xref: /linux/rust/kernel/pwm.rs (revision b0319c4642638bad4b36974055b1c0894b2c7aa9)
1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright (c) 2025 Samsung Electronics Co., Ltd.
3 // Author: Michal Wilczynski <m.wilczynski@samsung.com>
4 
5 //! PWM subsystem abstractions.
6 //!
7 //! C header: [`include/linux/pwm.h`](srctree/include/linux/pwm.h).
8 
9 use crate::{
10     bindings,
11     container_of,
12     device::{self, Bound},
13     devres,
14     error::{self, to_result},
15     prelude::*,
16     types::{ARef, AlwaysRefCounted, Opaque}, //
17 };
18 use core::{marker::PhantomData, ptr::NonNull};
19 
20 /// Represents a PWM waveform configuration.
21 /// Mirrors struct [`struct pwm_waveform`](srctree/include/linux/pwm.h).
22 #[derive(Copy, Clone, Debug, Default, PartialEq, Eq)]
23 pub struct Waveform {
24     /// Total duration of one complete PWM cycle, in nanoseconds.
25     pub period_length_ns: u64,
26 
27     /// Duty-cycle active time, in nanoseconds.
28     ///
29     /// For a typical normal polarity configuration (active-high) this is the
30     /// high time of the signal.
31     pub duty_length_ns: u64,
32 
33     /// Duty-cycle start offset, in nanoseconds.
34     ///
35     /// Delay from the beginning of the period to the first active edge.
36     /// In most simple PWM setups this is `0`, so the duty cycle starts
37     /// immediately at each period’s start.
38     pub duty_offset_ns: u64,
39 }
40 
41 impl From<bindings::pwm_waveform> for Waveform {
42     fn from(wf: bindings::pwm_waveform) -> Self {
43         Waveform {
44             period_length_ns: wf.period_length_ns,
45             duty_length_ns: wf.duty_length_ns,
46             duty_offset_ns: wf.duty_offset_ns,
47         }
48     }
49 }
50 
51 impl From<Waveform> for bindings::pwm_waveform {
52     fn from(wf: Waveform) -> Self {
53         bindings::pwm_waveform {
54             period_length_ns: wf.period_length_ns,
55             duty_length_ns: wf.duty_length_ns,
56             duty_offset_ns: wf.duty_offset_ns,
57         }
58     }
59 }
60 
61 /// Describes the outcome of a `round_waveform` operation.
62 #[derive(Debug, Clone, Copy, PartialEq, Eq)]
63 pub enum RoundingOutcome {
64     /// The requested waveform was achievable exactly or by rounding values down.
65     ExactOrRoundedDown,
66 
67     /// The requested waveform could only be achieved by rounding up.
68     RoundedUp,
69 }
70 
71 /// Wrapper for a PWM device [`struct pwm_device`](srctree/include/linux/pwm.h).
72 #[repr(transparent)]
73 pub struct Device(Opaque<bindings::pwm_device>);
74 
75 impl Device {
76     /// Creates a reference to a [`Device`] from a valid C pointer.
77     ///
78     /// # Safety
79     ///
80     /// The caller must ensure that `ptr` is valid and remains valid for the lifetime of the
81     /// returned [`Device`] reference.
82     pub(crate) unsafe fn from_raw<'a>(ptr: *mut bindings::pwm_device) -> &'a Self {
83         // SAFETY: The safety requirements guarantee the validity of the dereference, while the
84         // `Device` type being transparent makes the cast ok.
85         unsafe { &*ptr.cast::<Self>() }
86     }
87 
88     /// Returns a raw pointer to the underlying `pwm_device`.
89     fn as_raw(&self) -> *mut bindings::pwm_device {
90         self.0.get()
91     }
92 
93     /// Gets the hardware PWM index for this device within its chip.
94     pub fn hwpwm(&self) -> u32 {
95         // SAFETY: `self.as_raw()` provides a valid pointer for `self`'s lifetime.
96         unsafe { (*self.as_raw()).hwpwm }
97     }
98 
99     /// Gets a reference to the parent `Chip` that this device belongs to.
