1 // SPDX-License-Identifier: GPL-2.0 2 3 //! String representations. 4 5 use crate::alloc::{flags::*, AllocError, KVec}; 6 use core::fmt::{self, Write}; 7 use core::ops::{self, Deref, DerefMut, Index}; 8 9 use crate::error::{code::*, Error}; 10 11 /// Byte string without UTF-8 validity guarantee. 12 #[repr(transparent)] 13 pub struct BStr([u8]); 14 15 impl BStr { 16 /// Returns the length of this string. 17 #[inline] 18 pub const fn len(&self) -> usize { 19 self.0.len() 20 } 21 22 /// Returns `true` if the string is empty. 23 #[inline] 24 pub const fn is_empty(&self) -> bool { 25 self.len() == 0 26 } 27 28 /// Creates a [`BStr`] from a `[u8]`. 29 #[inline] 30 pub const fn from_bytes(bytes: &[u8]) -> &Self { 31 // SAFETY: `BStr` is transparent to `[u8]`. 32 unsafe { &*(bytes as *const [u8] as *const BStr) } 33 } 34 } 35 36 impl fmt::Display for BStr { 37 /// Formats printable ASCII characters, escaping the rest. 38 /// 39 /// ``` 40 /// # use kernel::{fmt, b_str, str::{BStr, CString}}; 41 /// let ascii = b_str!("Hello, BStr!"); 42 /// let s = CString::try_from_fmt(fmt!("{}", ascii)).unwrap(); 43 /// assert_eq!(s.as_bytes(), "Hello, BStr!".as_bytes()); 44 /// 45 /// let non_ascii = b_str!(""); 46 /// let s = CString::try_from_fmt(fmt!("{}", non_ascii)).unwrap(); 47 /// assert_eq!(s.as_bytes(), "\\xf0\\x9f\\xa6\\x80".as_bytes()); 48 /// ``` 49 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 50 for &b in &self.0 { 51 match b { 52 // Common escape codes. 53 b'\t' => f.write_str("\\t")?, 54 b'\n' => f.write_str("\\n")?, 55 b'\r' => f.write_str("\\r")?, 56 // Printable characters. 57 0x20..=0x7e => f.write_char(b as char)?, 58 _ => write!(f, "\\x{:02x}", b)?, 59 } 60 } 61 Ok(()) 62 } 63 } 64 65 impl fmt::Debug for BStr { 66 /// Formats printable ASCII characters with a double quote on either end, 67 /// escaping the rest. 68 /// 69 /// ``` 70 /// # use kernel::{fmt, b_str, str::{BStr, CString}}; 71 /// // Embedded double quotes are escaped. 72 /// let ascii = b_str!("Hello, \"BStr\"!"); 73 /// let s = CString::try_from_fmt(fmt!("{:?}", ascii)).unwrap(); 74 /// assert_eq!(s.as_bytes(), "\"Hello, \\\"BStr\\\"!\"".as_bytes()); 75 /// 76 /// let non_ascii = b_str!(""); 77 /// let s = CString::try_from_fmt(fmt!("{:?}", non_ascii)).unwrap(); 78 /// assert_eq!(s.as_bytes(), "\"\\xf0\\x9f\\x98\\xba\"".as_bytes()); 79 /// ``` 80 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 81 f.write_char('"')?; 82 for &b in &self.0 { 83 match b { 84 // Common escape codes. 85 b'\t' => f.write_str("\\t")?, 86 b'\n' => f.write_str("\\n")?, 87 b'\r' => f.write_str("\\r")?, 88 // String escape characters. 89 b'\"' => f.write_str("\\\"")?, 90 b'\\' => f.write_str("\\\\")?, 91 // Printable characters. 92 0x20..=0x7e => f.write_char(b as char)?, 93 _ => write!(f, "\\x{:02x}", b)?, 94 } 95 } 96 f.write_char('"') 97 } 98 } 99 100 impl Deref for BStr { 101 type Target = [u8]; 102 103 #[inline] 104 fn deref(&self) -> &Self::Target { 105 &self.0 106 } 107 } 108 109 /// Creates a new [`BStr`] from a string literal. 110 /// 111 /// `b_str!` converts the supplied string literal to byte string, so non-ASCII 112 /// characters can be included. 113 /// 114 /// # Examples 115 /// 116 /// ``` 117 /// # use kernel::b_str; 118 /// # use kernel::str::BStr; 119 /// const MY_BSTR: &BStr = b_str!("My awesome BStr!"); 120 /// ``` 121 #[macro_export] 122 macro_rules! b_str { 123 ($str:literal) => {{ 124 const S: &'static str = $str; 125 const C: &'static $crate::str::BStr = $crate::str::BStr::from_bytes(S.as_bytes()); 126 C 127 }}; 128 } 129 130 /// Possible errors when using conversion functions in [`CStr`]. 