45 /// let ascii = b_str!("Hello, BStr!"); 46 /// let s = CString::try_from_fmt(fmt!("{}", ascii)).unwrap(); 47 /// assert_eq!(s.as_bytes(), "Hello, BStr!".as_bytes()); 48 /// 49 /// let non_ascii = b_str!(""); 50 /// let s = CString::try_from_fmt(fmt!("{}", non_ascii)).unwrap(); 51 /// assert_eq!(s.as_bytes(), "\\xf0\\x9f\\xa6\\x80".as_bytes()); 52 /// ``` 53 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 54 for &b in &self.0 { 55 match b { 56 // Common escape codes. 57 b'\t' => f.write_str("\\t")?, 58 b'\n' => f.write_str("\\n")?, 59 b'\r' => f.write_str("\\r")?, 60 // Printable characters. 61 0x20..=0x7e => f.write_char(b as char)?, 62 _ => write!(f, "\\x{:02x}", b)?, 63 } 64 } 65 Ok(()) 66 } 67 } 68 69 impl fmt::Debug for BStr { 70 /// Formats printable ASCII characters with a double quote on either end, 71 /// escaping the rest. 72 /// 73 /// ``` 74 /// # use kernel::{fmt, b_str, str::{BStr, CString}}; 75 /// // Embedded double quotes are escaped. 76 /// let ascii = b_str!("Hello, \"BStr\"!"); 77 /// let s = CString::try_from_fmt(fmt!("{:?}", ascii)).unwrap(); 78 /// assert_eq!(s.as_bytes(), "\"Hello, \\\"BStr\\\"!\"".as_bytes()); 79 /// 80 /// let non_ascii = b_str!(""); 81 /// let s = CString::try_from_fmt(fmt!("{:?}", non_ascii)).unwrap(); 82 /// assert_eq!(s.as_bytes(), "\"\\xf0\\x9f\\x98\\xba\"".as_bytes()); 83 /// ``` 84 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 85 f.write_char('"')?; 86 for &b in &self.0 { 87 match b { 88 // Common escape codes. 89 b'\t' => f.write_str("\\t")?, 90 b'\n' => f.write_str("\\n")?, 91 b'\r' => f.write_str("\\r")?, 92 // String escape characters. 93 b'\"' => f.write_str("\\\"")?, 94 b'\\' => f.write_str("\\\\")?, 95 // Printable characters. 96 0x20..=0x7e => f.write_char(b as char)?, 97 _ => write!(f, "\\x{:02x}", b)?, 98 } 99 } 100 f.write_char('"') 101 } 102 } 103 104 impl Deref for BStr { 105 type Target = [u8]; 106 107 #[inline] 108 fn deref(&self) -> &Self::Target { 109 &self.0 110 } 111 } 112 113 /// Creates a new [`BStr`] from a string literal. 114 /// 115 /// `b_str!` converts the supplied string literal to byte string, so non-ASCII 116 /// characters can be included. 117 /// 118 /// # Examples 119 /// 120 /// ``` 121 /// # use kernel::b_str; 122 /// # use kernel::str::BStr; 123 /// const MY_BSTR: &BStr = b_str!("My awesome BStr!"); 124 /// ``` 125 #[macro_export] 126 macro_rules! b_str { 127 ($str:literal) => {{ 128 const S: &'static str = $str; 129 const C: &'static $crate::str::BStr = $crate::str::BStr::from_bytes(S.as_bytes()); 130 C 131 }}; 132 } 133 134 /// Possible errors when using conversion functions in [`CStr`]. 135 #[derive(Debug, Clone, Copy)] 136 pub enum CStrConvertError { 137 /// Supplied bytes contain an interior `NUL`. 138 InteriorNul, 139 140 /// Supplied bytes are not terminated by `NUL`. 141 NotNulTerminated, 142 } 143 144 impl From<CStrConvertError> for Error { 145 #[inline] 146 fn from(_: CStrConvertError) -> Error { 147 EINVAL 148 } 149 } 150 151 /// A string that is guaranteed to have exactly one `NUL` byte, which is at the 152 /// end. 153 /// 154 /// Used for interoperability with kernel APIs that take C strings. 