100     pub fn chip<T: PwmOps>(&self) -> &Chip<T> {
101         // SAFETY: `self.as_raw()` provides a valid pointer. (*self.as_raw()).chip
102         // is assumed to be a valid pointer to `pwm_chip` managed by the kernel.
103         // Chip::from_raw's safety conditions must be met.
104         unsafe { Chip::<T>::from_raw((*self.as_raw()).chip) }
105     }
106 
107     /// Gets the label for this PWM device, if any.
108     pub fn label(&self) -> Option<&CStr> {
109         // SAFETY: self.as_raw() provides a valid pointer.
110         let label_ptr = unsafe { (*self.as_raw()).label };
111         if label_ptr.is_null() {
112             return None;
113         }
114 
115         // SAFETY: label_ptr is non-null and points to a C string
116         // managed by the kernel, valid for the lifetime of the PWM device.
117         Some(unsafe { CStr::from_char_ptr(label_ptr) })
118     }
119 
120     /// Sets the PWM waveform configuration and enables the PWM signal.
121     pub fn set_waveform(&self, wf: &Waveform, exact: bool) -> Result {
122         let c_wf = bindings::pwm_waveform::from(*wf);
123 
124         // SAFETY: `self.as_raw()` provides a valid `*mut pwm_device` pointer.
125         // `&c_wf` is a valid pointer to a `pwm_waveform` struct. The C function
126         // handles all necessary internal locking.
127         let ret = unsafe { bindings::pwm_set_waveform_might_sleep(self.as_raw(), &c_wf, exact) };
128         to_result(ret)
129     }
130 
131     /// Queries the hardware for the configuration it would apply for a given
132     /// request.
133     pub fn round_waveform(&self, wf: &mut Waveform) -> Result<RoundingOutcome> {
134         let mut c_wf = bindings::pwm_waveform::from(*wf);
135 
136         // SAFETY: `self.as_raw()` provides a valid `*mut pwm_device` pointer.
137         // `&mut c_wf` is a valid pointer to a mutable `pwm_waveform` struct that
138         // the C function will update.
139         let ret = unsafe { bindings::pwm_round_waveform_might_sleep(self.as_raw(), &mut c_wf) };
140 
141         to_result(ret)?;
142 
143         *wf = Waveform::from(c_wf);
144 
145         if ret == 1 {
146             Ok(RoundingOutcome::RoundedUp)
147         } else {
148             Ok(RoundingOutcome::ExactOrRoundedDown)
149         }
150     }
151 
152     /// Reads the current waveform configuration directly from the hardware.
153     pub fn get_waveform(&self) -> Result<Waveform> {
154         let mut c_wf = bindings::pwm_waveform::default();
155 
156         // SAFETY: `self.as_raw()` is a valid pointer. We provide a valid pointer
157         // to a stack-allocated `pwm_waveform` struct for the kernel to fill.
158         let ret = unsafe { bindings::pwm_get_waveform_might_sleep(self.as_raw(), &mut c_wf) };
159 
160         to_result(ret)?;
161 
162         Ok(Waveform::from(c_wf))
163     }
164 }
165 
166 /// The result of a `round_waveform_tohw` operation.
167 #[derive(Debug, Clone, Copy, PartialEq, Eq)]
168 pub struct RoundedWaveform<WfHw> {
169     /// A status code, 0 for success or 1 if values were rounded up.
170     pub status: c_int,
171     /// The driver-specific hardware representation of the waveform.
172     pub hardware_waveform: WfHw,
173 }
174 
175 /// Trait defining the operations for a PWM driver.
176 pub trait PwmOps: 'static + Sized {
177     /// The driver-specific hardware representation of a waveform.
178     ///
179     /// This type must be [`Copy`], [`Default`], and fit within `PWM_WFHWSIZE`.
180     type WfHw: Copy + Default;
181 
182     /// Optional hook for when a PWM device is requested.
183     fn request(_chip: &Chip<Self>, _pwm: &Device, _parent_dev: &device::Device<Bound>) -> Result {
184         Ok(())
185     }
186 
187     /// Optional hook for capturing a PWM signal.