131 #[derive(Debug, Clone, Copy)] 132 pub enum CStrConvertError { 133 /// Supplied bytes contain an interior `NUL`. 134 InteriorNul, 135 136 /// Supplied bytes are not terminated by `NUL`. 137 NotNulTerminated, 138 } 139 140 impl From<CStrConvertError> for Error { 141 #[inline] 142 fn from(_: CStrConvertError) -> Error { 143 EINVAL 144 } 145 } 146 147 /// A string that is guaranteed to have exactly one `NUL` byte, which is at the 148 /// end. 149 /// 150 /// Used for interoperability with kernel APIs that take C strings. 151 #[repr(transparent)] 152 pub struct CStr([u8]); 153 154 impl CStr { 155 /// Returns the length of this string excluding `NUL`. 156 #[inline] 157 pub const fn len(&self) -> usize { 158 self.len_with_nul() - 1 159 } 160 161 /// Returns the length of this string with `NUL`. 162 #[inline] 163 pub const fn len_with_nul(&self) -> usize { 164 if self.0.is_empty() { 165 // SAFETY: This is one of the invariant of `CStr`. 166 // We add a `unreachable_unchecked` here to hint the optimizer that 167 // the value returned from this function is non-zero. 168 unsafe { core::hint::unreachable_unchecked() }; 169 } 170 self.0.len() 171 } 172 173 /// Returns `true` if the string only includes `NUL`. 174 #[inline] 175 pub const fn is_empty(&self) -> bool { 176 self.len() == 0 177 } 178 179 /// Wraps a raw C string pointer. 180 /// 181 /// # Safety 182 /// 183 /// `ptr` must be a valid pointer to a `NUL`-terminated C string, and it must 184 /// last at least `'a`. When `CStr` is alive, the memory pointed by `ptr` 185 /// must not be mutated. 186 #[inline] 187 pub unsafe fn from_char_ptr<'a>(ptr: *const crate::ffi::c_char) -> &'a Self { 188 // SAFETY: The safety precondition guarantees `ptr` is a valid pointer 189 // to a `NUL`-terminated C string. 190 let len = unsafe { bindings::strlen(ptr) } + 1; 191 // SAFETY: Lifetime guaranteed by the safety precondition. 192 let bytes = unsafe { core::slice::from_raw_parts(ptr as _, len) }; 193 // SAFETY: As `len` is returned by `strlen`, `bytes` does not contain interior `NUL`. 194 // As we have added 1 to `len`, the last byte is known to be `NUL`. 195 unsafe { Self::from_bytes_with_nul_unchecked(bytes) } 196 } 197 198 /// Creates a [`CStr`] from a `[u8]`. 199 /// 200 /// The provided slice must be `NUL`-terminated, does not contain any 201 /// interior `NUL` bytes. 202 pub const fn from_bytes_with_nul(bytes: &[u8]) -> Result<&Self, CStrConvertError> { 203 if bytes.is_empty() { 204 return Err(CStrConvertError::NotNulTerminated); 205 } 206 if bytes[bytes.len() - 1] != 0 { 207 return Err(CStrConvertError::NotNulTerminated); 208 } 209 let mut i = 0; 210 // `i + 1 < bytes.len()` allows LLVM to optimize away bounds checking, 211 // while it couldn't optimize away bounds checks for `i < bytes.len() - 1`. 212 while i + 1 < bytes.len() { 213 if bytes[i] == 0 { 214 return Err(CStrConvertError::InteriorNul); 215 } 216 i += 1; 217 } 218 // SAFETY: We just checked that all properties hold. 219 Ok(unsafe { Self::from_bytes_with_nul_unchecked(bytes) }) 220 } 221 222 /// Creates a [`CStr`] from a `[u8]` without performing any additional 223 /// checks. 224 /// 225 /// # Safety 226 /// 227 /// `bytes` *must* end with a `NUL` byte, and should only have a single 228 /// `NUL` byte (or the string will be truncated). 229 #[inline] 230 pub const unsafe fn from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr { 231 // SAFETY: Properties of `bytes` guaranteed by the safety precondition. 232 unsafe { core::mem::transmute(bytes) } 233 } 234 235 /// Creates a mutable [`CStr`] from a `[u8]` without performing any 236 /// additional checks. 