155 #[repr(transparent)] 156 pub struct CStr([u8]); 157 158 impl CStr { 159 /// Returns the length of this string excluding `NUL`. 160 #[inline] 161 pub const fn len(&self) -> usize { 162 self.len_with_nul() - 1 163 } 164 165 /// Returns the length of this string with `NUL`. 166 #[inline] 167 pub const fn len_with_nul(&self) -> usize { 168 // SAFETY: This is one of the invariant of `CStr`. 169 // We add a `unreachable_unchecked` here to hint the optimizer that 170 // the value returned from this function is non-zero. 171 if self.0.is_empty() { 172 unsafe { core::hint::unreachable_unchecked() }; 173 } 174 self.0.len() 175 } 176 177 /// Returns `true` if the string only includes `NUL`. 178 #[inline] 179 pub const fn is_empty(&self) -> bool { 180 self.len() == 0 181 } 182 183 /// Wraps a raw C string pointer. 184 /// 185 /// # Safety 186 /// 187 /// `ptr` must be a valid pointer to a `NUL`-terminated C string, and it must 188 /// last at least `'a`. When `CStr` is alive, the memory pointed by `ptr` 189 /// must not be mutated. 190 #[inline] 191 pub unsafe fn from_char_ptr<'a>(ptr: *const core::ffi::c_char) -> &'a Self { 192 // SAFETY: The safety precondition guarantees `ptr` is a valid pointer 193 // to a `NUL`-terminated C string. 194 let len = unsafe { bindings::strlen(ptr) } + 1; 195 // SAFETY: Lifetime guaranteed by the safety precondition. 196 let bytes = unsafe { core::slice::from_raw_parts(ptr as _, len as _) }; 197 // SAFETY: As `len` is returned by `strlen`, `bytes` does not contain interior `NUL`. 198 // As we have added 1 to `len`, the last byte is known to be `NUL`. 199 unsafe { Self::from_bytes_with_nul_unchecked(bytes) } 200 } 201 202 /// Creates a [`CStr`] from a `[u8]`. 203 /// 204 /// The provided slice must be `NUL`-terminated, does not contain any 205 /// interior `NUL` bytes. 206 pub const fn from_bytes_with_nul(bytes: &[u8]) -> Result<&Self, CStrConvertError> { 207 if bytes.is_empty() { 208 return Err(CStrConvertError::NotNulTerminated); 209 } 210 if bytes[bytes.len() - 1] != 0 { 211 return Err(CStrConvertError::NotNulTerminated); 212 } 213 let mut i = 0; 214 // `i + 1 < bytes.len()` allows LLVM to optimize away bounds checking, 215 // while it couldn't optimize away bounds checks for `i < bytes.len() - 1`. 216 while i + 1 < bytes.len() { 217 if bytes[i] == 0 { 218 return Err(CStrConvertError::InteriorNul); 219 } 220 i += 1; 221 } 222 // SAFETY: We just checked that all properties hold. 223 Ok(unsafe { Self::from_bytes_with_nul_unchecked(bytes) }) 224 } 225 226 /// Creates a [`CStr`] from a `[u8]` without performing any additional 227 /// checks. 228 /// 229 /// # Safety 230 /// 231 /// `bytes` *must* end with a `NUL` byte, and should only have a single 232 /// `NUL` byte (or the string will be truncated). 233 #[inline] 234 pub const unsafe fn from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr { 235 // SAFETY: Properties of `bytes` guaranteed by the safety precondition. 