188     fn capture(
189         _chip: &Chip<Self>,
190         _pwm: &Device,
191         _result: &mut bindings::pwm_capture,
192         _timeout: usize,
193         _parent_dev: &device::Device<Bound>,
194     ) -> Result {
195         Err(ENOTSUPP)
196     }
197 
198     /// Convert a generic waveform to the hardware-specific representation.
199     /// This is typically a pure calculation and does not perform I/O.
200     fn round_waveform_tohw(
201         _chip: &Chip<Self>,
202         _pwm: &Device,
203         _wf: &Waveform,
204     ) -> Result<RoundedWaveform<Self::WfHw>> {
205         Err(ENOTSUPP)
206     }
207 
208     /// Convert a hardware-specific representation back to a generic waveform.
209     /// This is typically a pure calculation and does not perform I/O.
210     fn round_waveform_fromhw(
211         _chip: &Chip<Self>,
212         _pwm: &Device,
213         _wfhw: &Self::WfHw,
214         _wf: &mut Waveform,
215     ) -> Result {
216         Err(ENOTSUPP)
217     }
218 
219     /// Read the current hardware configuration into the hardware-specific representation.
220     fn read_waveform(
221         _chip: &Chip<Self>,
222         _pwm: &Device,
223         _parent_dev: &device::Device<Bound>,
224     ) -> Result<Self::WfHw> {
225         Err(ENOTSUPP)
226     }
227 
228     /// Write a hardware-specific waveform configuration to the hardware.
229     fn write_waveform(
230         _chip: &Chip<Self>,
231         _pwm: &Device,
232         _wfhw: &Self::WfHw,
233         _parent_dev: &device::Device<Bound>,
234     ) -> Result {
235         Err(ENOTSUPP)
236     }
237 }
238 
239 /// Bridges Rust `PwmOps` to the C `pwm_ops` vtable.
240 struct Adapter<T: PwmOps> {
241     _p: PhantomData<T>,
242 }
243 
244 impl<T: PwmOps> Adapter<T> {
245     const VTABLE: PwmOpsVTable = create_pwm_ops::<T>();
246 
247     /// # Safety
248     ///
249     /// `wfhw_ptr` must be valid for writes of `size_of::<T::WfHw>()` bytes.
250     unsafe fn serialize_wfhw(wfhw: &T::WfHw, wfhw_ptr: *mut c_void) -> Result {
251         let size = core::mem::size_of::<T::WfHw>();
252 
253         build_assert!(size <= bindings::PWM_WFHWSIZE as usize);
254 
255         // SAFETY: The caller ensures `wfhw_ptr` is valid for `size` bytes.
256         unsafe {
257             core::ptr::copy_nonoverlapping(
258                 core::ptr::from_ref::<T::WfHw>(wfhw).cast::<u8>(),
259                 wfhw_ptr.cast::<u8>(),
260                 size,
261             );
262         }
263 
264         Ok(())
265     }
266 
267     /// # Safety
268     ///
269     /// `wfhw_ptr` must be valid for reads of `size_of::<T::WfHw>()` bytes.
270     unsafe fn deserialize_wfhw(wfhw_ptr: *const c_void) -> Result<T::WfHw> {
271         let size = core::mem::size_of::<T::WfHw>();
272 
273         build_assert!(size <= bindings::PWM_WFHWSIZE as usize);
274 
275         let mut wfhw = T::WfHw::default();
276         // SAFETY: The caller ensures `wfhw_ptr` is valid for `size` bytes.
277         unsafe {
278             core::ptr::copy_nonoverlapping(
279                 wfhw_ptr.cast::<u8>(),
280                 core::ptr::from_mut::<T::WfHw>(&mut wfhw).cast::<u8>(),
281                 size,
282             );
283         }
284 
285         Ok(wfhw)
286     }
287 
288     /// # Safety
289     ///
290     /// `dev` must be a valid pointer to a `bindings::device` embedded within a
291     /// `bindings::pwm_chip`. This function is called by the device core when the
292     /// last reference to the device is dropped.
293     unsafe extern "C" fn release_callback(dev: *mut bindings::device) {
294         // SAFETY: The function's contract guarantees that `dev` points to a `device`
295         // field embedded within a valid `pwm_chip`. `container_of!` can therefore
296         // safely calculate the address of the containing struct.