237 /// 238 /// # Safety 239 /// 240 /// `bytes` *must* end with a `NUL` byte, and should only have a single 241 /// `NUL` byte (or the string will be truncated). 242 #[inline] 243 pub unsafe fn from_bytes_with_nul_unchecked_mut(bytes: &mut [u8]) -> &mut CStr { 244 // SAFETY: Properties of `bytes` guaranteed by the safety precondition. 245 unsafe { &mut *(bytes as *mut [u8] as *mut CStr) } 246 } 247 248 /// Returns a C pointer to the string. 249 #[inline] 250 pub const fn as_char_ptr(&self) -> *const crate::ffi::c_char { 251 self.0.as_ptr() 252 } 253 254 /// Convert the string to a byte slice without the trailing `NUL` byte. 255 #[inline] 256 pub fn as_bytes(&self) -> &[u8] { 257 &self.0[..self.len()] 258 } 259 260 /// Convert the string to a byte slice containing the trailing `NUL` byte. 261 #[inline] 262 pub const fn as_bytes_with_nul(&self) -> &[u8] { 263 &self.0 264 } 265 266 /// Yields a [`&str`] slice if the [`CStr`] contains valid UTF-8. 267 /// 268 /// If the contents of the [`CStr`] are valid UTF-8 data, this 269 /// function will return the corresponding [`&str`] slice. Otherwise, 270 /// it will return an error with details of where UTF-8 validation failed. 271 /// 272 /// # Examples 273 /// 274 /// ``` 275 /// # use kernel::str::CStr; 276 /// let cstr = CStr::from_bytes_with_nul(b"foo\0").unwrap(); 277 /// assert_eq!(cstr.to_str(), Ok("foo")); 278 /// ``` 279 #[inline] 280 pub fn to_str(&self) -> Result<&str, core::str::Utf8Error> { 281 core::str::from_utf8(self.as_bytes()) 282 } 283 284 /// Unsafely convert this [`CStr`] into a [`&str`], without checking for 285 /// valid UTF-8. 286 /// 287 /// # Safety 288 /// 289 /// The contents must be valid UTF-8. 290 /// 291 /// # Examples 292 /// 293 /// ``` 294 /// # use kernel::c_str; 295 /// # use kernel::str::CStr; 296 /// let bar = c_str!("ツ"); 297 /// // SAFETY: String literals are guaranteed to be valid UTF-8 298 /// // by the Rust compiler. 299 /// assert_eq!(unsafe { bar.as_str_unchecked() }, "ツ"); 300 /// ``` 301 #[inline] 302 pub unsafe fn as_str_unchecked(&self) -> &str { 303 // SAFETY: TODO. 304 unsafe { core::str::from_utf8_unchecked(self.as_bytes()) } 305 } 306 307 /// Convert this [`CStr`] into a [`CString`] by allocating memory and 308 /// copying over the string data. 309 pub fn to_cstring(&self) -> Result<CString, AllocError> { 310 CString::try_from(self) 311 } 312 313 /// Converts this [`CStr`] to its ASCII lower case equivalent in-place. 314 /// 315 /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', 316 /// but non-ASCII letters are unchanged. 317 /// 318 /// To return a new lowercased value without modifying the existing one, use 319 /// [`to_ascii_lowercase()`]. 320 /// 321 /// [`to_ascii_lowercase()`]: #method.to_ascii_lowercase 322 pub fn make_ascii_lowercase(&mut self) { 323 // INVARIANT: This doesn't introduce or remove NUL bytes in the C 324 // string. 325 self.0.make_ascii_lowercase(); 326 } 327 328 /// Converts this [`CStr`] to its ASCII upper case equivalent in-place. 329 /// 330 /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', 331 /// but non-ASCII letters are unchanged. 332 /// 333 /// To return a new uppercased value without modifying the existing one, use 334 /// [`to_ascii_uppercase()`]. 335 /// 336 /// [`to_ascii_uppercase()`]: #method.to_ascii_uppercase 337 pub fn make_ascii_uppercase(&mut self) { 338 // INVARIANT: This doesn't introduce or remove NUL bytes in the C 339 // string. 340 self.0.make_ascii_uppercase(); 341 } 342 343 /// Returns a copy of this [`CString`] where each character is mapped to its 344 /// ASCII lower case equivalent. 