1 // SPDX-License-Identifier: GPL-2.0 2 3 //! String representations. 4 5 use alloc::vec::Vec; 6 use core::fmt::{self, Write}; 7 use core::ops::{self, Deref, Index}; 8 9 use crate::{ 10 bindings, 11 error::{code::*, Error}, 12 }; 13 14 /// Byte string without UTF-8 validity guarantee. 15 /// 16 /// `BStr` is simply an alias to `[u8]`, but has a more evident semantical meaning. 17 pub type BStr = [u8]; 18 19 /// Creates a new [`BStr`] from a string literal. 20 /// 21 /// `b_str!` converts the supplied string literal to byte string, so non-ASCII 22 /// characters can be included. 23 /// 24 /// # Examples 25 /// 26 /// ``` 27 /// # use kernel::b_str; 28 /// # use kernel::str::BStr; 29 /// const MY_BSTR: &BStr = b_str!("My awesome BStr!"); 30 /// ``` 31 #[macro_export] 32 macro_rules! b_str { 33 ($str:literal) => {{ 34 const S: &'static str = $str; 35 const C: &'static $crate::str::BStr = S.as_bytes(); 36 C 37 }}; 38 } 39 40 /// Possible errors when using conversion functions in [`CStr`]. 41 #[derive(Debug, Clone, Copy)] 42 pub enum CStrConvertError { 43 /// Supplied bytes contain an interior `NUL`. 44 InteriorNul, 45 46 /// Supplied bytes are not terminated by `NUL`. 47 NotNulTerminated, 48 } 49 50 impl From<CStrConvertError> for Error { 51 #[inline] 52 fn from(_: CStrConvertError) -> Error { 53 EINVAL 54 } 55 } 56 57 /// A string that is guaranteed to have exactly one `NUL` byte, which is at the 58 /// end. 59 /// 60 /// Used for interoperability with kernel APIs that take C strings. 61 #[repr(transparent)] 62 pub struct CStr([u8]); 63 64 impl CStr { 65 /// Returns the length of this string excluding `NUL`. 66 #[inline] 67 pub const fn len(&self) -> usize { 68 self.len_with_nul() - 1 69 } 70 71 /// Returns the length of this string with `NUL`. 72 #[inline] 73 pub const fn len_with_nul(&self) -> usize { 74 // SAFETY: This is one of the invariant of `CStr`. 75 // We add a `unreachable_unchecked` here to hint the optimizer that 76 // the value returned from this function is non-zero. 77 if self.0.is_empty() { 78 unsafe { core::hint::unreachable_unchecked() }; 79 } 80 self.0.len() 81 } 82 83 /// Returns `true` if the string only includes `NUL`. 84 #[inline] 85 pub const fn is_empty(&self) -> bool { 86 self.len() == 0 87 } 88 89 /// Wraps a raw C string pointer. 90 /// 91 /// # Safety 92 /// 93 /// `ptr` must be a valid pointer to a `NUL`-terminated C string, and it must 94 /// last at least `'a`. When `CStr` is alive, the memory pointed by `ptr` 95 /// must not be mutated. 96 #[inline] 97 pub unsafe fn from_char_ptr<'a>(ptr: *const core::ffi::c_char) -> &'a Self { 98 // SAFETY: The safety precondition guarantees `ptr` is a valid pointer 99 // to a `NUL`-terminated C string. 100 let len = unsafe { bindings::strlen(ptr) } + 1; 101 // SAFETY: Lifetime guaranteed by the safety precondition. 102 let bytes = unsafe { core::slice::from_raw_parts(ptr as _, len as _) }; 103 // SAFETY: As `len` is returned by `strlen`, `bytes` does not contain interior `NUL`. 104 // As we have added 1 to `len`, the last byte is known to be `NUL`. 105 unsafe { Self::from_bytes_with_nul_unchecked(bytes) } 106 } 107 108 /// Creates a [`CStr`] from a `[u8]`. 109 /// 110 /// The provided slice must be `NUL`-terminated, does not contain any 111 /// interior `NUL` bytes. 112 pub const fn from_bytes_with_nul(bytes: &[u8]) -> Result<&Self, CStrConvertError> { 113 if bytes.is_empty() { 114 return Err(CStrConvertError::NotNulTerminated); 115 } 116 if bytes[bytes.len() - 1] != 0 { 117 return Err(CStrConvertError::NotNulTerminated); 118 } 119 let mut i = 0; 120 // `i + 1 < bytes.len()` allows LLVM to optimize away bounds checking, 121 // while it couldn't optimize away bounds checks for `i < bytes.len() - 1`. 