297         let c_chip_ptr = unsafe { container_of!(dev, bindings::pwm_chip, dev) };
298 
299         // SAFETY: `c_chip_ptr` is a valid pointer to a `pwm_chip` as established
300         // above. Calling this FFI function is safe.
301         let drvdata_ptr = unsafe { bindings::pwmchip_get_drvdata(c_chip_ptr) };
302 
303         // SAFETY: The driver data was initialized in `new`. We run its destructor here.
304         unsafe { core::ptr::drop_in_place(drvdata_ptr.cast::<T>()) };
305 
306         // Now, call the original release function to free the `pwm_chip` itself.
307         // SAFETY: `dev` is the valid pointer passed into this callback, which is
308         // the expected argument for `pwmchip_release`.
309         unsafe {
310             bindings::pwmchip_release(dev);
311         }
312     }
313 
314     /// # Safety
315     ///
316     /// Pointers from C must be valid.
317     unsafe extern "C" fn request_callback(
318         chip_ptr: *mut bindings::pwm_chip,
319         pwm_ptr: *mut bindings::pwm_device,
320     ) -> c_int {
321         // SAFETY: PWM core guarentees `chip_ptr` and `pwm_ptr` are valid pointers.
322         let (chip, pwm) = unsafe { (Chip::<T>::from_raw(chip_ptr), Device::from_raw(pwm_ptr)) };
323 
324         // SAFETY: The PWM core guarantees the parent device exists and is bound during callbacks.
325         let bound_parent = unsafe { chip.bound_parent_device() };
326         match T::request(chip, pwm, bound_parent) {
327             Ok(()) => 0,
328             Err(e) => e.to_errno(),
329         }
330     }
331 
332     /// # Safety
333     ///
334     /// Pointers from C must be valid.
335     unsafe extern "C" fn capture_callback(
336         chip_ptr: *mut bindings::pwm_chip,
337         pwm_ptr: *mut bindings::pwm_device,
338         res: *mut bindings::pwm_capture,
339         timeout: usize,
340     ) -> c_int {
341         // SAFETY: Relies on the function's contract that `chip_ptr` and `pwm_ptr` are valid
342         // pointers.
343         let (chip, pwm, result) = unsafe {
344             (
345                 Chip::<T>::from_raw(chip_ptr),
346                 Device::from_raw(pwm_ptr),
347                 &mut *res,
348             )
349         };
350 
351         // SAFETY: The PWM core guarantees the parent device exists and is bound during callbacks.
352         let bound_parent = unsafe { chip.bound_parent_device() };
353         match T::capture(chip, pwm, result, timeout, bound_parent) {
354             Ok(()) => 0,
355             Err(e) => e.to_errno(),
356         }
357     }
358 
359     /// # Safety
360     ///
361     /// Pointers from C must be valid.
362     unsafe extern "C" fn round_waveform_tohw_callback(
363         chip_ptr: *mut bindings::pwm_chip,
364         pwm_ptr: *mut bindings::pwm_device,
365         wf_ptr: *const bindings::pwm_waveform,
366         wfhw_ptr: *mut c_void,
367     ) -> c_int {
368         // SAFETY: Relies on the function's contract that `chip_ptr` and `pwm_ptr` are valid
369         // pointers.
370         let (chip, pwm, wf) = unsafe {
371             (
372                 Chip::<T>::from_raw(chip_ptr),
373                 Device::from_raw(pwm_ptr),
374                 Waveform::from(*wf_ptr),
375             )
376         };
377         match T::round_waveform_tohw(chip, pwm, &wf) {
378             Ok(rounded) => {
379                 // SAFETY: `wfhw_ptr` is valid per this function's safety contract.
380                 if unsafe { Self::serialize_wfhw(&rounded.hardware_waveform, wfhw_ptr) }.is_err() {
381                     return EINVAL.to_errno();
382                 }
383                 rounded.status
384             }
385             Err(e) => e.to_errno(),
386         }
387     }
388 
389     /// # Safety
390     ///
391     /// Pointers from C must be valid.