345 /// 346 /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', 347 /// but non-ASCII letters are unchanged. 348 /// 349 /// To lowercase the value in-place, use [`make_ascii_lowercase`]. 350 /// 351 /// [`make_ascii_lowercase`]: str::make_ascii_lowercase 352 pub fn to_ascii_lowercase(&self) -> Result<CString, AllocError> { 353 let mut s = self.to_cstring()?; 354 355 s.make_ascii_lowercase(); 356 357 Ok(s) 358 } 359 360 /// Returns a copy of this [`CString`] where each character is mapped to its 361 /// ASCII upper case equivalent. 362 /// 363 /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', 364 /// but non-ASCII letters are unchanged. 365 /// 366 /// To uppercase the value in-place, use [`make_ascii_uppercase`]. 367 /// 368 /// [`make_ascii_uppercase`]: str::make_ascii_uppercase 369 pub fn to_ascii_uppercase(&self) -> Result<CString, AllocError> { 370 let mut s = self.to_cstring()?; 371 372 s.make_ascii_uppercase(); 373 374 Ok(s) 375 } 376 } 377 378 impl fmt::Display for CStr { 379 /// Formats printable ASCII characters, escaping the rest. 380 /// 381 /// ``` 382 /// # use kernel::c_str; 383 /// # use kernel::fmt; 384 /// # use kernel::str::CStr; 385 /// # use kernel::str::CString; 386 /// let penguin = c_str!(""); 387 /// let s = CString::try_from_fmt(fmt!("{}", penguin)).unwrap(); 388 /// assert_eq!(s.as_bytes_with_nul(), "\\xf0\\x9f\\x90\\xa7\0".as_bytes()); 389 /// 390 /// let ascii = c_str!("so \"cool\""); 391 /// let s = CString::try_from_fmt(fmt!("{}", ascii)).unwrap(); 392 /// assert_eq!(s.as_bytes_with_nul(), "so \"cool\"\0".as_bytes()); 393 /// ``` 394 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 395 for &c in self.as_bytes() { 396 if (0x20..0x7f).contains(&c) { 397 // Printable character. 398 f.write_char(c as char)?; 399 } else { 400 write!(f, "\\x{:02x}", c)?; 401 } 402 } 403 Ok(()) 404 } 405 } 406 407 impl fmt::Debug for CStr { 408 /// Formats printable ASCII characters with a double quote on either end, escaping the rest. 409 /// 410 /// ``` 411 /// # use kernel::c_str; 412 /// # use kernel::fmt; 413 /// # use kernel::str::CStr; 414 /// # use kernel::str::CString; 415 /// let penguin = c_str!(""); 416 /// let s = CString::try_from_fmt(fmt!("{:?}", penguin)).unwrap(); 417 /// assert_eq!(s.as_bytes_with_nul(), "\"\\xf0\\x9f\\x90\\xa7\"\0".as_bytes()); 418 /// 419 /// // Embedded double quotes are escaped. 420 /// let ascii = c_str!("so \"cool\""); 421 /// let s = CString::try_from_fmt(fmt!("{:?}", ascii)).unwrap(); 422 /// assert_eq!(s.as_bytes_with_nul(), "\"so \\\"cool\\\"\"\0".as_bytes()); 423 /// ``` 424 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 425 f.write_str("\"")?; 426 for &c in self.as_bytes() { 427 match c { 428 // Printable characters. 429 b'\"' => f.write_str("\\\"")?, 430 0x20..=0x7e => f.write_char(c as char)?, 431 _ => write!(f, "\\x{:02x}", c)?, 432 } 433 } 434 f.write_str("\"") 435 } 436 } 437 438 impl AsRef<BStr> for CStr { 439 #[inline] 440 fn as_ref(&self) -> &BStr { 441 BStr::from_bytes(self.as_bytes()) 442 } 443 } 444 445 impl Deref for CStr { 446 type Target = BStr; 447 448 #[inline] 449 fn deref(&self) -> &Self::Target { 450 self.as_ref() 451 } 452 } 453 454 impl Index<ops::RangeFrom<usize>> for CStr { 455 type Output = CStr; 456 457 #[inline] 458 fn index(&self, index: ops::RangeFrom<usize>) -> &Self::Output { 459 // Delegate bounds checking to slice. 460 // Assign to _ to mute clippy's unnecessary operation warning. 461 let _ = &self.as_bytes()[index.start..]; 462 // SAFETY: We just checked the bounds. 