236 unsafe { core::mem::transmute(bytes) } 237 } 238 239 /// Returns a C pointer to the string. 240 #[inline] 241 pub const fn as_char_ptr(&self) -> *const core::ffi::c_char { 242 self.0.as_ptr() as _ 243 } 244 245 /// Convert the string to a byte slice without the trailing `NUL` byte. 246 #[inline] 247 pub fn as_bytes(&self) -> &[u8] { 248 &self.0[..self.len()] 249 } 250 251 /// Convert the string to a byte slice containing the trailing `NUL` byte. 252 #[inline] 253 pub const fn as_bytes_with_nul(&self) -> &[u8] { 254 &self.0 255 } 256 257 /// Yields a [`&str`] slice if the [`CStr`] contains valid UTF-8. 258 /// 259 /// If the contents of the [`CStr`] are valid UTF-8 data, this 260 /// function will return the corresponding [`&str`] slice. Otherwise, 261 /// it will return an error with details of where UTF-8 validation failed. 262 /// 263 /// # Examples 264 /// 265 /// ``` 266 /// # use kernel::str::CStr; 267 /// let cstr = CStr::from_bytes_with_nul(b"foo\0").unwrap(); 268 /// assert_eq!(cstr.to_str(), Ok("foo")); 269 /// ``` 270 #[inline] 271 pub fn to_str(&self) -> Result<&str, core::str::Utf8Error> { 272 core::str::from_utf8(self.as_bytes()) 273 } 274 275 /// Unsafely convert this [`CStr`] into a [`&str`], without checking for 276 /// valid UTF-8. 277 /// 278 /// # Safety 279 /// 280 /// The contents must be valid UTF-8. 281 /// 282 /// # Examples 283 /// 284 /// ``` 285 /// # use kernel::c_str; 286 /// # use kernel::str::CStr; 287 /// let bar = c_str!("ツ"); 288 /// // SAFETY: String literals are guaranteed to be valid UTF-8 289 /// // by the Rust compiler. 290 /// assert_eq!(unsafe { bar.as_str_unchecked() }, "ツ"); 291 /// ``` 292 #[inline] 293 pub unsafe fn as_str_unchecked(&self) -> &str { 294 unsafe { core::str::from_utf8_unchecked(self.as_bytes()) } 295 } 296 297 /// Convert this [`CStr`] into a [`CString`] by allocating memory and 298 /// copying over the string data. 299 pub fn to_cstring(&self) -> Result<CString, AllocError> { 300 CString::try_from(self) 301 } 302 } 303 304 impl fmt::Display for CStr { 305 /// Formats printable ASCII characters, escaping the rest. 306 /// 307 /// ``` 308 /// # use kernel::c_str; 309 /// # use kernel::fmt; 310 /// # use kernel::str::CStr; 311 /// # use kernel::str::CString; 312 /// let penguin = c_str!(""); 313 /// let s = CString::try_from_fmt(fmt!("{}", penguin)).unwrap(); 314 /// assert_eq!(s.as_bytes_with_nul(), "\\xf0\\x9f\\x90\\xa7\0".as_bytes()); 315 /// 316 /// let ascii = c_str!("so \"cool\""); 317 /// let s = CString::try_from_fmt(fmt!("{}", ascii)).unwrap(); 318 /// assert_eq!(s.as_bytes_with_nul(), "so \"cool\"\0".as_bytes()); 319 /// ``` 320 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 321 for &c in self.as_bytes() { 322 if (0x20..0x7f).contains(&c) { 323 // Printable character. 324 f.write_char(c as char)?; 325 } else { 326 write!(f, "\\x{:02x}", c)?; 327 } 328 } 329 Ok(()) 330 } 331 } 332 333 impl fmt::Debug for CStr { 334 /// Formats printable ASCII characters with a double quote on either end, escaping the rest. 335 /// 336 /// ``` 337 /// # use kernel::c_str; 338 /// # use kernel::fmt; 339 /// # use kernel::str::CStr; 340 /// # use kernel::str::CString; 341 /// let penguin = c_str!