xref: /linux/rust/kernel/str.rs (revision 3b83f5d5e78ac5cddd811a5e431af73959864390)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! String representations.
4 
5 use crate::{
6     alloc::{flags::*, AllocError, KVec},
7     error::{to_result, Result},
8     fmt::{self, Write},
9     prelude::*,
10 };
11 use core::{
12     marker::PhantomData,
13     ops::{Deref, DerefMut, Index},
14 };
15 
16 pub use crate::prelude::CStr;
17 
18 /// Byte string without UTF-8 validity guarantee.
19 #[repr(transparent)]
20 pub struct BStr([u8]);
21 
22 impl BStr {
23     /// Returns the length of this string.
24     #[inline]
25     pub const fn len(&self) -> usize {
26         self.0.len()
27     }
28 
29     /// Returns `true` if the string is empty.
30     #[inline]
31     pub const fn is_empty(&self) -> bool {
32         self.len() == 0
33     }
34 
35     /// Creates a [`BStr`] from a `[u8]`.
36     #[inline]
37     pub const fn from_bytes(bytes: &[u8]) -> &Self {
38         // SAFETY: `BStr` is transparent to `[u8]`.
39         unsafe { &*(core::ptr::from_ref(bytes) as *const BStr) }
40     }
41 
42     /// Strip a prefix from `self`. Delegates to [`slice::strip_prefix`].
43     ///
44     /// # Examples
45     ///
46     /// ```
47     /// # use kernel::b_str;
48     /// assert_eq!(Some(b_str!("bar")), b_str!("foobar").strip_prefix(b_str!("foo")));
49     /// assert_eq!(None, b_str!("foobar").strip_prefix(b_str!("bar")));
50     /// assert_eq!(Some(b_str!("foobar")), b_str!("foobar").strip_prefix(b_str!("")));
51     /// assert_eq!(Some(b_str!("")), b_str!("foobar").strip_prefix(b_str!("foobar")));
52     /// ```
53     pub fn strip_prefix(&self, pattern: impl AsRef<Self>) -> Option<&BStr> {
54         self.deref()
55             .strip_prefix(pattern.as_ref().deref())
56             .map(Self::from_bytes)
57     }
58 }
59 
60 impl fmt::Display for BStr {
61     /// Formats printable ASCII characters, escaping the rest.
62     ///
63     /// ```
64     /// # use kernel::{prelude::fmt, b_str, str::{BStr, CString}};
65     /// let ascii = b_str!("Hello, BStr!");
66     /// let s = CString::try_from_fmt(fmt!("{ascii}"))?;
67     /// assert_eq!(s.to_bytes(), "Hello, BStr!".as_bytes());
68     ///
69     /// let non_ascii = b_str!("��");
70     /// let s = CString::try_from_fmt(fmt!("{non_ascii}"))?;
71     /// assert_eq!(s.to_bytes(), "\\xf0\\x9f\\xa6\\x80".as_bytes());
72     /// # Ok::<(), kernel::error::Error>(())
73     /// ```
74     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
75         for &b in &self.0 {
76             match b {
77                 // Common escape codes.
78                 b'\t' => f.write_str("\\t")?,
79                 b'\n' => f.write_str("\\n")?,
80                 b'\r' => f.write_str("\\r")?,
81                 // Printable characters.
82                 0x20..=0x7e => f.write_char(b as char)?,
83                 _ => write!(f, "\\x{b:02x}")?,
84             }
85         }
86         Ok(())
87     }
88 }
89 
90 impl fmt::Debug for BStr {
91     /// Formats printable ASCII characters with a double quote on either end,
92     /// escaping the rest.
93     ///
94     /// ```
95     /// # use kernel::{prelude::fmt, b_str, str::{BStr, CString}};
96     /// // Embedded double quotes are escaped.
97     /// let ascii = b_str!("Hello, \"BStr\"!");
98     /// let s = CString::try_from_fmt(fmt!("{ascii:?}"))?;
99     /// assert_eq!(s.to_bytes(), "\"Hello, \\\"BStr\\\"!\"".as_bytes());
100     ///
101     /// let non_ascii = b_str!("��");
102     /// let s = CString::try_from_fmt(fmt!("{non_ascii:?}"))?;
103     /// assert_eq!(s.to_bytes(), "\"\\xf0\\x9f\\x98\\xba\"".as_bytes());
104     /// # Ok::<(), kernel::error::Error>(())
105     /// ```
106     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
107         f.write_char('"')?;
108         for &b in &self.0 {
109             match b {
110                 // Common escape codes.
111                 b'\t' => f.write_str("\\t")?,
112                 b'\n' => f.write_str("\\n")?,
113                 b'\r' => f.write_str("\\r")?,
114                 // String escape characters.