122 while i + 1 < bytes.len() { 123 if bytes[i] == 0 { 124 return Err(CStrConvertError::InteriorNul); 125 } 126 i += 1; 127 } 128 // SAFETY: We just checked that all properties hold. 129 Ok(unsafe { Self::from_bytes_with_nul_unchecked(bytes) }) 130 } 131 132 /// Creates a [`CStr`] from a `[u8]` without performing any additional 133 /// checks. 134 /// 135 /// # Safety 136 /// 137 /// `bytes` *must* end with a `NUL` byte, and should only have a single 138 /// `NUL` byte (or the string will be truncated). 139 #[inline] 140 pub const unsafe fn from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr { 141 // SAFETY: Properties of `bytes` guaranteed by the safety precondition. 142 unsafe { core::mem::transmute(bytes) } 143 } 144 145 /// Returns a C pointer to the string. 146 #[inline] 147 pub const fn as_char_ptr(&self) -> *const core::ffi::c_char { 148 self.0.as_ptr() as _ 149 } 150 151 /// Convert the string to a byte slice without the trailing 0 byte. 152 #[inline] 153 pub fn as_bytes(&self) -> &[u8] { 154 &self.0[..self.len()] 155 } 156 157 /// Convert the string to a byte slice containing the trailing 0 byte. 158 #[inline] 159 pub const fn as_bytes_with_nul(&self) -> &[u8] { 160 &self.0 161 } 162 163 /// Yields a [`&str`] slice if the [`CStr`] contains valid UTF-8. 164 /// 165 /// If the contents of the [`CStr`] are valid UTF-8 data, this 166 /// function will return the corresponding [`&str`] slice. Otherwise, 167 /// it will return an error with details of where UTF-8 validation failed. 168 /// 169 /// # Examples 170 /// 171 /// ``` 172 /// # use kernel::str::CStr; 173 /// let cstr = CStr::from_bytes_with_nul(b"foo\0").unwrap(); 174 /// assert_eq!(cstr.to_str(), Ok("foo")); 175 /// ``` 176 #[inline] 177 pub fn to_str(&self) -> Result<&str, core::str::Utf8Error> { 178 core::str::from_utf8(self.as_bytes()) 179 } 180 181 /// Unsafely convert this [`CStr`] into a [`&str`], without checking for 182 /// valid UTF-8. 183 /// 184 /// # Safety 185 /// 186 /// The contents must be valid UTF-8. 187 /// 188 /// # Examples 189 /// 190 /// ``` 191 /// # use kernel::c_str; 192 /// # use kernel::str::CStr; 193 /// // SAFETY: String literals are guaranteed to be valid UTF-8 194 /// // by the Rust compiler. 195 /// let bar = c_str!("ツ"); 196 /// assert_eq!(unsafe { bar.as_str_unchecked() }, "ツ"); 197 /// ``` 198 #[inline] 199 pub unsafe fn as_str_unchecked(&self) -> &str { 200 unsafe { core::str::from_utf8_unchecked(self.as_bytes()) } 201 } 202 } 203 204 impl fmt::Display for CStr { 205 /// Formats printable ASCII characters, escaping the rest. 206 /// 207 /// ``` 208 /// # use kernel::c_str; 209 /// # use kernel::str::CStr; 210 /// # use kernel::str::CString; 211 /// let penguin = c_str!(""); 212 /// let s = CString::try_from_fmt(fmt!("{}", penguin)).unwrap(); 213 /// assert_eq!(s.as_bytes_with_nul(), "\\xf0\\x9f\\x90\\xa7\0".as_bytes()); 214 /// 215 /// let ascii = c_str!("so \"cool\""); 216 /// let s = CString::try_from_fmt(fmt!("{}", ascii)).unwrap(); 217 /// assert_eq!(s.as_bytes_with_nul(), "so \"cool\"\0".as_bytes()); 218 /// ``` 219 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 220 for &c in self.as_bytes() { 221 if (0x20..0x7f).contains(&c) { 222 // Printable character. 223 f.write_char(c as char)?; 224 } else { 225 write!(f, "\\x{:02x}", c)?; 226 } 227 } 228 Ok(()) 229 } 230 } 231 232 impl fmt::Debug for CStr { 233 /// Formats printable ASCII characters with a double quote on either end, escaping the rest. 234 /// 235 /// ``` 236 /// # use kernel::c_str; 237 /// # use kernel::str::CStr; 238 /// # use kernel::str::CString; 239 /// let penguin = c_str!