463 unsafe { Self::from_bytes_with_nul_unchecked(&self.0[index.start..]) } 464 } 465 } 466 467 impl Index<ops::RangeFull> for CStr { 468 type Output = CStr; 469 470 #[inline] 471 fn index(&self, _index: ops::RangeFull) -> &Self::Output { 472 self 473 } 474 } 475 476 mod private { 477 use core::ops; 478 479 // Marker trait for index types that can be forward to `BStr`. 480 pub trait CStrIndex {} 481 482 impl CStrIndex for usize {} 483 impl CStrIndex for ops::Range<usize> {} 484 impl CStrIndex for ops::RangeInclusive<usize> {} 485 impl CStrIndex for ops::RangeToInclusive<usize> {} 486 } 487 488 impl<Idx> Index<Idx> for CStr 489 where 490 Idx: private::CStrIndex, 491 BStr: Index<Idx>, 492 { 493 type Output = <BStr as Index<Idx>>::Output; 494 495 #[inline] 496 fn index(&self, index: Idx) -> &Self::Output { 497 &self.as_ref()[index] 498 } 499 } 500 501 /// Creates a new [`CStr`] from a string literal. 502 /// 503 /// The string literal should not contain any `NUL` bytes. 504 /// 505 /// # Examples 506 /// 507 /// ``` 508 /// # use kernel::c_str; 509 /// # use kernel::str::CStr; 510 /// const MY_CSTR: &CStr = c_str!("My awesome CStr!"); 511 /// ``` 512 #[macro_export] 513 macro_rules! c_str { 514 ($str:expr) => {{ 515 const S: &str = concat!($str, "\0"); 516 const C: &$crate::str::CStr = match $crate::str::CStr::from_bytes_with_nul(S.as_bytes()) { 517 Ok(v) => v, 518 Err(_) => panic!("string contains interior NUL"), 519 }; 520 C 521 }}; 522 } 523 524 #[cfg(test)] 525 #[expect(clippy::items_after_test_module)] 526 mod tests { 527 use super::*; 528 529 struct String(CString); 530 531 impl String { 532 fn from_fmt(args: fmt::Arguments<'_>) -> Self { 533 String(CString::try_from_fmt(args).unwrap()) 534 } 535 } 536 537 impl Deref for String { 538 type Target = str; 539 540 fn deref(&self) -> &str { 541 self.0.to_str().unwrap() 542 } 543 } 544 545 macro_rules! format { 546 ($($f:tt)*) => ({ 547 &*String::from_fmt(kernel::fmt!($($f)*)) 548 }) 549 } 550 551 const ALL_ASCII_CHARS: &str = 552 "\\x01\\x02\\x03\\x04\\x05\\x06\\x07\\x08\\x09\\x0a\\x0b\\x0c\\x0d\\x0e\\x0f\ 553 \\x10\\x11\\x12\\x13\\x14\\x15\\x16\\x17\\x18\\x19\\x1a\\x1b\\x1c\\x1d\\x1e\\x1f \ 554 !\"#$%&'()*+,-./0123456789:;<=>?@\ 555 ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~\\x7f\ 556 \\x80\\x81\\x82\\x83\\x84\\x85\\x86\\x87\\x88\\x89\\x8a\\x8b\\x8c\\x8d\\x8e\\x8f\ 557 \\x90\\x91\\x92\\x93\\x94\\x95\\x96\\x97\\x98\\x99\\x9a\\x9b\\x9c\\x9d\\x9e\\x9f\ 558 \\xa0\\xa1\\xa2\\xa3\\xa4\\xa5\\xa6\\xa7\\xa8\\xa9\\xaa\\xab\\xac\\xad\\xae\\xaf\ 559 \\xb0\\xb1\\xb2\\xb3\\xb4\\xb5\\xb6\\xb7\\xb8\\xb9\\xba\\xbb\\xbc\\xbd\\xbe\\xbf\ 560 \\xc0\\xc1\\xc2\\xc3\\xc4\\xc5\\xc6\\xc7\\xc8\\xc9\\xca\\xcb\\xcc\\xcd\\xce\\xcf\ 561 \\xd0\\xd1\\xd2\\xd3\\xd4\\xd5\\xd6\\xd7\\xd8\\xd9\\xda\\xdb\\xdc\\xdd\\xde\\xdf\ 562 \\xe0\\xe1\\xe2\\xe3\\xe4\\xe5\\xe6\\xe7\\xe8\\xe9\\xea\\xeb\\xec\\xed\\xee\\xef\ 563 \\xf0\\xf1\\xf2\\xf3\\xf4\\xf5\\xf6\\xf7\\xf8\\xf9\\xfa\\xfb\\xfc\\xfd\\xfe\\xff"; 564 565 #[test] 566 fn test_cstr_to_str() { 567 let good_bytes = b"\xf0\x9f\xa6\x80\0"; 568 let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap(); 569 let checked_str = checked_cstr.to_str().unwrap(); 570 assert_eq!(checked_str, ""); 571 } 572 573 #[test] 574 #[should_panic] 575 fn test_cstr_to_str_panic() { 576 let bad_bytes = b"\xc3\x28\0"; 577 let checked_cstr = CStr::from_bytes_with_nul(bad_bytes).unwrap(); 578 checked_cstr.to_str().unwrap(); 579 } 580 581 #[test] 582 fn test_cstr_as_str_unchecked() { 583 let good_bytes = b"\xf0\x9f\x90\xA7\0"; 584 let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap(); 585 // SAFETY: The contents come from a string literal which contains valid UTF-8. 586 let unchecked_str = unsafe { checked_cstr.as_str_unchecked() }; 587 assert_eq!