115                 b'\"' => f.write_str("\\\"")?,
116                 b'\\' => f.write_str("\\\\")?,
117                 // Printable characters.
118                 0x20..=0x7e => f.write_char(b as char)?,
119                 _ => write!(f, "\\x{b:02x}")?,
120             }
121         }
122         f.write_char('"')
123     }
124 }
125 
126 impl Deref for BStr {
127     type Target = [u8];
128 
129     #[inline]
130     fn deref(&self) -> &Self::Target {
131         &self.0
132     }
133 }
134 
135 impl PartialEq for BStr {
136     fn eq(&self, other: &Self) -> bool {
137         self.deref().eq(other.deref())
138     }
139 }
140 
141 impl<Idx> Index<Idx> for BStr
142 where
143     [u8]: Index<Idx, Output = [u8]>,
144 {
145     type Output = Self;
146 
147     fn index(&self, index: Idx) -> &Self::Output {
148         BStr::from_bytes(&self.0[index])
149     }
150 }
151 
152 impl AsRef<BStr> for [u8] {
153     fn as_ref(&self) -> &BStr {
154         BStr::from_bytes(self)
155     }
156 }
157 
158 impl AsRef<BStr> for BStr {
159     fn as_ref(&self) -> &BStr {
160         self
161     }
162 }
163 
164 /// Creates a new [`BStr`] from a string literal.
165 ///
166 /// `b_str!` converts the supplied string literal to byte string, so non-ASCII
167 /// characters can be included.
168 ///
169 /// # Examples
170 ///
171 /// ```
172 /// # use kernel::b_str;
173 /// # use kernel::str::BStr;
174 /// const MY_BSTR: &BStr = b_str!("My awesome BStr!");
175 /// ```
176 #[macro_export]
177 macro_rules! b_str {
178     ($str:literal) => {{
179         const S: &'static str = $str;
180         const C: &'static $crate::str::BStr = $crate::str::BStr::from_bytes(S.as_bytes());
181         C
182     }};
183 }
184 
185 /// Returns a C pointer to the string.
186 // It is a free function rather than a method on an extension trait because:
187 //
188 // - error[E0379]: functions in trait impls cannot be declared const
189 #[inline]
190 pub const fn as_char_ptr_in_const_context(c_str: &CStr) -> *const c_char {
191     c_str.as_ptr().cast()
192 }
193 
194 mod private {
195     pub trait Sealed {}
196 
197     impl Sealed for super::CStr {}
198 }
199 
200 /// Extensions to [`CStr`].
201 pub trait CStrExt: private::Sealed {
202     /// Wraps a raw C string pointer.
203     ///
204     /// # Safety
205     ///
206     /// `ptr` must be a valid pointer to a `NUL`-terminated C string, and it must
207     /// last at least `'a`. When `CStr` is alive, the memory pointed by `ptr`
208     /// must not be mutated.
209     // This function exists to paper over the fact that `CStr::from_ptr` takes a `*const
210     // core::ffi::c_char` rather than a `*const crate::ffi::c_char`.
211     unsafe fn from_char_ptr<'a>(ptr: *const c_char) -> &'a Self;
212 
213     /// Creates a mutable [`CStr`] from a `[u8]` without performing any
214     /// additional checks.
215     ///
216     /// # Safety
217     ///
218     /// `bytes` *must* end with a `NUL` byte, and should only have a single
219     /// `NUL` byte (or the string will be truncated).
220     unsafe fn from_bytes_with_nul_unchecked_mut(bytes: &mut [u8]) -> &mut Self;
221 
222     /// Returns a C pointer to the string.
223     // This function exists to paper over the fact that `CStr::as_ptr` returns a `*const
224     // core::ffi::c_char` rather than a `*const crate::ffi::c_char`.
225     fn as_char_ptr(&self) -> *const c_char;
226 
227     /// Convert this [`CStr`] into a [`CString`] by allocating memory and
228     /// copying over the string data.
229     fn to_cstring(&self) -> Result<CString, AllocError>;
230 
231     /// Converts this [`CStr`] to its ASCII lower case equivalent in-place.
232     ///
233     /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
234     /// but non-ASCII letters are unchanged.
235     ///
236     /// To return a new lowercased value without modifying the existing one, use
237     /// [`to_ascii_lowercase()`].
238     ///
239     /// [`to_ascii_lowercase()`]: #method.to_ascii_lowercase
240     fn make_ascii_lowercase(&mut self);
241 
242     /// Converts this [`CStr`] to its ASCII upper case equivalent in-place.
243     ///
244     /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
245     /// but non-ASCII letters are unchanged.
246     ///
247     /// To return a new uppercased value without modifying the existing one, use
248     /// [`to_ascii_uppercase()`].
