1 // SPDX-License-Identifier: GPL-2.0 2 3 //! Operating performance points. 4 //! 5 //! This module provides rust abstractions for interacting with the OPP subsystem. 6 //! 7 //! C header: [`include/linux/pm_opp.h`](srctree/include/linux/pm_opp.h) 8 //! 9 //! Reference: <https://docs.kernel.org/power/opp.html> 10 11 use crate::{ 12 clk::Hertz, 13 cpumask::{Cpumask, CpumaskVar}, 14 device::Device, 15 error::{code::*, from_err_ptr, from_result, to_result, Result, VTABLE_DEFAULT_ERROR}, 16 ffi::c_ulong, 17 prelude::*, 18 str::CString, 19 sync::aref::{ARef, AlwaysRefCounted}, 20 types::Opaque, 21 }; 22 23 #[cfg(CONFIG_CPU_FREQ)] 24 /// Frequency table implementation. 25 mod freq { 26 use super::*; 27 use crate::cpufreq; 28 use core::ops::Deref; 29 30 /// OPP frequency table. 31 /// 32 /// A [`cpufreq::Table`] created from [`Table`]. 33 pub struct FreqTable { 34 dev: ARef<Device>, 35 ptr: *mut bindings::cpufreq_frequency_table, 36 } 37 38 impl FreqTable { 39 /// Creates a new instance of [`FreqTable`] from [`Table`]. 40 pub(crate) fn new(table: &Table) -> Result<Self> { 41 let mut ptr: *mut bindings::cpufreq_frequency_table = ptr::null_mut(); 42 43 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 44 // requirements. 45 to_result(unsafe { 46 bindings::dev_pm_opp_init_cpufreq_table(table.dev.as_raw(), &mut ptr) 47 })?; 48 49 Ok(Self { 50 dev: table.dev.clone(), 51 ptr, 52 }) 53 } 54 55 /// Returns a reference to the underlying [`cpufreq::Table`]. 56 #[inline] 57 fn table(&self) -> &cpufreq::Table { 58 // SAFETY: The `ptr` is guaranteed by the C code to be valid. 59 unsafe { cpufreq::Table::from_raw(self.ptr) } 60 } 61 } 62 63 impl Deref for FreqTable { 64 type Target = cpufreq::Table; 65 66 #[inline] 67 fn deref(&self) -> &Self::Target { 68 self.table() 69 } 70 } 71 72 impl Drop for FreqTable { 73 fn drop(&mut self) { 74 // SAFETY: The pointer was created via `dev_pm_opp_init_cpufreq_table`, and is only 75 // freed here. 76 unsafe { 77 bindings::dev_pm_opp_free_cpufreq_table(self.dev.as_raw(), &mut self.as_raw()) 78 }; 79 } 80 } 81 } 82 83 #[cfg(CONFIG_CPU_FREQ)] 84 pub use freq::FreqTable; 85 86 use core::{marker::PhantomData, ptr}; 87 88 use macros::vtable; 89 90 /// Creates a null-terminated slice of pointers to [`CString`]s. 91 fn to_c_str_array(names: &[CString]) -> Result<KVec<*const u8>> { 92 // Allocated a null-terminated vector of pointers. 93 let mut list = KVec::with_capacity(names.len() + 1, GFP_KERNEL)?; 94 95 for name in names.iter() { 96 list.push(name.as_ptr().cast(), GFP_KERNEL)?; 97 } 98 99 list.push(ptr::null(), GFP_KERNEL)?; 100 Ok(list) 101 } 102 103 /// The voltage unit. 104 /// 105 /// Represents voltage in microvolts, wrapping a [`c_ulong`] value. 106 /// 107 /// # Examples 108 /// 109 /// ``` 110 /// use kernel::opp::MicroVolt; 111 /// 112 /// let raw = 90500; 113 /// let volt = MicroVolt(raw); 114 /// 115 /// assert_eq!(usize::from(volt), raw); 116 /// assert_eq!(volt, MicroVolt(raw)); 117 /// ``` 118 #[derive(Copy, Clone, PartialEq, Eq, Debug)] 119 pub struct MicroVolt(pub c_ulong); 120 121 impl From<MicroVolt> for c_ulong { 122 #[inline] 123 fn from(volt: MicroVolt) -> Self { 124 volt.0 125 } 126 } 127 128 /// The power unit. 129 /// 130 /// Represents power in microwatts, wrapping a [`c_ulong`] value. 131 /// 132 /// # Examples 133 /// 134 /// ``` 135 /// use kernel::opp::MicroWatt; 136 /// 137 /// let raw = 1000000; 138 /// let power = MicroWatt(raw); 139 /// 140 /// assert_eq!(usize::from(power), raw); 141 /// assert_eq!(power, MicroWatt(raw)); 142 /// ``` 143 #[derive(Copy, Clone, PartialEq, Eq, Debug)] 144 pub struct MicroWatt(pub c_ulong); 145 146 impl From<MicroWatt> for c_ulong { 147 #[inline] 148 fn from(power: MicroWatt) -> Self { 149 power.0 150 } 151 } 152 153 /// Handle for a dynamically created [`OPP`]. 154 /// 155 /// The associated [`OPP`] is automatically removed when the [`Token`] is dropped. 156 /// 157 /// # Examples 158 /// 159 /// The following example demonstrates how to create an [`OPP`] dynamically. 160 /// 161 /// ``` 162 /// use kernel::clk::Hertz; 163 /// use kernel::device::Device; 164 /// use kernel::error::Result; 165 /// use kernel::opp::{Data, MicroVolt, Token}; 166 /// use kernel::sync::aref::ARef; 167 /// 168 /// fn create_opp(dev: &ARef<Device>, freq: Hertz, volt: MicroVolt, level: u32) -> Result<Token> { 169 /// let data = Data::new(freq, volt, level, false); 170 /// 171 /// // OPP is removed once token goes out of scope. 