392     unsafe extern "C" fn round_waveform_fromhw_callback(
393         chip_ptr: *mut bindings::pwm_chip,
394         pwm_ptr: *mut bindings::pwm_device,
395         wfhw_ptr: *const c_void,
396         wf_ptr: *mut bindings::pwm_waveform,
397     ) -> c_int {
398         // SAFETY: Relies on the function's contract that `chip_ptr` and `pwm_ptr` are valid
399         // pointers.
400         let (chip, pwm) = unsafe { (Chip::<T>::from_raw(chip_ptr), Device::from_raw(pwm_ptr)) };
401         // SAFETY: `deserialize_wfhw`'s safety contract is met by this function's contract.
402         let wfhw = match unsafe { Self::deserialize_wfhw(wfhw_ptr) } {
403             Ok(v) => v,
404             Err(e) => return e.to_errno(),
405         };
406 
407         let mut rust_wf = Waveform::default();
408         match T::round_waveform_fromhw(chip, pwm, &wfhw, &mut rust_wf) {
409             Ok(()) => {
410                 // SAFETY: `wf_ptr` is guaranteed valid by the C caller.
411                 unsafe {
412                     *wf_ptr = rust_wf.into();
413                 };
414                 0
415             }
416             Err(e) => e.to_errno(),
417         }
418     }
419 
420     /// # Safety
421     ///
422     /// Pointers from C must be valid.
423     unsafe extern "C" fn read_waveform_callback(
424         chip_ptr: *mut bindings::pwm_chip,
425         pwm_ptr: *mut bindings::pwm_device,
426         wfhw_ptr: *mut c_void,
427     ) -> c_int {
428         // SAFETY: Relies on the function's contract that `chip_ptr` and `pwm_ptr` are valid
429         // pointers.
430         let (chip, pwm) = unsafe { (Chip::<T>::from_raw(chip_ptr), Device::from_raw(pwm_ptr)) };
431 
432         // SAFETY: The PWM core guarantees the parent device exists and is bound during callbacks.
433         let bound_parent = unsafe { chip.bound_parent_device() };
434         match T::read_waveform(chip, pwm, bound_parent) {
435             // SAFETY: `wfhw_ptr` is valid per this function's safety contract.
436             Ok(wfhw) => match unsafe { Self::serialize_wfhw(&wfhw, wfhw_ptr) } {
437                 Ok(()) => 0,
438                 Err(e) => e.to_errno(),
439             },
440             Err(e) => e.to_errno(),
441         }
442     }
443 
444     /// # Safety
445     ///
446     /// Pointers from C must be valid.
447     unsafe extern "C" fn write_waveform_callback(
448         chip_ptr: *mut bindings::pwm_chip,
449         pwm_ptr: *mut bindings::pwm_device,
450         wfhw_ptr: *const c_void,
451     ) -> c_int {
452         // SAFETY: Relies on the function's contract that `chip_ptr` and `pwm_ptr` are valid
453         // pointers.
454         let (chip, pwm) = unsafe { (Chip::<T>::from_raw(chip_ptr), Device::from_raw(pwm_ptr)) };
455 
456         // SAFETY: The PWM core guarantees the parent device exists and is bound during callbacks.
457         let bound_parent = unsafe { chip.bound_parent_device() };
458 
459         // SAFETY: `wfhw_ptr` is valid per this function's safety contract.
460         let wfhw = match unsafe { Self::deserialize_wfhw(wfhw_ptr) } {
461             Ok(v) => v,
462             Err(e) => return e.to_errno(),
463         };
464         match T::write_waveform(chip, pwm, &wfhw, bound_parent) {
465             Ok(()) => 0,
466             Err(e) => e.to_errno(),
467         }
468     }
469 }
470 
471 /// VTable structure wrapper for PWM operations.
472 /// Mirrors [`struct pwm_ops`](srctree/include/linux/pwm.h).
473 #[repr(transparent)]
474 pub struct PwmOpsVTable(bindings::pwm_ops);
475 
476 // SAFETY: PwmOpsVTable is Send. The vtable contains only function pointers
477 // and a size, which are simple data types that can be safely moved across
478 // threads. The thread-safety of calling these functions is handled by the
479 // kernel's locking mechanisms.