249     ///
250     /// [`to_ascii_uppercase()`]: #method.to_ascii_uppercase
251     fn make_ascii_uppercase(&mut self);
252 
253     /// Returns a copy of this [`CString`] where each character is mapped to its
254     /// ASCII lower case equivalent.
255     ///
256     /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
257     /// but non-ASCII letters are unchanged.
258     ///
259     /// To lowercase the value in-place, use [`make_ascii_lowercase`].
260     ///
261     /// [`make_ascii_lowercase`]: str::make_ascii_lowercase
262     fn to_ascii_lowercase(&self) -> Result<CString, AllocError>;
263 
264     /// Returns a copy of this [`CString`] where each character is mapped to its
265     /// ASCII upper case equivalent.
266     ///
267     /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
268     /// but non-ASCII letters are unchanged.
269     ///
270     /// To uppercase the value in-place, use [`make_ascii_uppercase`].
271     ///
272     /// [`make_ascii_uppercase`]: str::make_ascii_uppercase
273     fn to_ascii_uppercase(&self) -> Result<CString, AllocError>;
274 }
275 
276 impl fmt::Display for CStr {
277     /// Formats printable ASCII characters, escaping the rest.
278     ///
279     /// ```
280     /// # use kernel::c_str;
281     /// # use kernel::prelude::fmt;
282     /// # use kernel::str::CStr;
283     /// # use kernel::str::CString;
284     /// let penguin = c_str!("��");
285     /// let s = CString::try_from_fmt(fmt!("{penguin}"))?;
286     /// assert_eq!(s.to_bytes_with_nul(), "\\xf0\\x9f\\x90\\xa7\0".as_bytes());
287     ///
288     /// let ascii = c_str!("so \"cool\"");
289     /// let s = CString::try_from_fmt(fmt!("{ascii}"))?;
290     /// assert_eq!(s.to_bytes_with_nul(), "so \"cool\"\0".as_bytes());
291     /// # Ok::<(), kernel::error::Error>(())
292     /// ```
293     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
294         for &c in self.to_bytes() {
295             if (0x20..0x7f).contains(&c) {
296                 // Printable character.
297                 f.write_char(c as char)?;
298             } else {
299                 write!(f, "\\x{c:02x}")?;
300             }
301         }
302         Ok(())
303     }
304 }
305 
306 /// Converts a mutable C string to a mutable byte slice.
307 ///
308 /// # Safety
309 ///
310 /// The caller must ensure that the slice ends in a NUL byte and contains no other NUL bytes before
311 /// the borrow ends and the underlying [`CStr`] is used.
312 unsafe fn to_bytes_mut(s: &mut CStr) -> &mut [u8] {
313     // SAFETY: the cast from `&CStr` to `&[u8]` is safe since `CStr` has the same layout as `&[u8]`
314     // (this is technically not guaranteed, but we rely on it here). The pointer dereference is
315     // safe since it comes from a mutable reference which is guaranteed to be valid for writes.
316     unsafe { &mut *(core::ptr::from_mut(s) as *mut [u8]) }
317 }
318 
319 impl CStrExt for CStr {
320     #[inline]
321     unsafe fn from_char_ptr<'a>(ptr: *const c_char) -> &'a Self {
322         // SAFETY: The safety preconditions are the same as for `CStr::from_ptr`.
323         unsafe { CStr::from_ptr(ptr.cast()) }
324     }
325 
326     #[inline]
327     unsafe fn from_bytes_with_nul_unchecked_mut(bytes: &mut [u8]) -> &mut Self {
328         // SAFETY: the cast from `&[u8]` to `&CStr` is safe since the properties of `bytes` are
329         // guaranteed by the safety precondition and `CStr` has the same layout as `&[u8]` (this is
330         // technically not guaranteed, but we rely on it here). The pointer dereference is safe
331         // since it comes from a mutable reference which is guaranteed to be valid for writes.
332         unsafe { &mut *(core::ptr::from_mut(bytes) as *mut CStr) }
333     }
334 
335     #[inline]
336     fn as_char_ptr(&self) -> *const c_char {
337         self.as_ptr().cast()
338     }
339 
340     fn to_cstring(&self) -> Result<CString, AllocError> {
341         CString::try_from(self)
342     }
343 
344     fn make_ascii_lowercase(&mut self) {
345         // SAFETY: This doesn't introduce or remove NUL bytes in the C string.
346         unsafe { to_bytes_mut(self) }.make_ascii_lowercase();
347     }
348 
349     fn make_ascii_uppercase(&mut self) {
350         // SAFETY: This doesn't introduce or remove NUL bytes in the C string.