172 /// data.add_opp(dev) 173 /// } 174 /// ``` 175 pub struct Token { 176 dev: ARef<Device>, 177 freq: Hertz, 178 } 179 180 impl Token { 181 /// Dynamically adds an [`OPP`] and returns a [`Token`] that removes it on drop. 182 fn new(dev: &ARef<Device>, mut data: Data) -> Result<Self> { 183 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 184 // requirements. 185 to_result(unsafe { bindings::dev_pm_opp_add_dynamic(dev.as_raw(), &mut data.0) })?; 186 Ok(Self { 187 dev: dev.clone(), 188 freq: data.freq(), 189 }) 190 } 191 } 192 193 impl Drop for Token { 194 fn drop(&mut self) { 195 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 196 // requirements. 197 unsafe { bindings::dev_pm_opp_remove(self.dev.as_raw(), self.freq.into()) }; 198 } 199 } 200 201 /// OPP data. 202 /// 203 /// Rust abstraction for the C `struct dev_pm_opp_data`, used to define operating performance 204 /// points (OPPs) dynamically. 205 /// 206 /// # Examples 207 /// 208 /// The following example demonstrates how to create an [`OPP`] with [`Data`]. 209 /// 210 /// ``` 211 /// use kernel::clk::Hertz; 212 /// use kernel::device::Device; 213 /// use kernel::error::Result; 214 /// use kernel::opp::{Data, MicroVolt, Token}; 215 /// use kernel::sync::aref::ARef; 216 /// 217 /// fn create_opp(dev: &ARef<Device>, freq: Hertz, volt: MicroVolt, level: u32) -> Result<Token> { 218 /// let data = Data::new(freq, volt, level, false); 219 /// 220 /// // OPP is removed once token goes out of scope. 221 /// data.add_opp(dev) 222 /// } 223 /// ``` 224 #[repr(transparent)] 225 pub struct Data(bindings::dev_pm_opp_data); 226 227 impl Data { 228 /// Creates a new instance of [`Data`]. 229 /// 230 /// This can be used to define a dynamic OPP to be added to a device. 231 pub fn new(freq: Hertz, volt: MicroVolt, level: u32, turbo: bool) -> Self { 232 Self(bindings::dev_pm_opp_data { 233 turbo, 234 freq: freq.into(), 235 u_volt: volt.into(), 236 level, 237 }) 238 } 239 240 /// Adds an [`OPP`] dynamically. 241 /// 242 /// Returns a [`Token`] that ensures the OPP is automatically removed 243 /// when it goes out of scope. 244 #[inline] 245 pub fn add_opp(self, dev: &ARef<Device>) -> Result<Token> { 246 Token::new(dev, self) 247 } 248 249 /// Returns the frequency associated with this OPP data. 250 #[inline] 251 fn freq(&self) -> Hertz { 252 Hertz(self.0.freq) 253 } 254 } 255 256 /// [`OPP`] search options. 257 /// 258 /// # Examples 259 /// 260 /// Defines how to search for an [`OPP`] in a [`Table`] relative to a frequency. 261 /// 262 /// ``` 263 /// use kernel::clk::Hertz; 264 /// use kernel::error::Result; 265 /// use kernel::opp::{OPP, SearchType, Table}; 266 /// use kernel::sync::aref::ARef; 267 /// 268 /// fn find_opp(table: &Table, freq: Hertz) -> Result<ARef<OPP>> { 269 /// let opp = table.opp_from_freq(freq, Some(true), None, SearchType::Exact)?; 270 /// 271 /// pr_info!("OPP frequency is: {:?}\n", opp.freq(None)); 272 /// pr_info!("OPP voltage is: {:?}\n", opp.voltage()); 273 /// pr_info!("OPP level is: {}\n", opp.level()); 274 /// pr_info!("OPP power is: {:?}\n", opp.power()); 275 /// 276 /// Ok(opp) 277 /// } 278 /// ``` 279 #[derive(Copy, Clone, Debug, Eq, PartialEq)] 280 pub enum SearchType { 281 /// Match the exact frequency. 282 Exact, 283 /// Find the highest frequency less than or equal to the given value. 284 Floor, 285 /// Find the lowest frequency greater than or equal to the given value. 286 Ceil, 287 } 288 289 /// OPP configuration callbacks. 290 /// 291 /// Implement this trait to customize OPP clock and regulator setup for your device. 292 #[vtable] 293 pub trait ConfigOps { 294 /// This is typically used to scale clocks when transitioning between OPPs. 295 #[inline] 296 fn config_clks(_dev: &Device, _table: &Table, _opp: &OPP, _scaling_down: bool) -> Result { 297 build_error!(VTABLE_DEFAULT_ERROR) 298 } 299 300 /// This provides access to the old and new OPPs, allowing for safe regulator adjustments. 301 #[inline] 302 fn config_regulators( 303 _dev: &Device, 304 _opp_old: &OPP, 305 _opp_new: &OPP, 306 _data: *mut *mut bindings::regulator, 307 _count: u32, 308 ) -> Result { 309 build_error!(VTABLE_DEFAULT_ERROR) 310 } 311 } 312 313 /// OPP configuration token. 314 /// 315 /// Returned by the OPP core when configuration is applied to a [`Device`]. The associated 316 /// configuration is automatically cleared when the token is dropped. 317 pub struct ConfigToken(i32); 318 319 impl Drop for ConfigToken { 320 fn drop(&mut self) { 321 // SAFETY: This is the same token value returned by the C code via `dev_pm_opp_set_config`. 