480 unsafe impl Send for PwmOpsVTable {}
481 
482 // SAFETY: PwmOpsVTable is Sync. The vtable is immutable after it is created,
483 // so it can be safely referenced and accessed concurrently by multiple threads
484 // e.g. to read the function pointers.
485 unsafe impl Sync for PwmOpsVTable {}
486 
487 impl PwmOpsVTable {
488     /// Returns a raw pointer to the underlying `pwm_ops` struct.
489     pub(crate) fn as_raw(&self) -> *const bindings::pwm_ops {
490         &self.0
491     }
492 }
493 
494 /// Creates a PWM operations vtable for a type `T` that implements `PwmOps`.
495 ///
496 /// This is used to bridge Rust trait implementations to the C `struct pwm_ops`
497 /// expected by the kernel.
498 pub const fn create_pwm_ops<T: PwmOps>() -> PwmOpsVTable {
499     // SAFETY: `core::mem::zeroed()` is unsafe. For `pwm_ops`, all fields are
500     // `Option<extern "C" fn(...)>` or data, so a zeroed pattern (None/0) is valid initially.
501     let mut ops: bindings::pwm_ops = unsafe { core::mem::zeroed() };
502 
503     ops.request = Some(Adapter::<T>::request_callback);
504     ops.capture = Some(Adapter::<T>::capture_callback);
505 
506     ops.round_waveform_tohw = Some(Adapter::<T>::round_waveform_tohw_callback);
507     ops.round_waveform_fromhw = Some(Adapter::<T>::round_waveform_fromhw_callback);
508     ops.read_waveform = Some(Adapter::<T>::read_waveform_callback);
509     ops.write_waveform = Some(Adapter::<T>::write_waveform_callback);
510     ops.sizeof_wfhw = core::mem::size_of::<T::WfHw>();
511 
512     PwmOpsVTable(ops)
513 }
514 
515 /// Wrapper for a PWM chip/controller ([`struct pwm_chip`](srctree/include/linux/pwm.h)).
516 #[repr(transparent)]
517 pub struct Chip<T: PwmOps>(Opaque<bindings::pwm_chip>, PhantomData<T>);
518 
519 impl<T: PwmOps> Chip<T> {
520     /// Creates a reference to a [`Chip`] from a valid pointer.
521     ///
522     /// # Safety
523     ///
524     /// The caller must ensure that `ptr` is valid and remains valid for the lifetime of the
525     /// returned [`Chip`] reference.
526     pub(crate) unsafe fn from_raw<'a>(ptr: *mut bindings::pwm_chip) -> &'a Self {
527         // SAFETY: The safety requirements guarantee the validity of the dereference, while the
528         // `Chip` type being transparent makes the cast ok.
529         unsafe { &*ptr.cast::<Self>() }
530     }
531 
532     /// Returns a raw pointer to the underlying `pwm_chip`.
533     pub(crate) fn as_raw(&self) -> *mut bindings::pwm_chip {
534         self.0.get()
535     }
536 
537     /// Gets the number of PWM channels (hardware PWMs) on this chip.
538     pub fn num_channels(&self) -> u32 {
539         // SAFETY: `self.as_raw()` provides a valid pointer for `self`'s lifetime.
540         unsafe { (*self.as_raw()).npwm }
541     }
542 
543     /// Returns `true` if the chip supports atomic operations for configuration.
544     pub fn is_atomic(&self) -> bool {
545         // SAFETY: `self.as_raw()` provides a valid pointer for `self`'s lifetime.
546         unsafe { (*self.as_raw()).atomic }
547     }
548 
549     /// Returns a reference to the embedded `struct device` abstraction.
550     pub fn device(&self) -> &device::Device {
551         // SAFETY:
552         // - `self.as_raw()` provides a valid pointer to `bindings::pwm_chip`.
553         // - The `dev` field is an instance of `bindings::device` embedded
554         //   within `pwm_chip`.
555         // - Taking a pointer to this embedded field is valid.
556         // - `device::Device` is `#[repr(transparent)]`.
557         // - The lifetime of the returned reference is tied to `self`.