351         unsafe { to_bytes_mut(self) }.make_ascii_uppercase();
352     }
353 
354     fn to_ascii_lowercase(&self) -> Result<CString, AllocError> {
355         let mut s = self.to_cstring()?;
356 
357         s.make_ascii_lowercase();
358 
359         Ok(s)
360     }
361 
362     fn to_ascii_uppercase(&self) -> Result<CString, AllocError> {
363         let mut s = self.to_cstring()?;
364 
365         s.make_ascii_uppercase();
366 
367         Ok(s)
368     }
369 }
370 
371 impl AsRef<BStr> for CStr {
372     #[inline]
373     fn as_ref(&self) -> &BStr {
374         BStr::from_bytes(self.to_bytes())
375     }
376 }
377 
378 /// Creates a new [`CStr`] from a string literal.
379 ///
380 /// The string literal should not contain any `NUL` bytes.
381 ///
382 /// # Examples
383 ///
384 /// ```
385 /// # use kernel::c_str;
386 /// # use kernel::str::CStr;
387 /// const MY_CSTR: &CStr = c_str!("My awesome CStr!");
388 /// ```
389 #[macro_export]
390 macro_rules! c_str {
391     ($str:expr) => {{
392         const S: &str = concat!($str, "\0");
393         const C: &$crate::str::CStr = match $crate::str::CStr::from_bytes_with_nul(S.as_bytes()) {
394             Ok(v) => v,
395             Err(_) => panic!("string contains interior NUL"),
396         };
397         C
398     }};
399 }
400 
401 #[kunit_tests(rust_kernel_str)]
402 mod tests {
403     use super::*;
404 
405     impl From<core::ffi::FromBytesWithNulError> for Error {
406         #[inline]
407         fn from(_: core::ffi::FromBytesWithNulError) -> Error {
408             EINVAL
409         }
410     }
411 
412     macro_rules! format {
413         ($($f:tt)*) => ({
414             CString::try_from_fmt(fmt!($($f)*))?.to_str()?
415         })
416     }
417 
418     const ALL_ASCII_CHARS: &str =
419         "\\x01\\x02\\x03\\x04\\x05\\x06\\x07\\x08\\x09\\x0a\\x0b\\x0c\\x0d\\x0e\\x0f\
420         \\x10\\x11\\x12\\x13\\x14\\x15\\x16\\x17\\x18\\x19\\x1a\\x1b\\x1c\\x1d\\x1e\\x1f \
421         !\"#$%&'()*+,-./0123456789:;<=>?@\
422         ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~\\x7f\
423         \\x80\\x81\\x82\\x83\\x84\\x85\\x86\\x87\\x88\\x89\\x8a\\x8b\\x8c\\x8d\\x8e\\x8f\
424         \\x90\\x91\\x92\\x93\\x94\\x95\\x96\\x97\\x98\\x99\\x9a\\x9b\\x9c\\x9d\\x9e\\x9f\
425         \\xa0\\xa1\\xa2\\xa3\\xa4\\xa5\\xa6\\xa7\\xa8\\xa9\\xaa\\xab\\xac\\xad\\xae\\xaf\
426         \\xb0\\xb1\\xb2\\xb3\\xb4\\xb5\\xb6\\xb7\\xb8\\xb9\\xba\\xbb\\xbc\\xbd\\xbe\\xbf\
427         \\xc0\\xc1\\xc2\\xc3\\xc4\\xc5\\xc6\\xc7\\xc8\\xc9\\xca\\xcb\\xcc\\xcd\\xce\\xcf\
428         \\xd0\\xd1\\xd2\\xd3\\xd4\\xd5\\xd6\\xd7\\xd8\\xd9\\xda\\xdb\\xdc\\xdd\\xde\\xdf\
429         \\xe0\\xe1\\xe2\\xe3\\xe4\\xe5\\xe6\\xe7\\xe8\\xe9\\xea\\xeb\\xec\\xed\\xee\\xef\
430         \\xf0\\xf1\\xf2\\xf3\\xf4\\xf5\\xf6\\xf7\\xf8\\xf9\\xfa\\xfb\\xfc\\xfd\\xfe\\xff";
431 
432     #[test]
433     fn test_cstr_to_str() -> Result {
434         let cstr = c"\xf0\x9f\xa6\x80";
435         let checked_str = cstr.to_str()?;
436         assert_eq!(checked_str, "��");
437         Ok(())
438     }
439 
440     #[test]
441     fn test_cstr_to_str_invalid_utf8() -> Result {
442         let cstr = c"\xc3\x28";
443         assert!(cstr.to_str().is_err());
444         Ok(())
445     }
446 
447     #[test]
448     fn test_cstr_display() -> Result {
449         let hello_world = c"hello, world!";
450         assert_eq!(format!("{hello_world}"), "hello, world!");
451         let non_printables = c"\x01\x09\x0a";
452         assert_eq!(format!("{non_printables}"), "\\x01\\x09\\x0a");
453         let non_ascii = c"d\xe9j\xe0 vu";
454         assert_eq!(format!("{non_ascii}"), "d\\xe9j\\xe0 vu");
455         let good_bytes = c"\xf0\x9f\xa6\x80";
456         assert_eq!(format!("{good_bytes}"), "\\xf0\\x9f\\xa6\\x80");
457         Ok(())
458     }
459 
460     #[test]
461     fn test_cstr_display_all_bytes() -> Result {
462         let mut bytes: [u8; 256] = [0; 256];