322 unsafe { bindings::dev_pm_opp_clear_config(self.0) }; 323 } 324 } 325 326 /// OPP configurations. 327 /// 328 /// Rust abstraction for the C `struct dev_pm_opp_config`. 329 /// 330 /// # Examples 331 /// 332 /// The following example demonstrates how to set OPP property-name configuration for a [`Device`]. 333 /// 334 /// ``` 335 /// use kernel::device::Device; 336 /// use kernel::error::Result; 337 /// use kernel::opp::{Config, ConfigOps, ConfigToken}; 338 /// use kernel::str::CString; 339 /// use kernel::sync::aref::ARef; 340 /// use kernel::macros::vtable; 341 /// 342 /// #[derive(Default)] 343 /// struct Driver; 344 /// 345 /// #[vtable] 346 /// impl ConfigOps for Driver {} 347 /// 348 /// fn configure(dev: &ARef<Device>) -> Result<ConfigToken> { 349 /// let name = CString::try_from_fmt(fmt!("slow"))?; 350 /// 351 /// // The OPP configuration is cleared once the [`ConfigToken`] goes out of scope. 352 /// Config::<Driver>::new() 353 /// .set_prop_name(name)? 354 /// .set(dev) 355 /// } 356 /// ``` 357 #[derive(Default)] 358 pub struct Config<T: ConfigOps> 359 where 360 T: Default, 361 { 362 clk_names: Option<KVec<CString>>, 363 prop_name: Option<CString>, 364 regulator_names: Option<KVec<CString>>, 365 supported_hw: Option<KVec<u32>>, 366 367 // Tuple containing (required device, index) 368 required_dev: Option<(ARef<Device>, u32)>, 369 _data: PhantomData<T>, 370 } 371 372 impl<T: ConfigOps + Default> Config<T> { 373 /// Creates a new instance of [`Config`]. 374 #[inline] 375 pub fn new() -> Self { 376 Self::default() 377 } 378 379 /// Initializes clock names. 380 pub fn set_clk_names(mut self, names: KVec<CString>) -> Result<Self> { 381 if self.clk_names.is_some() { 382 return Err(EBUSY); 383 } 384 385 if names.is_empty() { 386 return Err(EINVAL); 387 } 388 389 self.clk_names = Some(names); 390 Ok(self) 391 } 392 393 /// Initializes property name. 394 pub fn set_prop_name(mut self, name: CString) -> Result<Self> { 395 if self.prop_name.is_some() { 396 return Err(EBUSY); 397 } 398 399 self.prop_name = Some(name); 400 Ok(self) 401 } 402 403 /// Initializes regulator names. 404 pub fn set_regulator_names(mut self, names: KVec<CString>) -> Result<Self> { 405 if self.regulator_names.is_some() { 406 return Err(EBUSY); 407 } 408 409 if names.is_empty() { 410 return Err(EINVAL); 411 } 412 413 self.regulator_names = Some(names); 414 415 Ok(self) 416 } 417 418 /// Initializes required devices. 419 pub fn set_required_dev(mut self, dev: ARef<Device>, index: u32) -> Result<Self> { 420 if self.required_dev.is_some() { 421 return Err(EBUSY); 422 } 423 424 self.required_dev = Some((dev, index)); 425 Ok(self) 426 } 427 428 /// Initializes supported hardware. 429 pub fn set_supported_hw(mut self, hw: KVec<u32>) -> Result<Self> { 430 if self.supported_hw.is_some() { 431 return Err(EBUSY); 432 } 433 434 if hw.is_empty() { 435 return Err(EINVAL); 436 } 437 438 self.supported_hw = Some(hw); 439 Ok(self) 440 } 441 442 /// Sets the configuration with the OPP core. 443 /// 444 /// The returned [`ConfigToken`] will remove the configuration when dropped. 445 pub fn set(self, dev: &Device) -> Result<ConfigToken> { 446 let clk_names = self.clk_names.as_deref().map(to_c_str_array).transpose()?; 447 let regulator_names = self 448 .regulator_names 449 .as_deref() 450 .map(to_c_str_array) 451 .transpose()?; 452 453 let set_config = || { 454 let clk_names = clk_names.as_ref().map_or(ptr::null(), |c| c.as_ptr()); 455 let regulator_names = regulator_names.as_ref().map_or(ptr::null(), |c| c.as_ptr()); 456 457 let prop_name = self 458 .prop_name 459 .as_ref() 460 .map_or(ptr::null(), |p| p.as_char_ptr()); 461 462 let (supported_hw, supported_hw_count) = self 463 .supported_hw 464 .as_ref() 465 .map_or((ptr::null(), 0), |hw| (hw.as_ptr(), hw.len() as u32)); 466 467 let (required_dev, required_dev_index) = self 468 .required_dev 469 .as_ref() 470 .map_or((ptr::null_mut(), 0), |(dev, idx)| (dev.as_raw(), *idx)); 471 472 let mut config = bindings::dev_pm_opp_config { 473 clk_names, 474 config_clks: if T::HAS_CONFIG_CLKS { 475 Some(Self::config_clks) 476 } else { 477 None 478 }, 479 prop_name, 480 regulator_names, 481 config_regulators: if T::HAS_CONFIG_REGULATORS { 482 Some(Self::config_regulators) 483 } else { 484 None 485 }, 486 supported_hw, 487 supported_hw_count, 488 489 required_dev, 490 required_dev_index, 491 }; 492 493 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 