(""); 240 /// let s = CString::try_from_fmt(fmt!("{:?}", penguin)).unwrap(); 241 /// assert_eq!(s.as_bytes_with_nul(), "\"\\xf0\\x9f\\x90\\xa7\"\0".as_bytes()); 242 /// 243 /// // Embedded double quotes are escaped. 244 /// let ascii = c_str!("so \"cool\""); 245 /// let s = CString::try_from_fmt(fmt!("{:?}", ascii)).unwrap(); 246 /// assert_eq!(s.as_bytes_with_nul(), "\"so \\\"cool\\\"\"\0".as_bytes()); 247 /// ``` 248 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 249 f.write_str("\"")?; 250 for &c in self.as_bytes() { 251 match c { 252 // Printable characters. 253 b'\"' => f.write_str("\\\"")?, 254 0x20..=0x7e => f.write_char(c as char)?, 255 _ => write!(f, "\\x{:02x}", c)?, 256 } 257 } 258 f.write_str("\"") 259 } 260 } 261 262 impl AsRef<BStr> for CStr { 263 #[inline] 264 fn as_ref(&self) -> &BStr { 265 self.as_bytes() 266 } 267 } 268 269 impl Deref for CStr { 270 type Target = BStr; 271 272 #[inline] 273 fn deref(&self) -> &Self::Target { 274 self.as_bytes() 275 } 276 } 277 278 impl Index<ops::RangeFrom<usize>> for CStr { 279 type Output = CStr; 280 281 #[inline] 282 fn index(&self, index: ops::RangeFrom<usize>) -> &Self::Output { 283 // Delegate bounds checking to slice. 284 // Assign to _ to mute clippy's unnecessary operation warning. 285 let _ = &self.as_bytes()[index.start..]; 286 // SAFETY: We just checked the bounds. 287 unsafe { Self::from_bytes_with_nul_unchecked(&self.0[index.start..]) } 288 } 289 } 290 291 impl Index<ops::RangeFull> for CStr { 292 type Output = CStr; 293 294 #[inline] 295 fn index(&self, _index: ops::RangeFull) -> &Self::Output { 296 self 297 } 298 } 299 300 mod private { 301 use core::ops; 302 303 // Marker trait for index types that can be forward to `BStr`. 304 pub trait CStrIndex {} 305 306 impl CStrIndex for usize {} 307 impl CStrIndex for ops::Range<usize> {} 308 impl CStrIndex for ops::RangeInclusive<usize> {} 309 impl CStrIndex for ops::RangeToInclusive<usize> {} 310 } 311 312 impl<Idx> Index<Idx> for CStr 313 where 314 Idx: private::CStrIndex, 315 BStr: Index<Idx>, 316 { 317 type Output = <BStr as Index<Idx>>::Output; 318 319 #[inline] 320 fn index(&self, index: Idx) -> &Self::Output { 321 &self.as_bytes()[index] 322 } 323 } 324 325 /// Creates a new [`CStr`] from a string literal. 326 /// 327 /// The string literal should not contain any `NUL` bytes. 328 /// 329 /// # Examples 330 /// 331 /// ``` 332 /// # use kernel::c_str; 333 /// # use kernel::str::CStr; 334 /// const MY_CSTR: &CStr = c_str!("My awesome CStr!"); 335 /// ``` 336 #[macro_export] 337 macro_rules! c_str { 338 ($str:expr) => {{ 339 const S: &str = concat!($str, "\0"); 340 const C: &$crate::str::CStr = match $crate::str::CStr::from_bytes_with_nul(S.as_bytes()) { 341 Ok(v) => v, 342 Err(_) => panic!("string contains interior NUL"), 343 }; 344 C 345 }}; 346 } 347 348 #[cfg(test)] 349 mod tests { 350 use super::*; 351 352 #[test] 353 fn test_cstr_to_str() { 354 let good_bytes = b"\xf0\x9f\xa6\x80\0"; 355 let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap(); 356 let checked_str = checked_cstr.to_str().unwrap(); 357 assert_eq!(checked_str, ""); 358 } 359 360 #[test] 361 #[should_panic] 362 fn test_cstr_to_str_panic() { 363 let bad_bytes = b"\xc3\x28\0"; 364 let checked_cstr = CStr::from_bytes_with_nul(bad_bytes).unwrap(); 365 checked_cstr.to_str().unwrap(); 366 } 367 368 #[test] 369 fn test_cstr_as_str_unchecked() { 370 let good_bytes = b"\xf0\x9f\x90\xA7\0"; 371 let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap(); 372 let unchecked_str = unsafe { checked_cstr.as_str_unchecked() }; 373 assert_eq!