463         // fill `bytes` with [1..=255] + [0]
464         for i in u8::MIN..=u8::MAX {
465             bytes[i as usize] = i.wrapping_add(1);
466         }
467         let cstr = CStr::from_bytes_with_nul(&bytes)?;
468         assert_eq!(format!("{cstr}"), ALL_ASCII_CHARS);
469         Ok(())
470     }
471 
472     #[test]
473     fn test_cstr_debug() -> Result {
474         let hello_world = c"hello, world!";
475         assert_eq!(format!("{hello_world:?}"), "\"hello, world!\"");
476         let non_printables = c"\x01\x09\x0a";
477         assert_eq!(format!("{non_printables:?}"), "\"\\x01\\t\\n\"");
478         let non_ascii = c"d\xe9j\xe0 vu";
479         assert_eq!(format!("{non_ascii:?}"), "\"d\\xe9j\\xe0 vu\"");
480         Ok(())
481     }
482 
483     #[test]
484     fn test_bstr_display() -> Result {
485         let hello_world = BStr::from_bytes(b"hello, world!");
486         assert_eq!(format!("{hello_world}"), "hello, world!");
487         let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_");
488         assert_eq!(format!("{escapes}"), "_\\t_\\n_\\r_\\_'_\"_");
489         let others = BStr::from_bytes(b"\x01");
490         assert_eq!(format!("{others}"), "\\x01");
491         let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu");
492         assert_eq!(format!("{non_ascii}"), "d\\xe9j\\xe0 vu");
493         let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80");
494         assert_eq!(format!("{good_bytes}"), "\\xf0\\x9f\\xa6\\x80");
495         Ok(())
496     }
497 
498     #[test]
499     fn test_bstr_debug() -> Result {
500         let hello_world = BStr::from_bytes(b"hello, world!");
501         assert_eq!(format!("{hello_world:?}"), "\"hello, world!\"");
502         let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_");
503         assert_eq!(format!("{escapes:?}"), "\"_\\t_\\n_\\r_\\\\_'_\\\"_\"");
504         let others = BStr::from_bytes(b"\x01");
505         assert_eq!(format!("{others:?}"), "\"\\x01\"");
506         let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu");
507         assert_eq!(format!("{non_ascii:?}"), "\"d\\xe9j\\xe0 vu\"");
508         let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80");
509         assert_eq!(format!("{good_bytes:?}"), "\"\\xf0\\x9f\\xa6\\x80\"");
510         Ok(())
511     }
512 }
513 
514 /// Allows formatting of [`fmt::Arguments`] into a raw buffer.
515 ///
516 /// It does not fail if callers write past the end of the buffer so that they can calculate the
517 /// size required to fit everything.
518 ///
519 /// # Invariants
520 ///
521 /// The memory region between `pos` (inclusive) and `end` (exclusive) is valid for writes if `pos`
522 /// is less than `end`.
523 pub struct RawFormatter {
524     // Use `usize` to use `saturating_*` functions.
525     beg: usize,
526     pos: usize,
527     end: usize,
528 }
529 
530 impl RawFormatter {
531     /// Creates a new instance of [`RawFormatter`] with an empty buffer.
532     fn new() -> Self {
533         // INVARIANT: The buffer is empty, so the region that needs to be writable is empty.
534         Self {
535             beg: 0,
536             pos: 0,
537             end: 0,
538         }
539     }
540 
541     /// Creates a new instance of [`RawFormatter`] with the given buffer pointers.
542     ///
543     /// # Safety
544     ///
545     /// If `pos` is less than `end`, then the region between `pos` (inclusive) and `end`
546     /// (exclusive) must be valid for writes for the lifetime of the returned [`RawFormatter`].
547     pub(crate) unsafe fn from_ptrs(pos: *mut u8, end: *mut u8) -> Self {
548         // INVARIANT: The safety requirements guarantee the type invariants.
549         Self {
550             beg: pos as usize,
551             pos: pos as usize,
552             end: end as usize,
553         }
554     }
555 
556     /// Creates a new instance of [`RawFormatter`] with the given buffer.