494 // requirements. The OPP core guarantees not to access fields of [`Config`] after this 495 // call and so we don't need to save a copy of them for future use. 496 let ret = unsafe { bindings::dev_pm_opp_set_config(dev.as_raw(), &mut config) }; 497 498 to_result(ret).map(|()| ConfigToken(ret)) 499 }; 500 501 // Ensure the closure does not accidentally drop owned data; if violated, the compiler 502 // produces E0525 with e.g.: 503 // 504 // ``` 505 // closure is `FnOnce` because it moves the variable `clk_names` out of its environment 506 // ``` 507 let _: &dyn Fn() -> _ = &set_config; 508 509 set_config() 510 } 511 512 /// Config's clk callback. 513 /// 514 /// SAFETY: Called from C. Inputs must be valid pointers. 515 extern "C" fn config_clks( 516 dev: *mut bindings::device, 517 opp_table: *mut bindings::opp_table, 518 opp: *mut bindings::dev_pm_opp, 519 _data: *mut c_void, 520 scaling_down: bool, 521 ) -> c_int { 522 from_result(|| { 523 // SAFETY: 'dev' is guaranteed by the C code to be valid. 524 let dev = unsafe { Device::get_device(dev) }; 525 T::config_clks( 526 &dev, 527 // SAFETY: 'opp_table' is guaranteed by the C code to be valid. 528 &unsafe { Table::from_raw_table(opp_table, &dev) }, 529 // SAFETY: 'opp' is guaranteed by the C code to be valid. 530 unsafe { OPP::from_raw_opp(opp)? }, 531 scaling_down, 532 ) 533 .map(|()| 0) 534 }) 535 } 536 537 /// Config's regulator callback. 538 /// 539 /// SAFETY: Called from C. Inputs must be valid pointers. 540 extern "C" fn config_regulators( 541 dev: *mut bindings::device, 542 old_opp: *mut bindings::dev_pm_opp, 543 new_opp: *mut bindings::dev_pm_opp, 544 regulators: *mut *mut bindings::regulator, 545 count: c_uint, 546 ) -> c_int { 547 from_result(|| { 548 // SAFETY: 'dev' is guaranteed by the C code to be valid. 549 let dev = unsafe { Device::get_device(dev) }; 550 T::config_regulators( 551 &dev, 552 // SAFETY: 'old_opp' is guaranteed by the C code to be valid. 553 unsafe { OPP::from_raw_opp(old_opp)? }, 554 // SAFETY: 'new_opp' is guaranteed by the C code to be valid. 555 unsafe { OPP::from_raw_opp(new_opp)? }, 556 regulators, 557 count, 558 ) 559 .map(|()| 0) 560 }) 561 } 562 } 563 564 /// A reference-counted OPP table. 565 /// 566 /// Rust abstraction for the C `struct opp_table`. 567 /// 568 /// # Invariants 569 /// 570 /// The pointer stored in `Self` is non-null and valid for the lifetime of the [`Table`]. 571 /// 572 /// Instances of this type are reference-counted. 573 /// 574 /// # Examples 575 /// 576 /// The following example demonstrates how to get OPP [`Table`] for a [`Cpumask`] and set its 577 /// frequency. 578 /// 579 /// ``` 580 /// # #![cfg(CONFIG_OF)] 581 /// use kernel::clk::Hertz; 582 /// use kernel::cpumask::Cpumask; 583 /// use kernel::device::Device; 584 /// use kernel::error::Result; 585 /// use kernel::opp::Table; 586 /// use kernel::sync::aref::ARef; 587 /// 588 /// fn get_table(dev: &ARef<Device>, mask: &mut Cpumask, freq: Hertz) -> Result<Table> { 589 /// let mut opp_table = Table::from_of_cpumask(dev, mask)?; 590 /// 591 /// if opp_table.opp_count()? == 0 { 592 /// return Err(EINVAL); 593 /// } 594 /// 595 /// pr_info!("Max transition latency is: {} ns\n", opp_table.max_transition_latency_ns()); 596 /// pr_info!("Suspend frequency is: {:?}\n", opp_table.suspend_freq()); 597 /// 598 /// opp_table.set_rate(freq)?; 599 /// Ok(opp_table) 600 /// } 601 /// ``` 602 pub struct Table { 603 ptr: *mut bindings::opp_table, 604 dev: ARef<Device>, 605 #[allow(dead_code)] 606 em: bool, 607 #[allow(dead_code)] 608 of: bool, 609 cpus: Option<CpumaskVar>, 610 } 611 612 /// SAFETY: It is okay to send ownership of [`Table`] across thread boundaries. 613 unsafe impl Send for Table {} 614 615 /// SAFETY: It is okay to access [`Table`] through shared references from other threads because 616 /// we're either accessing properties that don't change or that are properly synchronised by C code. 617 unsafe impl Sync for Table {} 618 619 impl Table { 620 /// Creates a new reference-counted [`Table`] from a raw pointer. 621 /// 622 /// # Safety 623 /// 624 /// Callers must ensure that `ptr` is valid and non-null. 625 unsafe fn from_raw_table(ptr: *mut bindings::opp_table, dev: &ARef<Device>) -> Self { 626 // SAFETY: By the safety requirements, ptr is valid and its refcount will be incremented. 627 // 628 // INVARIANT: The reference-count is decremented when [`Table`] goes out of scope. 