(""); 342 /// let s = CString::try_from_fmt(fmt!("{:?}", penguin)).unwrap(); 343 /// assert_eq!(s.as_bytes_with_nul(), "\"\\xf0\\x9f\\x90\\xa7\"\0".as_bytes()); 344 /// 345 /// // Embedded double quotes are escaped. 346 /// let ascii = c_str!("so \"cool\""); 347 /// let s = CString::try_from_fmt(fmt!("{:?}", ascii)).unwrap(); 348 /// assert_eq!(s.as_bytes_with_nul(), "\"so \\\"cool\\\"\"\0".as_bytes()); 349 /// ``` 350 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 351 f.write_str("\"")?; 352 for &c in self.as_bytes() { 353 match c { 354 // Printable characters. 355 b'\"' => f.write_str("\\\"")?, 356 0x20..=0x7e => f.write_char(c as char)?, 357 _ => write!(f, "\\x{:02x}", c)?, 358 } 359 } 360 f.write_str("\"") 361 } 362 } 363 364 impl AsRef<BStr> for CStr { 365 #[inline] 366 fn as_ref(&self) -> &BStr { 367 BStr::from_bytes(self.as_bytes()) 368 } 369 } 370 371 impl Deref for CStr { 372 type Target = BStr; 373 374 #[inline] 375 fn deref(&self) -> &Self::Target { 376 self.as_ref() 377 } 378 } 379 380 impl Index<ops::RangeFrom<usize>> for CStr { 381 type Output = CStr; 382 383 #[inline] 384 fn index(&self, index: ops::RangeFrom<usize>) -> &Self::Output { 385 // Delegate bounds checking to slice. 386 // Assign to _ to mute clippy's unnecessary operation warning. 387 let _ = &self.as_bytes()[index.start..]; 388 // SAFETY: We just checked the bounds. 389 unsafe { Self::from_bytes_with_nul_unchecked(&self.0[index.start..]) } 390 } 391 } 392 393 impl Index<ops::RangeFull> for CStr { 394 type Output = CStr; 395 396 #[inline] 397 fn index(&self, _index: ops::RangeFull) -> &Self::Output { 398 self 399 } 400 } 401 402 mod private { 403 use core::ops; 404 405 // Marker trait for index types that can be forward to `BStr`. 406 pub trait CStrIndex {} 407 408 impl CStrIndex for usize {} 409 impl CStrIndex for ops::Range<usize> {} 410 impl CStrIndex for ops::RangeInclusive<usize> {} 411 impl CStrIndex for ops::RangeToInclusive<usize> {} 412 } 413 414 impl<Idx> Index<Idx> for CStr 415 where 416 Idx: private::CStrIndex, 417 BStr: Index<Idx>, 418 { 419 type Output = <BStr as Index<Idx>>::Output; 420 421 #[inline] 422 fn index(&self, index: Idx) -> &Self::Output { 423 &self.as_ref()[index] 424 } 425 } 426 427 /// Creates a new [`CStr`] from a string literal. 428 /// 429 /// The string literal should not contain any `NUL` bytes. 430 /// 431 /// # Examples 432 /// 433 /// ``` 434 /// # use kernel::c_str; 435 /// # use kernel::str::CStr; 436 /// const MY_CSTR: &CStr = c_str!("My awesome CStr!"); 437 /// ``` 438 #[macro_export] 439 macro_rules! c_str { 440 ($str:expr) => {{ 441 const S: &str = concat!($str, "\0"); 442 const C: &$crate::str::CStr = match $crate::str::CStr::from_bytes_with_nul(S.as_bytes()) { 443 Ok(v) => v, 444 Err(_) => panic!("string contains interior NUL"), 445 }; 446 C 447 }}; 448 } 449 450 #[cfg(test)] 451 mod tests { 452 use super::*; 453 use alloc::format; 454 455 const ALL_ASCII_CHARS: &'static str = 456 "\\x01\\x02\\x03\\x04\\x05\\x06\\x07\\x08\\x09\\x0a\\x0b\\x0c\\x0d\\x0e\\x0f\ 457 \\x10\\x11\\x12\\x13\\x14\\x15\\x16\\x17\\x18\\x19\\x1a\\x1b\\x1c\\x1d\\x1e\\x1f \ 458 !