557     ///
558     /// # Safety
559     ///
560     /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes
561     /// for the lifetime of the returned [`RawFormatter`].
562     pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self {
563         let pos = buf as usize;
564         // INVARIANT: We ensure that `end` is never less than `buf`, and the safety requirements
565         // guarantees that the memory region is valid for writes.
566         Self {
567             pos,
568             beg: pos,
569             end: pos.saturating_add(len),
570         }
571     }
572 
573     /// Returns the current insert position.
574     ///
575     /// N.B. It may point to invalid memory.
576     pub(crate) fn pos(&self) -> *mut u8 {
577         self.pos as *mut u8
578     }
579 
580     /// Returns the number of bytes written to the formatter.
581     pub fn bytes_written(&self) -> usize {
582         self.pos - self.beg
583     }
584 }
585 
586 impl fmt::Write for RawFormatter {
587     fn write_str(&mut self, s: &str) -> fmt::Result {
588         // `pos` value after writing `len` bytes. This does not have to be bounded by `end`, but we
589         // don't want it to wrap around to 0.
590         let pos_new = self.pos.saturating_add(s.len());
591 
592         // Amount that we can copy. `saturating_sub` ensures we get 0 if `pos` goes past `end`.
593         let len_to_copy = core::cmp::min(pos_new, self.end).saturating_sub(self.pos);
594 
595         if len_to_copy > 0 {
596             // SAFETY: If `len_to_copy` is non-zero, then we know `pos` has not gone past `end`
597             // yet, so it is valid for write per the type invariants.
598             unsafe {
599                 core::ptr::copy_nonoverlapping(
600                     s.as_bytes().as_ptr(),
601                     self.pos as *mut u8,
602                     len_to_copy,
603                 )
604             };
605         }
606 
607         self.pos = pos_new;
608         Ok(())
609     }
610 }
611 
612 /// Allows formatting of [`fmt::Arguments`] into a raw buffer.
613 ///
614 /// Fails if callers attempt to write more than will fit in the buffer.
615 pub struct Formatter<'a>(RawFormatter, PhantomData<&'a mut ()>);
616 
617 impl Formatter<'_> {
618     /// Creates a new instance of [`Formatter`] with the given buffer.
619     ///
620     /// # Safety
621     ///
622     /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes
623     /// for the lifetime of the returned [`Formatter`].
624     pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self {
625         // SAFETY: The safety requirements of this function satisfy those of the callee.
626         Self(unsafe { RawFormatter::from_buffer(buf, len) }, PhantomData)
627     }
628 
629     /// Create a new [`Self`] instance.
630     pub fn new(buffer: &mut [u8]) -> Self {
631         // SAFETY: `buffer` is valid for writes for the entire length for
632         // the lifetime of `Self`.
633         unsafe { Formatter::from_buffer(buffer.as_mut_ptr(), buffer.len()) }
634     }
635 }
636 
637 impl Deref for Formatter<'_> {
638     type Target = RawFormatter;
639 
640     fn deref(&self) -> &Self::Target {
641         &self.0
642     }
643 }
644 
645 impl fmt::Write for Formatter<'_> {
646     fn write_str(&mut self, s: &str) -> fmt::Result {
647         self.0.write_str(s)?;
648 
649         // Fail the request if we go past the end of the buffer.
650         if self.0.pos > self.0.end {
651             Err(fmt::Error)
652         } else {
653             Ok(())
654         }
655     }
656 }
657 
658 /// A mutable reference to a byte buffer where a string can be written into.
659 ///
660 /// The buffer will be automatically null terminated after the last written character.
661 ///
662 /// # Invariants
663 ///
664 /// * The first byte of `buffer` is always zero.
665 /// * The length of `buffer` is at least 1.
666 pub(crate) struct NullTerminatedFormatter<'a> {
667     buffer: &'a mut [u8],
668 }
669 
670 impl<'a> NullTerminatedFormatter<'a> {
671     /// Create a new [`Self`] instance.
672     pub(crate) fn new(buffer: &'a mut [u8]) -> Option<NullTerminatedFormatter<'a>> {
673         *(buffer.first_mut()?) = 0;
674 
675         // INVARIANT:
676         //  - We wrote zero to the first byte above.
677         //  - If buffer was not at least length 1, `buffer.first_mut()` would return None.
678         Some(Self { buffer })
679     }
680 }
681 
682 impl Write for NullTerminatedFormatter<'_> {
683     fn write_str(&mut self, s: &str) -> fmt::Result {
684         let bytes = s.as_bytes();
685         let len = bytes.len();
686 
687         // We want space for a zero. By type invariant, buffer length is always at least 1, so no
688         // underflow.