629 unsafe { bindings::dev_pm_opp_get_opp_table_ref(ptr) }; 630 631 Self { 632 ptr, 633 dev: dev.clone(), 634 em: false, 635 of: false, 636 cpus: None, 637 } 638 } 639 640 /// Creates a new reference-counted [`Table`] instance for a [`Device`]. 641 pub fn from_dev(dev: &Device) -> Result<Self> { 642 // SAFETY: The requirements are satisfied by the existence of the [`Device`] and its safety 643 // requirements. 644 // 645 // INVARIANT: The reference-count is incremented by the C code and is decremented when 646 // [`Table`] goes out of scope. 647 let ptr = from_err_ptr(unsafe { bindings::dev_pm_opp_get_opp_table(dev.as_raw()) })?; 648 649 Ok(Self { 650 ptr, 651 dev: dev.into(), 652 em: false, 653 of: false, 654 cpus: None, 655 }) 656 } 657 658 /// Creates a new reference-counted [`Table`] instance for a [`Device`] based on device tree 659 /// entries. 660 #[cfg(CONFIG_OF)] 661 pub fn from_of(dev: &ARef<Device>, index: i32) -> Result<Self> { 662 // SAFETY: The requirements are satisfied by the existence of the [`Device`] and its safety 663 // requirements. 664 // 665 // INVARIANT: The reference-count is incremented by the C code and is decremented when 666 // [`Table`] goes out of scope. 667 to_result(unsafe { bindings::dev_pm_opp_of_add_table_indexed(dev.as_raw(), index) })?; 668 669 // Get the newly created [`Table`]. 670 let mut table = Self::from_dev(dev)?; 671 table.of = true; 672 673 Ok(table) 674 } 675 676 /// Remove device tree based [`Table`]. 677 #[cfg(CONFIG_OF)] 678 #[inline] 679 fn remove_of(&self) { 680 // SAFETY: The requirements are satisfied by the existence of the [`Device`] and its safety 681 // requirements. We took the reference from [`from_of`] earlier, it is safe to drop the 682 // same now. 683 unsafe { bindings::dev_pm_opp_of_remove_table(self.dev.as_raw()) }; 684 } 685 686 /// Creates a new reference-counted [`Table`] instance for a [`Cpumask`] based on device tree 687 /// entries. 688 #[cfg(CONFIG_OF)] 689 pub fn from_of_cpumask(dev: &Device, cpumask: &mut Cpumask) -> Result<Self> { 690 // SAFETY: The cpumask is valid and the returned pointer will be owned by the [`Table`] 691 // instance. 692 // 693 // INVARIANT: The reference-count is incremented by the C code and is decremented when 694 // [`Table`] goes out of scope. 695 to_result(unsafe { bindings::dev_pm_opp_of_cpumask_add_table(cpumask.as_raw()) })?; 696 697 // Fetch the newly created table. 698 let mut table = Self::from_dev(dev)?; 699 table.cpus = Some(CpumaskVar::try_clone(cpumask)?); 700 701 Ok(table) 702 } 703 704 /// Remove device tree based [`Table`] for a [`Cpumask`]. 705 #[cfg(CONFIG_OF)] 706 #[inline] 707 fn remove_of_cpumask(&self, cpumask: &Cpumask) { 708 // SAFETY: The cpumask is valid and we took the reference from [`from_of_cpumask`] earlier, 709 // it is safe to drop the same now. 710 unsafe { bindings::dev_pm_opp_of_cpumask_remove_table(cpumask.as_raw()) }; 711 } 712 713 /// Returns the number of [`OPP`]s in the [`Table`]. 714 pub fn opp_count(&self) -> Result<u32> { 715 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 716 // requirements. 717 let ret = unsafe { bindings::dev_pm_opp_get_opp_count(self.dev.as_raw()) }; 718 719 to_result(ret).map(|()| ret as u32) 720 } 721 722 /// Returns max clock latency (in nanoseconds) of the [`OPP`]s in the [`Table`]. 723 #[inline] 724 pub fn max_clock_latency_ns(&self) -> usize { 725 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 726 // requirements. 727 unsafe { bindings::dev_pm_opp_get_max_clock_latency(self.dev.as_raw()) } 728 } 729 730 /// Returns max volt latency (in nanoseconds) of the [`OPP`]s in the [`Table`]. 731 #[inline] 732 pub fn max_volt_latency_ns(&self) -> usize { 733 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 734 // requirements. 735 unsafe { bindings::dev_pm_opp_get_max_volt_latency(self.dev.as_raw()) } 736 } 737 738 /// Returns max transition latency (in nanoseconds) of the [`OPP`]s in the [`Table`]. 739 #[inline] 740 pub fn max_transition_latency_ns(&self) -> usize { 741 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 742 // requirements. 743 unsafe { bindings::dev_pm_opp_get_max_transition_latency(self.dev.as_raw()) } 744 } 745 746 /// Returns the suspend [`OPP`]'s frequency. 747 #[inline] 748 pub fn suspend_freq(&self) -> Hertz { 749 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 750 // requirements. 751 Hertz(unsafe { bindings::dev_pm_opp_get_suspend_opp_freq(self.dev.as_raw()) }) 752 } 753 754 /// Synchronizes regulators used by the [`Table`]. 