\"#$%&'()*+,-./0123456789:;<=>?@\ 459 ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~\\x7f\ 460 \\x80\\x81\\x82\\x83\\x84\\x85\\x86\\x87\\x88\\x89\\x8a\\x8b\\x8c\\x8d\\x8e\\x8f\ 461 \\x90\\x91\\x92\\x93\\x94\\x95\\x96\\x97\\x98\\x99\\x9a\\x9b\\x9c\\x9d\\x9e\\x9f\ 462 \\xa0\\xa1\\xa2\\xa3\\xa4\\xa5\\xa6\\xa7\\xa8\\xa9\\xaa\\xab\\xac\\xad\\xae\\xaf\ 463 \\xb0\\xb1\\xb2\\xb3\\xb4\\xb5\\xb6\\xb7\\xb8\\xb9\\xba\\xbb\\xbc\\xbd\\xbe\\xbf\ 464 \\xc0\\xc1\\xc2\\xc3\\xc4\\xc5\\xc6\\xc7\\xc8\\xc9\\xca\\xcb\\xcc\\xcd\\xce\\xcf\ 465 \\xd0\\xd1\\xd2\\xd3\\xd4\\xd5\\xd6\\xd7\\xd8\\xd9\\xda\\xdb\\xdc\\xdd\\xde\\xdf\ 466 \\xe0\\xe1\\xe2\\xe3\\xe4\\xe5\\xe6\\xe7\\xe8\\xe9\\xea\\xeb\\xec\\xed\\xee\\xef\ 467 \\xf0\\xf1\\xf2\\xf3\\xf4\\xf5\\xf6\\xf7\\xf8\\xf9\\xfa\\xfb\\xfc\\xfd\\xfe\\xff"; 468 469 #[test] 470 fn test_cstr_to_str() { 471 let good_bytes = b"\xf0\x9f\xa6\x80\0"; 472 let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap(); 473 let checked_str = checked_cstr.to_str().unwrap(); 474 assert_eq!(checked_str, ""); 475 } 476 477 #[test] 478 #[should_panic] 479 fn test_cstr_to_str_panic() { 480 let bad_bytes = b"\xc3\x28\0"; 481 let checked_cstr = CStr::from_bytes_with_nul(bad_bytes).unwrap(); 482 checked_cstr.to_str().unwrap(); 483 } 484 485 #[test] 486 fn test_cstr_as_str_unchecked() { 487 let good_bytes = b"\xf0\x9f\x90\xA7\0"; 488 let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap(); 489 let unchecked_str = unsafe { checked_cstr.as_str_unchecked() }; 490 assert_eq!(unchecked_str, ""); 491 } 492 493 #[test] 494 fn test_cstr_display() { 495 let hello_world = CStr::from_bytes_with_nul(b"hello, world!\0").unwrap(); 496 assert_eq!(format!("{}", hello_world), "hello, world!"); 497 let non_printables = CStr::from_bytes_with_nul(b"\x01\x09\x0a\0").unwrap(); 498 assert_eq!(format!("{}", non_printables), "\\x01\\x09\\x0a"); 499 let non_ascii = CStr::from_bytes_with_nul(b"d\xe9j\xe0 vu\0").unwrap(); 500 assert_eq!(format!("{}", non_ascii), "d\\xe9j\\xe0 vu"); 501 let good_bytes = CStr::from_bytes_with_nul(b"\xf0\x9f\xa6\x80\0").unwrap(); 502 assert_eq!(format!("{}", good_bytes), "\\xf0\\x9f\\xa6\\x80"); 503 } 504 505 #[test] 506 fn test_cstr_display_all_bytes() { 507 let mut bytes: [u8; 256] = [0; 256]; 508 // fill `bytes` with [1..=255] + [0] 509 for i in u8::MIN..=u8::MAX { 510 bytes[i as usize] = i.wrapping_add(1); 511 } 512 let cstr = CStr::from_bytes_with_nul(&bytes).unwrap(); 513 assert_eq!(format!("{}", cstr), ALL_ASCII_CHARS); 514 } 515 516 #[test] 517 fn test_cstr_debug() { 518 let hello_world = CStr::from_bytes_with_nul(b"hello, world!\0").unwrap(); 519 assert_eq!(format!("{:?}", hello_world), "\"hello, world!\""); 520 let non_printables = CStr::from_bytes_with_nul(b"\x01\x09\x0a\0").unwrap(); 521 assert_eq!(format!("{:?}", non_printables), "\"\\x01\\x09\\x0a\""); 522 let non_ascii = CStr::from_bytes_with_nul(b"d\xe9j\xe0 vu\0").unwrap(); 523 assert_eq!(format!("{:?