(unchecked_str, ""); 588 } 589 590 #[test] 591 fn test_cstr_display() { 592 let hello_world = CStr::from_bytes_with_nul(b"hello, world!\0").unwrap(); 593 assert_eq!(format!("{}", hello_world), "hello, world!"); 594 let non_printables = CStr::from_bytes_with_nul(b"\x01\x09\x0a\0").unwrap(); 595 assert_eq!(format!("{}", non_printables), "\\x01\\x09\\x0a"); 596 let non_ascii = CStr::from_bytes_with_nul(b"d\xe9j\xe0 vu\0").unwrap(); 597 assert_eq!(format!("{}", non_ascii), "d\\xe9j\\xe0 vu"); 598 let good_bytes = CStr::from_bytes_with_nul(b"\xf0\x9f\xa6\x80\0").unwrap(); 599 assert_eq!(format!("{}", good_bytes), "\\xf0\\x9f\\xa6\\x80"); 600 } 601 602 #[test] 603 fn test_cstr_display_all_bytes() { 604 let mut bytes: [u8; 256] = [0; 256]; 605 // fill `bytes` with [1..=255] + [0] 606 for i in u8::MIN..=u8::MAX { 607 bytes[i as usize] = i.wrapping_add(1); 608 } 609 let cstr = CStr::from_bytes_with_nul(&bytes).unwrap(); 610 assert_eq!(format!("{}", cstr), ALL_ASCII_CHARS); 611 } 612 613 #[test] 614 fn test_cstr_debug() { 615 let hello_world = CStr::from_bytes_with_nul(b"hello, world!\0").unwrap(); 616 assert_eq!(format!("{:?}", hello_world), "\"hello, world!\""); 617 let non_printables = CStr::from_bytes_with_nul(b"\x01\x09\x0a\0").unwrap(); 618 assert_eq!(format!("{:?}", non_printables), "\"\\x01\\x09\\x0a\""); 619 let non_ascii = CStr::from_bytes_with_nul(b"d\xe9j\xe0 vu\0").unwrap(); 620 assert_eq!(format!("{:?}", non_ascii), "\"d\\xe9j\\xe0 vu\""); 621 let good_bytes = CStr::from_bytes_with_nul(b"\xf0\x9f\xa6\x80\0").unwrap(); 622 assert_eq!(format!("{:?}", good_bytes), "\"\\xf0\\x9f\\xa6\\x80\""); 623 } 624 625 #[test] 626 fn test_bstr_display() { 627 let hello_world = BStr::from_bytes(b"hello, world!"); 628 assert_eq!(format!("{}", hello_world), "hello, world!"); 629 let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_"); 630 assert_eq!(format!("{}", escapes), "_\\t_\\n_\\r_\\_'_\"_"); 631 let others = BStr::from_bytes(b"\x01"); 632 assert_eq!(format!("{}", others), "\\x01"); 633 let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu"); 634 assert_eq!(format!("{}", non_ascii), "d\\xe9j\\xe0 vu"); 635 let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80"); 636 assert_eq!(format!("{}", good_bytes), "\\xf0\\x9f\\xa6\\x80"); 637 } 638 639 #[test] 640 fn test_bstr_debug() { 641 let hello_world = BStr::from_bytes(b"hello, world!"); 642 assert_eq!(format!("{:?}", hello_world), "\"hello, world!\""); 643 let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_"); 644 assert_eq!(format!("{:?}", escapes), "\"_\\t_\\n_\\r_\\\\_'_\\\"_\""); 645 let others = BStr::from_bytes(b"\x01"); 646 assert_eq!(format!("{:?}", others), "\"\\x01\""); 647 let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu"); 648 assert_eq!(format!("{:?}", non_ascii), "\"d\\xe9j\\xe0 vu\""); 649 let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80"); 650 assert_eq!(format!("{:?}", good_bytes), "\"\\xf0\\x9f\\xa6\\x80\""); 651 } 652 } 653 654 /// Allows formatting of [`fmt::Arguments`] into a raw buffer. 655 /// 656 /// It does not fail if callers write past the end of the buffer so that they can calculate the 657 /// size required to fit everything. 658 /// 659 /// # Invariants 660 /// 661 /// The memory region between `pos` (inclusive) and `end` (exclusive) is valid for writes if `pos` 662 /// is less than `end`. 663 pub(crate) struct RawFormatter { 664 // Use `usize` to use `saturating_*` functions. 665 beg: usize, 666 pos: usize, 667 end: usize, 668 } 669 670 impl RawFormatter { 671 /// Creates a new instance of [`RawFormatter`] with an empty buffer. 