558         unsafe { device::Device::from_raw(&raw mut (*self.as_raw()).dev) }
559     }
560 
561     /// Gets the typed driver specific data associated with this chip's embedded device.
562     pub fn drvdata(&self) -> &T {
563         // SAFETY: `pwmchip_get_drvdata` returns the pointer to the private data area,
564         // which we know holds our `T`. The pointer is valid for the lifetime of `self`.
565         unsafe { &*bindings::pwmchip_get_drvdata(self.as_raw()).cast::<T>() }
566     }
567 
568     /// Returns a reference to the parent device of this PWM chip's device.
569     ///
570     /// # Safety
571     ///
572     /// The caller must guarantee that the parent device exists and is bound.
573     /// This is guaranteed by the PWM core during `PwmOps` callbacks.
574     unsafe fn bound_parent_device(&self) -> &device::Device<Bound> {
575         // SAFETY: Per the function's safety contract, the parent device exists.
576         let parent = unsafe { self.device().parent().unwrap_unchecked() };
577 
578         // SAFETY: Per the function's safety contract, the parent device is bound.
579         // This is guaranteed by the PWM core during `PwmOps` callbacks.
580         unsafe { parent.as_bound() }
581     }
582 
583     /// Allocates and wraps a PWM chip using `bindings::pwmchip_alloc`.
584     ///
585     /// Returns an [`ARef<Chip>`] managing the chip's lifetime via refcounting
586     /// on its embedded `struct device`.
587     pub fn new(
588         parent_dev: &device::Device,
589         num_channels: u32,
590         data: impl pin_init::PinInit<T, Error>,
591     ) -> Result<ARef<Self>> {
592         let sizeof_priv = core::mem::size_of::<T>();
593         // SAFETY: `pwmchip_alloc` allocates memory for the C struct and our private data.
594         let c_chip_ptr_raw =
595             unsafe { bindings::pwmchip_alloc(parent_dev.as_raw(), num_channels, sizeof_priv) };
596 
597         let c_chip_ptr: *mut bindings::pwm_chip = error::from_err_ptr(c_chip_ptr_raw)?;
598 
599         // SAFETY: The `drvdata` pointer is the start of the private area, which is where
600         // we will construct our `T` object.
601         let drvdata_ptr = unsafe { bindings::pwmchip_get_drvdata(c_chip_ptr) };
602 
603         // SAFETY: We construct the `T` object in-place in the allocated private memory.
604         unsafe { data.__pinned_init(drvdata_ptr.cast())? };
605 
606         // SAFETY: `c_chip_ptr` points to a valid chip.
607         unsafe {
608             (*c_chip_ptr).dev.release = Some(Adapter::<T>::release_callback);
609         }
610 
611         // SAFETY: `c_chip_ptr` points to a valid chip.
612         // The `Adapter`'s `VTABLE` has a 'static lifetime, so the pointer
613         // returned by `as_raw()` is always valid.
614         unsafe {
615             (*c_chip_ptr).ops = Adapter::<T>::VTABLE.as_raw();
616         }
617 
618         // Cast the `*mut bindings::pwm_chip` to `*mut Chip`. This is valid because
619         // `Chip` is `repr(transparent)` over `Opaque<bindings::pwm_chip>`, and
620         // `Opaque<T>` is `repr(transparent)` over `T`.
621         let chip_ptr_as_self = c_chip_ptr.cast::<Self>();
622 
623         // SAFETY: `chip_ptr_as_self` points to a valid `Chip` (layout-compatible with
624         // `bindings::pwm_chip`) whose embedded device has refcount 1.
625         // `ARef::from_raw` takes this pointer and manages it via `AlwaysRefCounted`.
626         Ok(unsafe { ARef::from_raw(NonNull::new_unchecked(chip_ptr_as_self)) })
627     }
628 }
629 
630 // SAFETY: Implements refcounting for `Chip` using the embedded `struct device`.
631 unsafe impl<T: PwmOps> AlwaysRefCounted for Chip<T> {
632     #[inline]
633     fn inc_ref(&self) {
634         // SAFETY: `self.0.get()` points to a valid `pwm_chip` because `self` exists.
635         // The embedded `dev` is valid. `get_device` increments its refcount.