(unchecked_str, ""); 374 } 375 } 376 377 /// Allows formatting of [`fmt::Arguments`] into a raw buffer. 378 /// 379 /// It does not fail if callers write past the end of the buffer so that they can calculate the 380 /// size required to fit everything. 381 /// 382 /// # Invariants 383 /// 384 /// The memory region between `pos` (inclusive) and `end` (exclusive) is valid for writes if `pos` 385 /// is less than `end`. 386 pub(crate) struct RawFormatter { 387 // Use `usize` to use `saturating_*` functions. 388 beg: usize, 389 pos: usize, 390 end: usize, 391 } 392 393 impl RawFormatter { 394 /// Creates a new instance of [`RawFormatter`] with an empty buffer. 395 fn new() -> Self { 396 // INVARIANT: The buffer is empty, so the region that needs to be writable is empty. 397 Self { 398 beg: 0, 399 pos: 0, 400 end: 0, 401 } 402 } 403 404 /// Creates a new instance of [`RawFormatter`] with the given buffer pointers. 405 /// 406 /// # Safety 407 /// 408 /// If `pos` is less than `end`, then the region between `pos` (inclusive) and `end` 409 /// (exclusive) must be valid for writes for the lifetime of the returned [`RawFormatter`]. 410 pub(crate) unsafe fn from_ptrs(pos: *mut u8, end: *mut u8) -> Self { 411 // INVARIANT: The safety requierments guarantee the type invariants. 412 Self { 413 beg: pos as _, 414 pos: pos as _, 415 end: end as _, 416 } 417 } 418 419 /// Creates a new instance of [`RawFormatter`] with the given buffer. 420 /// 421 /// # Safety 422 /// 423 /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes 424 /// for the lifetime of the returned [`RawFormatter`]. 425 pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self { 426 let pos = buf as usize; 427 // INVARIANT: We ensure that `end` is never less then `buf`, and the safety requirements 428 // guarantees that the memory region is valid for writes. 429 Self { 430 pos, 431 beg: pos, 432 end: pos.saturating_add(len), 433 } 434 } 435 436 /// Returns the current insert position. 437 /// 438 /// N.B. It may point to invalid memory. 439 pub(crate) fn pos(&self) -> *mut u8 { 440 self.pos as _ 441 } 442 443 /// Return the number of bytes written to the formatter. 444 pub(crate) fn bytes_written(&self) -> usize { 445 self.pos - self.beg 446 } 447 } 448 449 impl fmt::Write for RawFormatter { 450 fn write_str(&mut self, s: &str) -> fmt::Result { 451 // `pos` value after writing `len` bytes. This does not have to be bounded by `end`, but we 452 // don't want it to wrap around to 0. 453 let pos_new = self.pos.saturating_add(s.len()); 454 455 // Amount that we can copy. `saturating_sub` ensures we get 0 if `pos` goes past `end`. 456 let len_to_copy = core::cmp::min(pos_new, self.end).saturating_sub(self.pos); 457 458 if len_to_copy > 0 { 459 // SAFETY: If `len_to_copy` is non-zero, then we know `pos` has not gone past `end` 460 // yet, so it is valid for write per the type invariants. 461 unsafe { 462 core::ptr::copy_nonoverlapping( 463 s.as_bytes().as_ptr(), 464 self.pos as *mut u8, 465 len_to_copy, 466 ) 467 }; 468 } 469 470 self.pos = pos_new; 471 Ok(()) 472 } 473 } 474 475 /// Allows formatting of [`fmt::Arguments`] into a raw buffer. 476 /// 477 /// Fails if callers attempt to write more than will fit in the buffer. 478 pub(crate) struct Formatter(RawFormatter); 479 480 impl Formatter { 481 /// Creates a new instance of [`Formatter`] with the given buffer. 482 /// 483 /// # Safety 484 /// 485 /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes 486 /// for the lifetime of the returned [`Formatter`]. 