755 #[inline] 756 pub fn sync_regulators(&self) -> Result { 757 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 758 // requirements. 759 to_result(unsafe { bindings::dev_pm_opp_sync_regulators(self.dev.as_raw()) }) 760 } 761 762 /// Gets sharing CPUs. 763 #[inline] 764 pub fn sharing_cpus(dev: &Device, cpumask: &mut Cpumask) -> Result { 765 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 766 // requirements. 767 to_result(unsafe { bindings::dev_pm_opp_get_sharing_cpus(dev.as_raw(), cpumask.as_raw()) }) 768 } 769 770 /// Sets sharing CPUs. 771 pub fn set_sharing_cpus(&mut self, cpumask: &mut Cpumask) -> Result { 772 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 773 // requirements. 774 to_result(unsafe { 775 bindings::dev_pm_opp_set_sharing_cpus(self.dev.as_raw(), cpumask.as_raw()) 776 })?; 777 778 if let Some(mask) = self.cpus.as_mut() { 779 // Update the cpumask as this will be used while removing the table. 780 cpumask.copy(mask); 781 } 782 783 Ok(()) 784 } 785 786 /// Gets sharing CPUs from device tree. 787 #[cfg(CONFIG_OF)] 788 #[inline] 789 pub fn of_sharing_cpus(dev: &Device, cpumask: &mut Cpumask) -> Result { 790 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 791 // requirements. 792 to_result(unsafe { 793 bindings::dev_pm_opp_of_get_sharing_cpus(dev.as_raw(), cpumask.as_raw()) 794 }) 795 } 796 797 /// Updates the voltage value for an [`OPP`]. 798 #[inline] 799 pub fn adjust_voltage( 800 &self, 801 freq: Hertz, 802 volt: MicroVolt, 803 volt_min: MicroVolt, 804 volt_max: MicroVolt, 805 ) -> Result { 806 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 807 // requirements. 808 to_result(unsafe { 809 bindings::dev_pm_opp_adjust_voltage( 810 self.dev.as_raw(), 811 freq.into(), 812 volt.into(), 813 volt_min.into(), 814 volt_max.into(), 815 ) 816 }) 817 } 818 819 /// Creates [`FreqTable`] from [`Table`]. 820 #[cfg(CONFIG_CPU_FREQ)] 821 #[inline] 822 pub fn cpufreq_table(&mut self) -> Result<FreqTable> { 823 FreqTable::new(self) 824 } 825 826 /// Configures device with [`OPP`] matching the frequency value. 827 #[inline] 828 pub fn set_rate(&self, freq: Hertz) -> Result { 829 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 830 // requirements. 831 to_result(unsafe { bindings::dev_pm_opp_set_rate(self.dev.as_raw(), freq.into()) }) 832 } 833 834 /// Configures device with [`OPP`]. 835 #[inline] 836 pub fn set_opp(&self, opp: &OPP) -> Result { 837 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 838 // requirements. 839 to_result(unsafe { bindings::dev_pm_opp_set_opp(self.dev.as_raw(), opp.as_raw()) }) 840 } 841 842 /// Finds [`OPP`] based on frequency. 843 pub fn opp_from_freq( 844 &self, 845 freq: Hertz, 846 available: Option<bool>, 847 index: Option<u32>, 848 stype: SearchType, 849 ) -> Result<ARef<OPP>> { 850 let raw_dev = self.dev.as_raw(); 851 let index = index.unwrap_or(0); 852 let mut rate = freq.into(); 853 854 let ptr = from_err_ptr(match stype { 855 SearchType::Exact => { 856 if let Some(available) = available { 857 // SAFETY: The requirements are satisfied by the existence of [`Device`] and 858 // its safety requirements. The returned pointer will be owned by the new 859 // [`OPP`] instance. 860 unsafe { 861 bindings::dev_pm_opp_find_freq_exact_indexed( 862 raw_dev, rate, index, available, 863 ) 864 } 865 } else { 866 return Err(EINVAL); 867 } 868 } 869 870 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 871 // requirements. The returned pointer will be owned by the new [`OPP`] instance. 872 SearchType::Ceil => unsafe { 873 bindings::dev_pm_opp_find_freq_ceil_indexed(raw_dev, &mut rate, index) 874 }, 875 876 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 877 // requirements. The returned pointer will be owned by the new [`OPP`] instance. 878 SearchType::Floor => unsafe { 879 bindings::dev_pm_opp_find_freq_floor_indexed(raw_dev, &mut rate, index) 880 }, 881 })?; 882 883 // SAFETY: The `ptr` is guaranteed by the C code to be valid. 884 unsafe { OPP::from_raw_opp_owned(ptr) } 885 } 886 887 /// Finds [`OPP`] based on level. 888 pub fn opp_from_level(&self, mut level: u32, stype: SearchType) -> Result<ARef<OPP>> { 889 let raw_dev = self.dev.as_raw(); 890 891 let ptr = from_err_ptr(match stype { 892 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 893 // requirements. The returned pointer will be owned by the new [`OPP`] instance. 