636         unsafe {
637             bindings::get_device(&raw mut (*self.0.get()).dev);
638         }
639     }
640 
641     #[inline]
642     unsafe fn dec_ref(obj: NonNull<Chip<T>>) {
643         let c_chip_ptr = obj.cast::<bindings::pwm_chip>().as_ptr();
644 
645         // SAFETY: `obj` is a valid pointer to a `Chip` (and thus `bindings::pwm_chip`)
646         // with a non-zero refcount. `put_device` handles decrement and final release.
647         unsafe {
648             bindings::put_device(&raw mut (*c_chip_ptr).dev);
649         }
650     }
651 }
652 
653 // SAFETY: `Chip` is a wrapper around `*mut bindings::pwm_chip`. The underlying C
654 // structure's state is managed and synchronized by the kernel's device model
655 // and PWM core locking mechanisms. Therefore, it is safe to move the `Chip`
656 // wrapper (and the pointer it contains) across threads.
657 unsafe impl<T: PwmOps + Send> Send for Chip<T> {}
658 
659 // SAFETY: It is safe for multiple threads to have shared access (`&Chip`) because
660 // the `Chip` data is immutable from the Rust side without holding the appropriate
661 // kernel locks, which the C core is responsible for. Any interior mutability is
662 // handled and synchronized by the C kernel code.
663 unsafe impl<T: PwmOps + Sync> Sync for Chip<T> {}
664 
665 /// A resource guard that ensures `pwmchip_remove` is called on drop.
666 ///
667 /// This struct is intended to be managed by the `devres` framework by transferring its ownership
668 /// via [`devres::register`]. This ties the lifetime of the PWM chip registration
669 /// to the lifetime of the underlying device.
670 pub struct Registration<T: PwmOps> {
671     chip: ARef<Chip<T>>,
672 }
673 
674 impl<T: 'static + PwmOps + Send + Sync> Registration<T> {
675     /// Registers a PWM chip with the PWM subsystem.
676     ///
677     /// Transfers its ownership to the `devres` framework, which ties its lifetime
678     /// to the parent device.
679     /// On unbind of the parent device, the `devres` entry will be dropped, automatically
680     /// calling `pwmchip_remove`. This function should be called from the driver's `probe`.
681     pub fn register(dev: &device::Device<Bound>, chip: ARef<Chip<T>>) -> Result {
682         let chip_parent = chip.device().parent().ok_or(EINVAL)?;
683         if dev.as_raw() != chip_parent.as_raw() {
684             return Err(EINVAL);
685         }
686 
687         let c_chip_ptr = chip.as_raw();
688 
689         // SAFETY: `c_chip_ptr` points to a valid chip with its ops initialized.
690         // `__pwmchip_add` is the C function to register the chip with the PWM core.
691         unsafe {
692             to_result(bindings::__pwmchip_add(c_chip_ptr, core::ptr::null_mut()))?;
693         }
694 
695         let registration = Registration { chip };
696 
697         devres::register(dev, registration, GFP_KERNEL)
698     }
699 }
700 
701 impl<T: PwmOps> Drop for Registration<T> {
702     fn drop(&mut self) {
703         let chip_raw = self.chip.as_raw();
704 
705         // SAFETY: `chip_raw` points to a chip that was successfully registered.
706         // `bindings::pwmchip_remove` is the correct C function to unregister it.
707         // This `drop` implementation is called automatically by `devres` on driver unbind.
708         unsafe {
709             bindings::pwmchip_remove(chip_raw);
710         }
711     }
712 }
713 
714 /// Declares a kernel module that exposes a single PWM driver.
715 ///
716 /// # Examples
717 ///
718 ///```ignore
719 /// kernel::module_pwm_platform_driver! {
720 ///     type: MyDriver,
721 ///     name: "Module name",
722 ///     authors: ["Author name"],
723 ///     description: "Description",
724 ///     license: "GPL v2",
725 /// }
726 ///```
727 #[macro_export]
728 macro_rules! module_pwm_platform_driver {
729     ($($user_args:tt)*) => {
730         $crate::module_platform_driver! {
731             $($user_args)*
732             imports_ns: ["PWM"],
733         }
734     };
735 }
736