487 pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self { 488 // SAFETY: The safety requirements of this function satisfy those of the callee. 489 Self(unsafe { RawFormatter::from_buffer(buf, len) }) 490 } 491 } 492 493 impl Deref for Formatter { 494 type Target = RawFormatter; 495 496 fn deref(&self) -> &Self::Target { 497 &self.0 498 } 499 } 500 501 impl fmt::Write for Formatter { 502 fn write_str(&mut self, s: &str) -> fmt::Result { 503 self.0.write_str(s)?; 504 505 // Fail the request if we go past the end of the buffer. 506 if self.0.pos > self.0.end { 507 Err(fmt::Error) 508 } else { 509 Ok(()) 510 } 511 } 512 } 513 514 /// An owned string that is guaranteed to have exactly one `NUL` byte, which is at the end. 515 /// 516 /// Used for interoperability with kernel APIs that take C strings. 517 /// 518 /// # Invariants 519 /// 520 /// The string is always `NUL`-terminated and contains no other `NUL` bytes. 521 /// 522 /// # Examples 523 /// 524 /// ``` 525 /// use kernel::str::CString; 526 /// 527 /// let s = CString::try_from_fmt(fmt!("{}{}{}", "abc", 10, 20)).unwrap(); 528 /// assert_eq!(s.as_bytes_with_nul(), "abc1020\0".as_bytes()); 529 /// 530 /// let tmp = "testing"; 531 /// let s = CString::try_from_fmt(fmt!("{tmp}{}", 123)).unwrap(); 532 /// assert_eq!(s.as_bytes_with_nul(), "testing123\0".as_bytes()); 533 /// 534 /// // This fails because it has an embedded `NUL` byte. 535 /// let s = CString::try_from_fmt(fmt!("a\0b{}", 123)); 536 /// assert_eq!(s.is_ok(), false); 537 /// ``` 538 pub struct CString { 539 buf: Vec<u8>, 540 } 541 542 impl CString { 543 /// Creates an instance of [`CString`] from the given formatted arguments. 544 pub fn try_from_fmt(args: fmt::Arguments<'_>) -> Result<Self, Error> { 545 // Calculate the size needed (formatted string plus `NUL` terminator). 546 let mut f = RawFormatter::new(); 547 f.write_fmt(args)?; 548 f.write_str("\0")?; 549 let size = f.bytes_written(); 550 551 // Allocate a vector with the required number of bytes, and write to it. 552 let mut buf = Vec::try_with_capacity(size)?; 553 // SAFETY: The buffer stored in `buf` is at least of size `size` and is valid for writes. 554 let mut f = unsafe { Formatter::from_buffer(buf.as_mut_ptr(), size) }; 555 f.write_fmt(args)?; 556 f.write_str("\0")?; 557 558 // SAFETY: The number of bytes that can be written to `f` is bounded by `size`, which is 559 // `buf`'s capacity. The contents of the buffer have been initialised by writes to `f`. 560 unsafe { buf.set_len(f.bytes_written()) }; 561 562 // Check that there are no `NUL` bytes before the end. 563 // SAFETY: The buffer is valid for read because `f.bytes_written()` is bounded by `size` 564 // (which the minimum buffer size) and is non-zero (we wrote at least the `NUL` terminator) 565 // so `f.bytes_written() - 1` doesn't underflow. 566 let ptr = unsafe { bindings::memchr(buf.as_ptr().cast(), 0, (f.bytes_written() - 1) as _) }; 567 if !ptr.is_null() { 568 return Err(EINVAL); 569 } 570 571 // INVARIANT: We wrote the `NUL` terminator and checked above that no other `NUL` bytes 572 // exist in the buffer. 573 Ok(Self { buf }) 574 } 575 } 576 577 impl Deref for CString { 578 type Target = CStr; 579 580 fn deref(&self) -> &Self::Target { 581 // SAFETY: The type invariants guarantee that the string is `NUL`-terminated and that no 582 // other `NUL` bytes exist. 583 unsafe { CStr::from_bytes_with_nul_unchecked(self.buf.as_slice()) } 584 } 585 } 586 587 /// A convenience alias for [`core::format_args`]. 588 #[macro_export] 589 macro_rules! fmt { 590 ($($f:tt)*) => ( core::format_args!($($f)*) ) 591 } 592