894 SearchType::Exact => unsafe { bindings::dev_pm_opp_find_level_exact(raw_dev, level) }, 895 896 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 897 // requirements. The returned pointer will be owned by the new [`OPP`] instance. 898 SearchType::Ceil => unsafe { 899 bindings::dev_pm_opp_find_level_ceil(raw_dev, &mut level) 900 }, 901 902 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 903 // requirements. The returned pointer will be owned by the new [`OPP`] instance. 904 SearchType::Floor => unsafe { 905 bindings::dev_pm_opp_find_level_floor(raw_dev, &mut level) 906 }, 907 })?; 908 909 // SAFETY: The `ptr` is guaranteed by the C code to be valid. 910 unsafe { OPP::from_raw_opp_owned(ptr) } 911 } 912 913 /// Finds [`OPP`] based on bandwidth. 914 pub fn opp_from_bw(&self, mut bw: u32, index: i32, stype: SearchType) -> Result<ARef<OPP>> { 915 let raw_dev = self.dev.as_raw(); 916 917 let ptr = from_err_ptr(match stype { 918 // The OPP core doesn't support this yet. 919 SearchType::Exact => return Err(EINVAL), 920 921 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 922 // requirements. The returned pointer will be owned by the new [`OPP`] instance. 923 SearchType::Ceil => unsafe { 924 bindings::dev_pm_opp_find_bw_ceil(raw_dev, &mut bw, index) 925 }, 926 927 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 928 // requirements. The returned pointer will be owned by the new [`OPP`] instance. 929 SearchType::Floor => unsafe { 930 bindings::dev_pm_opp_find_bw_floor(raw_dev, &mut bw, index) 931 }, 932 })?; 933 934 // SAFETY: The `ptr` is guaranteed by the C code to be valid. 935 unsafe { OPP::from_raw_opp_owned(ptr) } 936 } 937 938 /// Enables the [`OPP`]. 939 #[inline] 940 pub fn enable_opp(&self, freq: Hertz) -> Result { 941 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 942 // requirements. 943 to_result(unsafe { bindings::dev_pm_opp_enable(self.dev.as_raw(), freq.into()) }) 944 } 945 946 /// Disables the [`OPP`]. 947 #[inline] 948 pub fn disable_opp(&self, freq: Hertz) -> Result { 949 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 950 // requirements. 951 to_result(unsafe { bindings::dev_pm_opp_disable(self.dev.as_raw(), freq.into()) }) 952 } 953 954 /// Registers with the Energy model. 955 #[cfg(CONFIG_OF)] 956 pub fn of_register_em(&mut self, cpumask: &mut Cpumask) -> Result { 957 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 958 // requirements. 959 to_result(unsafe { 960 bindings::dev_pm_opp_of_register_em(self.dev.as_raw(), cpumask.as_raw()) 961 })?; 962 963 self.em = true; 964 Ok(()) 965 } 966 967 /// Unregisters with the Energy model. 968 #[cfg(all(CONFIG_OF, CONFIG_ENERGY_MODEL))] 969 #[inline] 970 fn of_unregister_em(&self) { 971 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 972 // requirements. We registered with the EM framework earlier, it is safe to unregister now. 973 unsafe { bindings::em_dev_unregister_perf_domain(self.dev.as_raw()) }; 974 } 975 } 976 977 impl Drop for Table { 978 fn drop(&mut self) { 979 // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe 980 // to relinquish it now. 981 unsafe { bindings::dev_pm_opp_put_opp_table(self.ptr) }; 982 983 #[cfg(CONFIG_OF)] 984 { 985 #[cfg(CONFIG_ENERGY_MODEL)] 986 if self.em { 987 self.of_unregister_em(); 988 } 989 990 if self.of { 991 self.remove_of(); 992 } else if let Some(cpumask) = self.cpus.take() { 993 self.remove_of_cpumask(&cpumask); 994 } 995 } 996 } 997 } 998 999 /// A reference-counted Operating performance point (OPP). 1000 /// 1001 /// Rust abstraction for the C `struct dev_pm_opp`. 1002 /// 1003 /// # Invariants 1004 /// 1005 /// The pointer stored in `Self` is non-null and valid for the lifetime of the [`OPP`]. 1006 /// 1007 /// Instances of this type are reference-counted. The reference count is incremented by the 1008 /// `dev_pm_opp_get` function and decremented by `dev_pm_opp_put`. The Rust type `ARef<OPP>` 1009 /// represents a pointer that owns a reference count on the [`OPP`]. 1010 /// 1011 /// A reference to the [`OPP`], &[`OPP`], isn't refcounted by the Rust code. 1012 /// 1013 /// # Examples 1014 /// 1015 /// The following example demonstrates how to get [`OPP`] corresponding to a frequency value and 1016 /// configure the device with it. 1017 /// 1018 /// ``` 1019 /// use kernel::clk::Hertz; 1020 /// use kernel::error::Result; 1021 /// use kernel::opp::{SearchType, Table}; 1022 /// 1023 /// fn configure_opp(table: &Table, freq: Hertz) -> Result { 1024 /// let opp = table.opp_from_freq(freq, Some(true), None, SearchType::Exact)?; 1025 /// 1026 /// if opp.freq(None) != freq { 1027 /// return Err(EINVAL); 1028 /// } 1029 /// 1030 /// table.set_opp(&opp) 1031 /// } 1032 /// ``` 1033 #[repr(transparent)] 1034 pub struct OPP(Opaque<bindings::dev_pm_opp>); 1035 1036 /// SAFETY: It is okay to send the ownership of [`OPP`] across thread boundaries. 