689         if len > self.buffer.len() - 1 {
690             return Err(fmt::Error);
691         }
692 
693         let buffer = core::mem::take(&mut self.buffer);
694         // We break the zero start invariant for a short while.
695         buffer[..len].copy_from_slice(bytes);
696         // INVARIANT: We checked above that buffer will have size at least 1 after this assignment.
697         self.buffer = &mut buffer[len..];
698 
699         // INVARIANT: We write zero to the first byte of the buffer.
700         self.buffer[0] = 0;
701 
702         Ok(())
703     }
704 }
705 
706 /// # Safety
707 ///
708 /// - `string` must point to a null terminated string that is valid for read.
709 unsafe fn kstrtobool_raw(string: *const u8) -> Result<bool> {
710     let mut result: bool = false;
711 
712     // SAFETY:
713     // - By function safety requirement, `string` is a valid null-terminated string.
714     // - `result` is a valid `bool` that we own.
715     to_result(unsafe { bindings::kstrtobool(string, &mut result) })?;
716     Ok(result)
717 }
718 
719 /// Convert common user inputs into boolean values using the kernel's `kstrtobool` function.
720 ///
721 /// This routine returns `Ok(bool)` if the first character is one of 'YyTt1NnFf0', or
722 /// \[oO\]\[NnFf\] for "on" and "off". Otherwise it will return `Err(EINVAL)`.
723 ///
724 /// # Examples
725 ///
726 /// ```
727 /// # use kernel::{c_str, str::kstrtobool};
728 ///
729 /// // Lowercase
730 /// assert_eq!(kstrtobool(c_str!("true")), Ok(true));
731 /// assert_eq!(kstrtobool(c_str!("tr")), Ok(true));
732 /// assert_eq!(kstrtobool(c_str!("t")), Ok(true));
733 /// assert_eq!(kstrtobool(c_str!("twrong")), Ok(true));
734 /// assert_eq!(kstrtobool(c_str!("false")), Ok(false));
735 /// assert_eq!(kstrtobool(c_str!("f")), Ok(false));
736 /// assert_eq!(kstrtobool(c_str!("yes")), Ok(true));
737 /// assert_eq!(kstrtobool(c_str!("no")), Ok(false));
738 /// assert_eq!(kstrtobool(c_str!("on")), Ok(true));
739 /// assert_eq!(kstrtobool(c_str!("off")), Ok(false));
740 ///
741 /// // Camel case
742 /// assert_eq!(kstrtobool(c_str!("True")), Ok(true));
743 /// assert_eq!(kstrtobool(c_str!("False")), Ok(false));
744 /// assert_eq!(kstrtobool(c_str!("Yes")), Ok(true));
745 /// assert_eq!(kstrtobool(c_str!("No")), Ok(false));
746 /// assert_eq!(kstrtobool(c_str!("On")), Ok(true));
747 /// assert_eq!(kstrtobool(c_str!("Off")), Ok(false));
748 ///
749 /// // All caps
750 /// assert_eq!(kstrtobool(c_str!("TRUE")), Ok(true));
751 /// assert_eq!(kstrtobool(c_str!("FALSE")), Ok(false));
752 /// assert_eq!(kstrtobool(c_str!("YES")), Ok(true));
753 /// assert_eq!(kstrtobool(c_str!("NO")), Ok(false));
754 /// assert_eq!(kstrtobool(c_str!("ON")), Ok(true));
755 /// assert_eq!(kstrtobool(c_str!("OFF")), Ok(false));
756 ///
757 /// // Numeric
758 /// assert_eq!(kstrtobool(c_str!("1")), Ok(true));
759 /// assert_eq!(kstrtobool(c_str!("0")), Ok(false));
760 ///
761 /// // Invalid input
762 /// assert_eq!(kstrtobool(c_str!("invalid")), Err(EINVAL));
763 /// assert_eq!(kstrtobool(c_str!("2")), Err(EINVAL));
764 /// ```
765 pub fn kstrtobool(string: &CStr) -> Result<bool> {
766     // SAFETY:
767     // - The pointer returned by `CStr::as_char_ptr` is guaranteed to be
768     //   null terminated.
769     // - `string` is live and thus the string is valid for read.
770     unsafe { kstrtobool_raw(string.as_char_ptr()) }
771 }
772 
773 /// Convert `&[u8]` to `bool` by deferring to [`kernel::str::kstrtobool`].
774 ///
775 /// Only considers at most the first two bytes of `bytes`.
776 pub fn kstrtobool_bytes(bytes: &[u8]) -> Result<bool> {
777     // `ktostrbool` only considers the first two bytes of the input.