}", non_ascii), "\"d\\xe9j\\xe0 vu\""); 524 let good_bytes = CStr::from_bytes_with_nul(b"\xf0\x9f\xa6\x80\0").unwrap(); 525 assert_eq!(format!("{:?}", good_bytes), "\"\\xf0\\x9f\\xa6\\x80\""); 526 } 527 528 #[test] 529 fn test_bstr_display() { 530 let hello_world = BStr::from_bytes(b"hello, world!"); 531 assert_eq!(format!("{}", hello_world), "hello, world!"); 532 let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_"); 533 assert_eq!(format!("{}", escapes), "_\\t_\\n_\\r_\\_'_\"_"); 534 let others = BStr::from_bytes(b"\x01"); 535 assert_eq!(format!("{}", others), "\\x01"); 536 let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu"); 537 assert_eq!(format!("{}", non_ascii), "d\\xe9j\\xe0 vu"); 538 let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80"); 539 assert_eq!(format!("{}", good_bytes), "\\xf0\\x9f\\xa6\\x80"); 540 } 541 542 #[test] 543 fn test_bstr_debug() { 544 let hello_world = BStr::from_bytes(b"hello, world!"); 545 assert_eq!(format!("{:?}", hello_world), "\"hello, world!\""); 546 let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_"); 547 assert_eq!(format!("{:?}", escapes), "\"_\\t_\\n_\\r_\\\\_'_\\\"_\""); 548 let others = BStr::from_bytes(b"\x01"); 549 assert_eq!(format!("{:?}", others), "\"\\x01\""); 550 let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu"); 551 assert_eq!(format!("{:?}", non_ascii), "\"d\\xe9j\\xe0 vu\""); 552 let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80"); 553 assert_eq!(format!("{:?}", good_bytes), "\"\\xf0\\x9f\\xa6\\x80\""); 554 } 555 } 556 557 /// Allows formatting of [`fmt::Arguments`] into a raw buffer. 558 /// 559 /// It does not fail if callers write past the end of the buffer so that they can calculate the 560 /// size required to fit everything. 561 /// 562 /// # Invariants 563 /// 564 /// The memory region between `pos` (inclusive) and `end` (exclusive) is valid for writes if `pos` 565 /// is less than `end`. 566 pub(crate) struct RawFormatter { 567 // Use `usize` to use `saturating_*` functions. 568 beg: usize, 569 pos: usize, 570 end: usize, 571 } 572 573 impl RawFormatter { 574 /// Creates a new instance of [`RawFormatter`] with an empty buffer. 575 fn new() -> Self { 576 // INVARIANT: The buffer is empty, so the region that needs to be writable is empty. 577 Self { 578 beg: 0, 579 pos: 0, 580 end: 0, 581 } 582 } 583 584 /// Creates a new instance of [`RawFormatter`] with the given buffer pointers. 585 /// 586 /// # Safety 587 /// 588 /// If `pos` is less than `end`, then the region between `pos` (inclusive) and `end` 589 /// (exclusive) must be valid for writes for the lifetime of the returned [`RawFormatter`]. 590 pub(crate) unsafe fn from_ptrs(pos: *mut u8, end: *mut u8) -> Self { 591 // INVARIANT: The safety requirements guarantee the type invariants. 592 Self { 593 beg: pos as _, 594 pos: pos as _, 595 end: end as _, 596 } 597 } 598 599 /// Creates a new instance of [`RawFormatter`] with the given buffer. 600 /// 601 /// # Safety 602 /// 603 /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes 604 /// for the lifetime of the returned [`RawFormatter`]. 