1037 unsafe impl Send for OPP {} 1038 1039 /// SAFETY: It is okay to access [`OPP`] through shared references from other threads because we're 1040 /// either accessing properties that don't change or that are properly synchronised by C code. 1041 unsafe impl Sync for OPP {} 1042 1043 /// SAFETY: The type invariants guarantee that [`OPP`] is always refcounted. 1044 unsafe impl AlwaysRefCounted for OPP { 1045 fn inc_ref(&self) { 1046 // SAFETY: The existence of a shared reference means that the refcount is nonzero. 1047 unsafe { bindings::dev_pm_opp_get(self.0.get()) }; 1048 } 1049 1050 unsafe fn dec_ref(obj: ptr::NonNull<Self>) { 1051 // SAFETY: The safety requirements guarantee that the refcount is nonzero. 1052 unsafe { bindings::dev_pm_opp_put(obj.cast().as_ptr()) } 1053 } 1054 } 1055 1056 impl OPP { 1057 /// Creates an owned reference to a [`OPP`] from a valid pointer. 1058 /// 1059 /// The refcount is incremented by the C code and will be decremented by `dec_ref` when the 1060 /// [`ARef`] object is dropped. 1061 /// 1062 /// # Safety 1063 /// 1064 /// The caller must ensure that `ptr` is valid and the refcount of the [`OPP`] is incremented. 1065 /// The caller must also ensure that it doesn't explicitly drop the refcount of the [`OPP`], as 1066 /// the returned [`ARef`] object takes over the refcount increment on the underlying object and 1067 /// the same will be dropped along with it. 1068 pub unsafe fn from_raw_opp_owned(ptr: *mut bindings::dev_pm_opp) -> Result<ARef<Self>> { 1069 let ptr = ptr::NonNull::new(ptr).ok_or(ENODEV)?; 1070 1071 // SAFETY: The safety requirements guarantee the validity of the pointer. 1072 // 1073 // INVARIANT: The reference-count is decremented when [`OPP`] goes out of scope. 1074 Ok(unsafe { ARef::from_raw(ptr.cast()) }) 1075 } 1076 1077 /// Creates a reference to a [`OPP`] from a valid pointer. 1078 /// 1079 /// The refcount is not updated by the Rust API unless the returned reference is converted to 1080 /// an [`ARef`] object. 1081 /// 1082 /// # Safety 1083 /// 1084 /// The caller must ensure that `ptr` is valid and remains valid for the duration of `'a`. 1085 #[inline] 1086 pub unsafe fn from_raw_opp<'a>(ptr: *mut bindings::dev_pm_opp) -> Result<&'a Self> { 1087 // SAFETY: The caller guarantees that the pointer is not dangling and stays valid for the 1088 // duration of 'a. The cast is okay because [`OPP`] is `repr(transparent)`. 1089 Ok(unsafe { &*ptr.cast() }) 1090 } 1091 1092 #[inline] 1093 fn as_raw(&self) -> *mut bindings::dev_pm_opp { 1094 self.0.get() 1095 } 1096 1097 /// Returns the frequency of an [`OPP`]. 1098 pub fn freq(&self, index: Option<u32>) -> Hertz { 1099 let index = index.unwrap_or(0); 1100 1101 // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to 1102 // use it. 1103 Hertz(unsafe { bindings::dev_pm_opp_get_freq_indexed(self.as_raw(), index) }) 1104 } 1105 1106 /// Returns the voltage of an [`OPP`]. 1107 #[inline] 1108 pub fn voltage(&self) -> MicroVolt { 1109 // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to 1110 // use it. 1111 MicroVolt(unsafe { bindings::dev_pm_opp_get_voltage(self.as_raw()) }) 1112 } 1113 1114 /// Returns the level of an [`OPP`]. 1115 #[inline] 1116 pub fn level(&self) -> u32 { 1117 // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to 1118 // use it. 1119 unsafe { bindings::dev_pm_opp_get_level(self.as_raw()) } 1120 } 1121 1122 /// Returns the power of an [`OPP`]. 1123 #[inline] 1124 pub fn power(&self) -> MicroWatt { 1125 // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to 1126 // use it. 1127 MicroWatt(unsafe { bindings::dev_pm_opp_get_power(self.as_raw()) }) 1128 } 1129 1130 /// Returns the required pstate of an [`OPP`]. 1131 #[inline] 1132 pub fn required_pstate(&self, index: u32) -> u32 { 1133 // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to 1134 // use it. 1135 unsafe { bindings::dev_pm_opp_get_required_pstate(self.as_raw(), index) } 1136 } 1137 1138 /// Returns true if the [`OPP`] is turbo. 1139 #[inline] 1140 pub fn is_turbo(&self) -> bool { 1141 // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to 1142 // use it. 1143 unsafe { bindings::dev_pm_opp_is_turbo(self.as_raw()) } 1144 } 1145 } 1146