778     let stack_string = [*bytes.first().unwrap_or(&0), *bytes.get(1).unwrap_or(&0), 0];
779     // SAFETY: `stack_string` is null terminated and it is live on the stack so
780     // it is valid for read.
781     unsafe { kstrtobool_raw(stack_string.as_ptr()) }
782 }
783 
784 /// An owned string that is guaranteed to have exactly one `NUL` byte, which is at the end.
785 ///
786 /// Used for interoperability with kernel APIs that take C strings.
787 ///
788 /// # Invariants
789 ///
790 /// The string is always `NUL`-terminated and contains no other `NUL` bytes.
791 ///
792 /// # Examples
793 ///
794 /// ```
795 /// use kernel::{str::CString, prelude::fmt};
796 ///
797 /// let s = CString::try_from_fmt(fmt!("{}{}{}", "abc", 10, 20))?;
798 /// assert_eq!(s.to_bytes_with_nul(), "abc1020\0".as_bytes());
799 ///
800 /// let tmp = "testing";
801 /// let s = CString::try_from_fmt(fmt!("{tmp}{}", 123))?;
802 /// assert_eq!(s.to_bytes_with_nul(), "testing123\0".as_bytes());
803 ///
804 /// // This fails because it has an embedded `NUL` byte.
805 /// let s = CString::try_from_fmt(fmt!("a\0b{}", 123));
806 /// assert_eq!(s.is_ok(), false);
807 /// # Ok::<(), kernel::error::Error>(())
808 /// ```
809 pub struct CString {
810     buf: KVec<u8>,
811 }
812 
813 impl CString {
814     /// Creates an instance of [`CString`] from the given formatted arguments.
815     pub fn try_from_fmt(args: fmt::Arguments<'_>) -> Result<Self, Error> {
816         // Calculate the size needed (formatted string plus `NUL` terminator).
817         let mut f = RawFormatter::new();
818         f.write_fmt(args)?;
819         f.write_str("\0")?;
820         let size = f.bytes_written();
821 
822         // Allocate a vector with the required number of bytes, and write to it.
823         let mut buf = KVec::with_capacity(size, GFP_KERNEL)?;
824         // SAFETY: The buffer stored in `buf` is at least of size `size` and is valid for writes.
825         let mut f = unsafe { Formatter::from_buffer(buf.as_mut_ptr(), size) };
826         f.write_fmt(args)?;
827         f.write_str("\0")?;
828 
829         // SAFETY: The number of bytes that can be written to `f` is bounded by `size`, which is
830         // `buf`'s capacity. The contents of the buffer have been initialised by writes to `f`.
831         unsafe { buf.inc_len(f.bytes_written()) };
832 
833         // Check that there are no `NUL` bytes before the end.
834         // SAFETY: The buffer is valid for read because `f.bytes_written()` is bounded by `size`
835         // (which the minimum buffer size) and is non-zero (we wrote at least the `NUL` terminator)
836         // so `f.bytes_written() - 1` doesn't underflow.
837         let ptr = unsafe { bindings::memchr(buf.as_ptr().cast(), 0, f.bytes_written() - 1) };
838         if !ptr.is_null() {
839             return Err(EINVAL);
840         }
841 
842         // INVARIANT: We wrote the `NUL` terminator and checked above that no other `NUL` bytes
843         // exist in the buffer.
844         Ok(Self { buf })
845     }
846 }
847 
848 impl Deref for CString {
849     type Target = CStr;
850 
851     fn deref(&self) -> &Self::Target {
852         // SAFETY: The type invariants guarantee that the string is `NUL`-terminated and that no
853         // other `NUL` bytes exist.
854         unsafe { CStr::from_bytes_with_nul_unchecked(self.buf.as_slice()) }
855     }
856 }
857 
858 impl DerefMut for CString {
859     fn deref_mut(&mut self) -> &mut Self::Target {
860         // SAFETY: A `CString` is always NUL-terminated and contains no other
861         // NUL bytes.
862         unsafe { CStr::from_bytes_with_nul_unchecked_mut(self.buf.as_mut_slice()) }
863     }
864 }
865 
866 impl<'a> TryFrom<&'a CStr> for CString {
867     type Error = AllocError;
868 
869     fn try_from(cstr: &'a CStr) -> Result<CString, AllocError> {
870         let mut buf = KVec::new();
871 
872         buf.extend_from_slice(cstr.to_bytes_with_nul(), GFP_KERNEL)?;
873 
874         // INVARIANT: The `CStr` and `CString` types have the same invariants for
875         // the string data, and we copied it over without changes.
876         Ok(CString { buf })
877     }
878 }
879 
880 impl fmt::Debug for CString {
881     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
882         fmt::Debug::fmt(&**self, f)
883     }
884 }
885