605 pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self { 606 let pos = buf as usize; 607 // INVARIANT: We ensure that `end` is never less then `buf`, and the safety requirements 608 // guarantees that the memory region is valid for writes. 609 Self { 610 pos, 611 beg: pos, 612 end: pos.saturating_add(len), 613 } 614 } 615 616 /// Returns the current insert position. 617 /// 618 /// N.B. It may point to invalid memory. 619 pub(crate) fn pos(&self) -> *mut u8 { 620 self.pos as _ 621 } 622 623 /// Returns the number of bytes written to the formatter. 624 pub(crate) fn bytes_written(&self) -> usize { 625 self.pos - self.beg 626 } 627 } 628 629 impl fmt::Write for RawFormatter { 630 fn write_str(&mut self, s: &str) -> fmt::Result { 631 // `pos` value after writing `len` bytes. This does not have to be bounded by `end`, but we 632 // don't want it to wrap around to 0. 633 let pos_new = self.pos.saturating_add(s.len()); 634 635 // Amount that we can copy. `saturating_sub` ensures we get 0 if `pos` goes past `end`. 636 let len_to_copy = core::cmp::min(pos_new, self.end).saturating_sub(self.pos); 637 638 if len_to_copy > 0 { 639 // SAFETY: If `len_to_copy` is non-zero, then we know `pos` has not gone past `end` 640 // yet, so it is valid for write per the type invariants. 641 unsafe { 642 core::ptr::copy_nonoverlapping( 643 s.as_bytes().as_ptr(), 644 self.pos as *mut u8, 645 len_to_copy, 646 ) 647 }; 648 } 649 650 self.pos = pos_new; 651 Ok(()) 652 } 653 } 654 655 /// Allows formatting of [`fmt::Arguments`] into a raw buffer. 656 /// 657 /// Fails if callers attempt to write more than will fit in the buffer. 658 pub(crate) struct Formatter(RawFormatter); 659 660 impl Formatter { 661 /// Creates a new instance of [`Formatter`] with the given buffer. 662 /// 663 /// # Safety 664 /// 665 /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes 666 /// for the lifetime of the returned [`Formatter`]. 667 pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self { 668 // SAFETY: The safety requirements of this function satisfy those of the callee. 669 Self(unsafe { RawFormatter::from_buffer(buf, len) }) 670 } 671 } 672 673 impl Deref for Formatter { 674 type Target = RawFormatter; 675 676 fn deref(&self) -> &Self::Target { 677 &self.0 678 } 679 } 680 681 impl fmt::Write for Formatter { 682 fn write_str(&mut self, s: &str) -> fmt::Result { 683 self.0.write_str(s)?; 684 685 // Fail the request if we go past the end of the buffer. 686 if self.0.pos > self.0.end { 687 Err(fmt::Error) 688 } else { 689 Ok(()) 690 } 691 } 692 } 693 694 /// An owned string that is guaranteed to have exactly one `NUL` byte, which is at the end. 695 /// 696 /// Used for interoperability with kernel APIs that take C strings. 697 /// 698 /// # Invariants 699 /// 700 /// The string is always `NUL`-terminated and contains no other `NUL` bytes. 701 /// 702 /// # Examples 703 /// 704 /// ``` 705 /// use kernel::{str::CString, fmt}; 706 /// 707 /// let s = CString::try_from_fmt(fmt!("{}{}{}", "abc", 10, 20)).unwrap(); 708 /// assert_eq!