672 fn new() -> Self { 673 // INVARIANT: The buffer is empty, so the region that needs to be writable is empty. 674 Self { 675 beg: 0, 676 pos: 0, 677 end: 0, 678 } 679 } 680 681 /// Creates a new instance of [`RawFormatter`] with the given buffer pointers. 682 /// 683 /// # Safety 684 /// 685 /// If `pos` is less than `end`, then the region between `pos` (inclusive) and `end` 686 /// (exclusive) must be valid for writes for the lifetime of the returned [`RawFormatter`]. 687 pub(crate) unsafe fn from_ptrs(pos: *mut u8, end: *mut u8) -> Self { 688 // INVARIANT: The safety requirements guarantee the type invariants. 689 Self { 690 beg: pos as _, 691 pos: pos as _, 692 end: end as _, 693 } 694 } 695 696 /// Creates a new instance of [`RawFormatter`] with the given buffer. 697 /// 698 /// # Safety 699 /// 700 /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes 701 /// for the lifetime of the returned [`RawFormatter`]. 702 pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self { 703 let pos = buf as usize; 704 // INVARIANT: We ensure that `end` is never less then `buf`, and the safety requirements 705 // guarantees that the memory region is valid for writes. 706 Self { 707 pos, 708 beg: pos, 709 end: pos.saturating_add(len), 710 } 711 } 712 713 /// Returns the current insert position. 714 /// 715 /// N.B. It may point to invalid memory. 716 pub(crate) fn pos(&self) -> *mut u8 { 717 self.pos as _ 718 } 719 720 /// Returns the number of bytes written to the formatter. 721 pub(crate) fn bytes_written(&self) -> usize { 722 self.pos - self.beg 723 } 724 } 725 726 impl fmt::Write for RawFormatter { 727 fn write_str(&mut self, s: &str) -> fmt::Result { 728 // `pos` value after writing `len` bytes. This does not have to be bounded by `end`, but we 729 // don't want it to wrap around to 0. 730 let pos_new = self.pos.saturating_add(s.len()); 731 732 // Amount that we can copy. `saturating_sub` ensures we get 0 if `pos` goes past `end`. 733 let len_to_copy = core::cmp::min(pos_new, self.end).saturating_sub(self.pos); 734 735 if len_to_copy > 0 { 736 // SAFETY: If `len_to_copy` is non-zero, then we know `pos` has not gone past `end` 737 // yet, so it is valid for write per the type invariants. 738 unsafe { 739 core::ptr::copy_nonoverlapping( 740 s.as_bytes().as_ptr(), 741 self.pos as *mut u8, 742 len_to_copy, 743 ) 744 }; 745 } 746 747 self.pos = pos_new; 748 Ok(()) 749 } 750 } 751 752 /// Allows formatting of [`fmt::Arguments`] into a raw buffer. 753 /// 754 /// Fails if callers attempt to write more than will fit in the buffer. 755 pub(crate) struct Formatter(RawFormatter); 756 757 impl Formatter { 758 /// Creates a new instance of [`Formatter`] with the given buffer. 759 /// 760 /// # Safety 761 /// 762 /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes 763 /// for the lifetime of the returned [`Formatter`]. 764 pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self { 765 // SAFETY: The safety requirements of this function satisfy those of the callee. 766 Self(unsafe { RawFormatter::from_buffer(buf, len) }) 767 } 768 } 769 770 impl Deref for Formatter { 771 type Target = RawFormatter; 772 773 fn deref(&self) -> &Self::Target { 774 &self.0 775 } 776 } 777 778 impl fmt::Write for Formatter { 779 fn write_str(&mut self, s: &str) -> fmt::Result { 780 self.0.write_str(s)?; 781 782 // Fail the request if we go past the end of the buffer. 783 if self.0.pos > self.0.end { 784 Err(fmt::Error) 785 } else { 786 Ok(()) 787 } 788 } 789 } 790 791 /// An owned string that is guaranteed to have exactly one `NUL` byte, which is at the end. 792 /// 793 /// Used for interoperability with kernel APIs that take C strings. 