xref: /linux/rust/kernel/page.rs (revision eafedbc7c050c44744fbdf80bdf3315e860b7513)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Kernel page allocation and management.
4 
5 use crate::{
6     alloc::{AllocError, Flags},
7     bindings,
8     error::code::*,
9     error::Result,
10     uaccess::UserSliceReader,
11 };
12 use core::ptr::{self, NonNull};
13 
14 /// A bitwise shift for the page size.
15 pub const PAGE_SHIFT: usize = bindings::PAGE_SHIFT as usize;
16 
17 /// The number of bytes in a page.
18 pub const PAGE_SIZE: usize = bindings::PAGE_SIZE;
19 
20 /// A bitmask that gives the page containing a given address.
21 pub const PAGE_MASK: usize = !(PAGE_SIZE - 1);
22 
23 /// Round up the given number to the next multiple of [`PAGE_SIZE`].
24 ///
25 /// It is incorrect to pass an address where the next multiple of [`PAGE_SIZE`] doesn't fit in a
26 /// [`usize`].
27 pub const fn page_align(addr: usize) -> usize {
28     // Parentheses around `PAGE_SIZE - 1` to avoid triggering overflow sanitizers in the wrong
29     // cases.
30     (addr + (PAGE_SIZE - 1)) & PAGE_MASK
31 }
32 
33 /// A pointer to a page that owns the page allocation.
34 ///
35 /// # Invariants
36 ///
37 /// The pointer is valid, and has ownership over the page.
38 pub struct Page {
39     page: NonNull<bindings::page>,
40 }
41 
42 // SAFETY: Pages have no logic that relies on them staying on a given thread, so moving them across
43 // threads is safe.
44 unsafe impl Send for Page {}
45 
46 // SAFETY: Pages have no logic that relies on them not being accessed concurrently, so accessing
47 // them concurrently is safe.
48 unsafe impl Sync for Page {}
49 
50 impl Page {
51     /// Allocates a new page.
52     ///
53     /// # Examples
54     ///
55     /// Allocate memory for a page.
56     ///
57     /// ```
58     /// use kernel::page::Page;
59     ///
60     /// let page = Page::alloc_page(GFP_KERNEL)?;
61     /// # Ok::<(), kernel::alloc::AllocError>(())
62     /// ```
63     ///
64     /// Allocate memory for a page and zero its contents.
65     ///
66     /// ```
67     /// use kernel::page::Page;
68     ///
69     /// let page = Page::alloc_page(GFP_KERNEL | __GFP_ZERO)?;
70     /// # Ok::<(), kernel::alloc::AllocError>(())
71     /// ```
72     #[inline]
73     pub fn alloc_page(flags: Flags) -> Result<Self, AllocError> {
74         // SAFETY: Depending on the value of `gfp_flags`, this call may sleep. Other than that, it
75         // is always safe to call this method.
76         let page = unsafe { bindings::alloc_pages(flags.as_raw(), 0) };
77         let page = NonNull::new(page).ok_or(AllocError)?;
78         // INVARIANT: We just successfully allocated a page, so we now have ownership of the newly
79         // allocated page. We transfer that ownership to the new `Page` object.
80         Ok(Self { page })
81     }
82 
83     /// Returns a raw pointer to the page.
84     pub fn as_ptr(&self) -> *mut bindings::page {
85         self.page.as_ptr()
86     }
87 
88     /// Get the node id containing this page.
89     pub fn nid(&self) -> i32 {
90         // SAFETY: Always safe to call with a valid page.
91         unsafe { bindings::page_to_nid(self.as_ptr()) }
92     }
93 
94     /// Runs a piece of code with this page mapped to an address.
95     ///
96     /// The page is unmapped when this call returns.
97     ///
98     /// # Using the raw pointer
99     ///
100     /// It is up to the caller to use the provided raw pointer correctly. The pointer is valid for
101     /// `PAGE_SIZE` bytes and for the duration in which the closure is called. The pointer might
102     /// only be mapped on the current thread, and when that is the case, dereferencing it on other
103     /// threads is UB. Other than that, the usual rules for dereferencing a raw pointer apply: don't
104     /// cause data races, the memory may be uninitialized, and so on.
105     ///
106     /// If multiple threads map the same page at the same time, then they may reference with
107     /// different addresses. However, even if the addresses are different, the underlying memory is
108     /// still the same for these purposes (e.g., it's still a data race if they both write to the
109     /// same underlying byte at the same time).
110     fn with_page_mapped<T>(&self, f: impl FnOnce(*mut u8) -> T) -> T {
111         // SAFETY: `page` is valid due to the type invariants on `Page`.
112         let mapped_addr = unsafe { bindings::kmap_local_page(self.as_ptr()) };
113 
114         let res = f(mapped_addr.cast());
115 
116         // This unmaps the page mapped above.
117         //
118         // SAFETY: Since this API takes the user code as a closure, it can only be used in a manner
119         // where the pages are unmapped in reverse order. This is as required by `kunmap_local`.
120         //
121         // In other words, if this call to `kunmap_local` happens when a different page should be
122         // unmapped first, then there must necessarily be a call to `kmap_local_page` other than the
123         // call just above in `with_page_mapped` that made that possible. In this case, it is the
124         // unsafe block that wraps that other call that is incorrect.
125         unsafe { bindings::kunmap_local(mapped_addr) };
126 
127         res
128     }
129 
130     /// Runs a piece of code with a raw pointer to a slice of this page, with bounds checking.
131     ///
132     /// If `f` is called, then it will be called with a pointer that points at `off` bytes into the
133     /// page, and the pointer will be valid for at least `len` bytes. The pointer is only valid on
134     /// this task, as this method uses a local mapping.