(s.as_bytes_with_nul(), "abc1020\0".as_bytes()); 709 /// 710 /// let tmp = "testing"; 711 /// let s = CString::try_from_fmt(fmt!("{tmp}{}", 123)).unwrap(); 712 /// assert_eq!(s.as_bytes_with_nul(), "testing123\0".as_bytes()); 713 /// 714 /// // This fails because it has an embedded `NUL` byte. 715 /// let s = CString::try_from_fmt(fmt!("a\0b{}", 123)); 716 /// assert_eq!(s.is_ok(), false); 717 /// ``` 718 pub struct CString { 719 buf: Vec<u8>, 720 } 721 722 impl CString { 723 /// Creates an instance of [`CString`] from the given formatted arguments. 724 pub fn try_from_fmt(args: fmt::Arguments<'_>) -> Result<Self, Error> { 725 // Calculate the size needed (formatted string plus `NUL` terminator). 726 let mut f = RawFormatter::new(); 727 f.write_fmt(args)?; 728 f.write_str("\0")?; 729 let size = f.bytes_written(); 730 731 // Allocate a vector with the required number of bytes, and write to it. 732 let mut buf = Vec::try_with_capacity(size)?; 733 // SAFETY: The buffer stored in `buf` is at least of size `size` and is valid for writes. 734 let mut f = unsafe { Formatter::from_buffer(buf.as_mut_ptr(), size) }; 735 f.write_fmt(args)?; 736 f.write_str("\0")?; 737 738 // SAFETY: The number of bytes that can be written to `f` is bounded by `size`, which is 739 // `buf`'s capacity. The contents of the buffer have been initialised by writes to `f`. 740 unsafe { buf.set_len(f.bytes_written()) }; 741 742 // Check that there are no `NUL` bytes before the end. 743 // SAFETY: The buffer is valid for read because `f.bytes_written()` is bounded by `size` 744 // (which the minimum buffer size) and is non-zero (we wrote at least the `NUL` terminator) 745 // so `f.bytes_written() - 1` doesn't underflow. 746 let ptr = unsafe { bindings::memchr(buf.as_ptr().cast(), 0, (f.bytes_written() - 1) as _) }; 747 if !ptr.is_null() { 748 return Err(EINVAL); 749 } 750 751 // INVARIANT: We wrote the `NUL` terminator and checked above that no other `NUL` bytes 752 // exist in the buffer. 753 Ok(Self { buf }) 754 } 755 } 756 757 impl Deref for CString { 758 type Target = CStr; 759 760 fn deref(&self) -> &Self::Target { 761 // SAFETY: The type invariants guarantee that the string is `NUL`-terminated and that no 762 // other `NUL` bytes exist. 763 unsafe { CStr::from_bytes_with_nul_unchecked(self.buf.as_slice()) } 764 } 765 } 766 767 impl<'a> TryFrom<&'a CStr> for CString { 768 type Error = AllocError; 769 770 fn try_from(cstr: &'a CStr) -> Result<CString, AllocError> { 771 let mut buf = Vec::new(); 772 773 buf.try_extend_from_slice(cstr.as_bytes_with_nul()) 774 .map_err(|_| AllocError)?; 775 776 // INVARIANT: The `CStr` and `CString` types have the same invariants for 777 // the string data, and we copied it over without changes. 778 Ok(CString { buf }) 779 } 780 } 781 782 impl fmt::Debug for CString { 783 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 784 fmt::Debug::fmt(&**self, f) 785 } 786 } 787 788 /// A convenience alias for [`core::format_args`]. 789 #[macro_export] 790 macro_rules! fmt { 791 ($($f:tt)*) => ( core::format_args!($($f)*) ) 792 } 793