794 /// 795 /// # Invariants 796 /// 797 /// The string is always `NUL`-terminated and contains no other `NUL` bytes. 798 /// 799 /// # Examples 800 /// 801 /// ``` 802 /// use kernel::{str::CString, fmt}; 803 /// 804 /// let s = CString::try_from_fmt(fmt!("{}{}{}", "abc", 10, 20)).unwrap(); 805 /// assert_eq!(s.as_bytes_with_nul(), "abc1020\0".as_bytes()); 806 /// 807 /// let tmp = "testing"; 808 /// let s = CString::try_from_fmt(fmt!("{tmp}{}", 123)).unwrap(); 809 /// assert_eq!(s.as_bytes_with_nul(), "testing123\0".as_bytes()); 810 /// 811 /// // This fails because it has an embedded `NUL` byte. 812 /// let s = CString::try_from_fmt(fmt!("a\0b{}", 123)); 813 /// assert_eq!(s.is_ok(), false); 814 /// ``` 815 pub struct CString { 816 buf: KVec<u8>, 817 } 818 819 impl CString { 820 /// Creates an instance of [`CString`] from the given formatted arguments. 821 pub fn try_from_fmt(args: fmt::Arguments<'_>) -> Result<Self, Error> { 822 // Calculate the size needed (formatted string plus `NUL` terminator). 823 let mut f = RawFormatter::new(); 824 f.write_fmt(args)?; 825 f.write_str("\0")?; 826 let size = f.bytes_written(); 827 828 // Allocate a vector with the required number of bytes, and write to it. 829 let mut buf = KVec::with_capacity(size, GFP_KERNEL)?; 830 // SAFETY: The buffer stored in `buf` is at least of size `size` and is valid for writes. 831 let mut f = unsafe { Formatter::from_buffer(buf.as_mut_ptr(), size) }; 832 f.write_fmt(args)?; 833 f.write_str("\0")?; 834 835 // SAFETY: The number of bytes that can be written to `f` is bounded by `size`, which is 836 // `buf`'s capacity. The contents of the buffer have been initialised by writes to `f`. 837 unsafe { buf.set_len(f.bytes_written()) }; 838 839 // Check that there are no `NUL` bytes before the end. 840 // SAFETY: The buffer is valid for read because `f.bytes_written()` is bounded by `size` 841 // (which the minimum buffer size) and is non-zero (we wrote at least the `NUL` terminator) 842 // so `f.bytes_written() - 1` doesn't underflow. 843 let ptr = unsafe { bindings::memchr(buf.as_ptr().cast(), 0, f.bytes_written() - 1) }; 844 if !ptr.is_null() { 845 return Err(EINVAL); 846 } 847 848 // INVARIANT: We wrote the `NUL` terminator and checked above that no other `NUL` bytes 849 // exist in the buffer. 850 Ok(Self { buf }) 851 } 852 } 853 854 impl Deref for CString { 855 type Target = CStr; 856 857 fn deref(&self) -> &Self::Target { 858 // SAFETY: The type invariants guarantee that the string is `NUL`-terminated and that no 859 // other `NUL` bytes exist. 860 unsafe { CStr::from_bytes_with_nul_unchecked(self.buf.as_slice()) } 861 } 862 } 863 864 impl DerefMut for CString { 865 fn deref_mut(&mut self) -> &mut Self::Target { 866 // SAFETY: A `CString` is always NUL-terminated and contains no other 867 // NUL bytes. 868 unsafe { CStr::from_bytes_with_nul_unchecked_mut(self.buf.as_mut_slice()) } 869 } 870 } 871 872 impl<'a> TryFrom<&'a CStr> for CString { 873 type Error = AllocError; 874 875 fn try_from(cstr: &'a CStr) -> Result<CString, AllocError> { 876 let mut buf = KVec::new(); 877 878 buf.extend_from_slice(cstr.as_bytes_with_nul(), GFP_KERNEL)?; 879 880 // INVARIANT: The `CStr` and `CString` types have the same invariants for 881 // the string data, and we copied it over without changes. 882 Ok(CString { buf }) 883 } 884 } 885 886 impl fmt::Debug for CString { 887 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 888 fmt::Debug::fmt(&**self, f) 889 } 890 } 891 892 /// A convenience alias for [`core::format_args`]. 893 #[macro_export] 894 macro_rules! fmt { 895 ($($f:tt)*) => ( core::format_args!($($f)*) ) 896 } 897