135     ///
136     /// If `off` and `len` refers to a region outside of this page, then this method returns
137     /// [`EINVAL`] and does not call `f`.
138     ///
139     /// # Using the raw pointer
140     ///
141     /// It is up to the caller to use the provided raw pointer correctly. The pointer is valid for
142     /// `len` bytes and for the duration in which the closure is called. The pointer might only be
143     /// mapped on the current thread, and when that is the case, dereferencing it on other threads
144     /// is UB. Other than that, the usual rules for dereferencing a raw pointer apply: don't cause
145     /// data races, the memory may be uninitialized, and so on.
146     ///
147     /// If multiple threads map the same page at the same time, then they may reference with
148     /// different addresses. However, even if the addresses are different, the underlying memory is
149     /// still the same for these purposes (e.g., it's still a data race if they both write to the
150     /// same underlying byte at the same time).
151     fn with_pointer_into_page<T>(
152         &self,
153         off: usize,
154         len: usize,
155         f: impl FnOnce(*mut u8) -> Result<T>,
156     ) -> Result<T> {
157         let bounds_ok = off <= PAGE_SIZE && len <= PAGE_SIZE && (off + len) <= PAGE_SIZE;
158 
159         if bounds_ok {
160             self.with_page_mapped(move |page_addr| {
161                 // SAFETY: The `off` integer is at most `PAGE_SIZE`, so this pointer offset will
162                 // result in a pointer that is in bounds or one off the end of the page.
163                 f(unsafe { page_addr.add(off) })
164             })
165         } else {
166             Err(EINVAL)
167         }
168     }
169 
170     /// Maps the page and reads from it into the given buffer.
171     ///
172     /// This method will perform bounds checks on the page offset. If `offset .. offset+len` goes
173     /// outside of the page, then this call returns [`EINVAL`].
174     ///
175     /// # Safety
176     ///
177     /// * Callers must ensure that `dst` is valid for writing `len` bytes.
178     /// * Callers must ensure that this call does not race with a write to the same page that
179     ///   overlaps with this read.
180     pub unsafe fn read_raw(&self, dst: *mut u8, offset: usize, len: usize) -> Result {
181         self.with_pointer_into_page(offset, len, move |src| {
182             // SAFETY: If `with_pointer_into_page` calls into this closure, then
183             // it has performed a bounds check and guarantees that `src` is
184             // valid for `len` bytes.
185             //
186             // There caller guarantees that there is no data race.
187             unsafe { ptr::copy_nonoverlapping(src, dst, len) };
188             Ok(())
189         })
190     }
191 
192     /// Maps the page and writes into it from the given buffer.
193     ///
194     /// This method will perform bounds checks on the page offset. If `offset .. offset+len` goes
195     /// outside of the page, then this call returns [`EINVAL`].
196     ///
197     /// # Safety
198     ///
199     /// * Callers must ensure that `src` is valid for reading `len` bytes.
200     /// * Callers must ensure that this call does not race with a read or write to the same page
201     ///   that overlaps with this write.
202     pub unsafe fn write_raw(&self, src: *const u8, offset: usize, len: usize) -> Result {
203         self.with_pointer_into_page(offset, len, move |dst| {
204             // SAFETY: If `with_pointer_into_page` calls into this closure, then it has performed a
205             // bounds check and guarantees that `dst` is valid for `len` bytes.
206             //
207             // There caller guarantees that there is no data race.
208             unsafe { ptr::copy_nonoverlapping(src, dst, len) };
209             Ok(())
210         })
211     }
212 
213     /// Maps the page and zeroes the given slice.
214     ///
215     /// This method will perform bounds checks on the page offset. If `offset .. offset+len` goes
216     /// outside of the page, then this call returns [`EINVAL`].
217     ///
218     /// # Safety
219     ///
220     /// Callers must ensure that this call does not race with a read or write to the same page that
221     /// overlaps with this write.
222     pub unsafe fn fill_zero_raw(&self, offset: usize, len: usize) -> Result {
223         self.with_pointer_into_page(offset, len, move |dst| {
224             // SAFETY: If `with_pointer_into_page` calls into this closure, then it has performed a
225             // bounds check and guarantees that `dst` is valid for `len` bytes.
226             //
227             // There caller guarantees that there is no data race.
228             unsafe { ptr::write_bytes(dst, 0u8, len) };
229             Ok(())
230         })
231     }
232 
233     /// Copies data from userspace into this page.
234     ///
235     /// This method will perform bounds checks on the page offset. If `offset .. offset+len` goes
236     /// outside of the page, then this call returns [`EINVAL`].
237     ///
238     /// Like the other `UserSliceReader` methods, data races are allowed on the userspace address.
239     /// However, they are not allowed on the page you are copying into.
240     ///
241     /// # Safety
242     ///
243     /// Callers must ensure that this call does not race with a read or write to the same page that
244     /// overlaps with this write.
245     pub unsafe fn copy_from_user_slice_raw(
246         &self,
247         reader: &mut UserSliceReader,
248         offset: usize,
249         len: usize,
250     ) -> Result {
251         self.with_pointer_into_page(offset, len, move |dst| {
252             // SAFETY: If `with_pointer_into_page` calls into this closure, then it has performed a
253             // bounds check and guarantees that `dst` is valid for `len` bytes. Furthermore, we have
254             // exclusive access to the slice since the caller guarantees that there are no races.
255             reader.read_raw(unsafe { core::slice::from_raw_parts_mut(dst.cast(), len) })
256         })
257     }
258 }
259 
260 impl Drop for Page {
261     #[inline]
262     fn drop(&mut self) {
263         // SAFETY: By the type invariants, we have ownership of the page and can free it.
264         unsafe { bindings::__free_pages(self.page.as_ptr(), 0) };
265     }
266 }
267