1 // SPDX-License-Identifier: GPL-2.0 2 3 //! Operating performance points. 4 //! 5 //! This module provides rust abstractions for interacting with the OPP subsystem. 6 //! 7 //! C header: [`include/linux/pm_opp.h`](srctree/include/linux/pm_opp.h) 8 //! 9 //! Reference: <https://docs.kernel.org/power/opp.html> 10 11 use crate::{ 12 clk::Hertz, 13 cpumask::{Cpumask, CpumaskVar}, 14 device::Device, 15 error::{code::*, from_err_ptr, from_result, to_result, Error, Result, VTABLE_DEFAULT_ERROR}, 16 ffi::c_ulong, 17 prelude::*, 18 str::CString, 19 types::{ARef, AlwaysRefCounted, Opaque}, 20 }; 21 22 #[cfg(CONFIG_CPU_FREQ)] 23 /// Frequency table implementation. 24 mod freq { 25 use super::*; 26 use crate::cpufreq; 27 use core::ops::Deref; 28 29 /// OPP frequency table. 30 /// 31 /// A [`cpufreq::Table`] created from [`Table`]. 32 pub struct FreqTable { 33 dev: ARef<Device>, 34 ptr: *mut bindings::cpufreq_frequency_table, 35 } 36 37 impl FreqTable { 38 /// Creates a new instance of [`FreqTable`] from [`Table`]. 39 pub(crate) fn new(table: &Table) -> Result<Self> { 40 let mut ptr: *mut bindings::cpufreq_frequency_table = ptr::null_mut(); 41 42 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 43 // requirements. 44 to_result(unsafe { 45 bindings::dev_pm_opp_init_cpufreq_table(table.dev.as_raw(), &mut ptr) 46 })?; 47 48 Ok(Self { 49 dev: table.dev.clone(), 50 ptr, 51 }) 52 } 53 54 /// Returns a reference to the underlying [`cpufreq::Table`]. 55 #[inline] 56 fn table(&self) -> &cpufreq::Table { 57 // SAFETY: The `ptr` is guaranteed by the C code to be valid. 58 unsafe { cpufreq::Table::from_raw(self.ptr) } 59 } 60 } 61 62 impl Deref for FreqTable { 63 type Target = cpufreq::Table; 64 65 #[inline] 66 fn deref(&self) -> &Self::Target { 67 self.table() 68 } 69 } 70 71 impl Drop for FreqTable { 72 fn drop(&mut self) { 73 // SAFETY: The pointer was created via `dev_pm_opp_init_cpufreq_table`, and is only 74 // freed here. 75 unsafe { 76 bindings::dev_pm_opp_free_cpufreq_table(self.dev.as_raw(), &mut self.as_raw()) 77 }; 78 } 79 } 80 } 81 82 #[cfg(CONFIG_CPU_FREQ)] 83 pub use freq::FreqTable; 84 85 use core::{marker::PhantomData, ptr}; 86 87 use macros::vtable; 88 89 /// Creates a null-terminated slice of pointers to [`Cstring`]s. 90 fn to_c_str_array(names: &[CString]) -> Result<KVec<*const u8>> { 91 // Allocated a null-terminated vector of pointers. 92 let mut list = KVec::with_capacity(names.len() + 1, GFP_KERNEL)?; 93 94 for name in names.iter() { 95 list.push(name.as_ptr().cast(), GFP_KERNEL)?; 96 } 97 98 list.push(ptr::null(), GFP_KERNEL)?; 99 Ok(list) 100 } 101 102 /// The voltage unit. 103 /// 104 /// Represents voltage in microvolts, wrapping a [`c_ulong`] value. 105 /// 106 /// # Examples 107 /// 108 /// ``` 109 /// use kernel::opp::MicroVolt; 110 /// 111 /// let raw = 90500; 112 /// let volt = MicroVolt(raw); 113 /// 114 /// assert_eq!(usize::from(volt), raw); 115 /// assert_eq!(volt, MicroVolt(raw)); 116 /// ``` 117 #[derive(Copy, Clone, PartialEq, Eq, Debug)] 118 pub struct MicroVolt(pub c_ulong); 119 120 impl From<MicroVolt> for c_ulong { 121 #[inline] 122 fn from(volt: MicroVolt) -> Self { 123 volt.0 124 } 125 } 126 127 /// The power unit. 128 /// 129 /// Represents power in microwatts, wrapping a [`c_ulong`] value. 130 /// 131 /// # Examples 132 /// 133 /// ``` 134 /// use kernel::opp::MicroWatt; 135 /// 136 /// let raw = 1000000; 137 /// let power = MicroWatt(raw); 138 /// 139 /// assert_eq!(usize::from(power), raw); 140 /// assert_eq!(power, MicroWatt(raw)); 141 /// ``` 142 #[derive(Copy, Clone, PartialEq, Eq, Debug)] 143 pub struct MicroWatt(pub c_ulong); 144 145 impl From<MicroWatt> for c_ulong { 146 #[inline] 147 fn from(power: MicroWatt) -> Self { 148 power.0 149 } 150 } 151 152 /// Handle for a dynamically created [`OPP`]. 153 /// 154 /// The associated [`OPP`] is automatically removed when the [`Token`] is dropped. 155 /// 156 /// # Examples 157 /// 158 /// The following example demonstrates how to create an [`OPP`] dynamically. 159 /// 160 /// ``` 161 /// use kernel::clk::Hertz; 162 /// use kernel::device::Device; 163 /// use kernel::error::Result; 164 /// use kernel::opp::{Data, MicroVolt, Token}; 165 /// use kernel::types::ARef; 166 /// 167 /// fn create_opp(dev: &ARef<Device>, freq: Hertz, volt: MicroVolt, level: u32) -> Result<Token> { 168 /// let data = Data::new(freq, volt, level, false); 169 /// 170 /// // OPP is removed once token goes out of scope. 171 /// data.add_opp(dev) 172 /// } 173 /// ``` 174 pub struct Token { 175 dev: ARef<Device>, 176 freq: Hertz, 177 } 178 179 impl Token { 180 /// Dynamically adds an [`OPP`] and returns a [`Token`] that removes it on drop. 181 fn new(dev: &ARef<Device>, mut data: Data) -> Result<Self> { 182 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 183 // requirements. 184 to_result(unsafe { bindings::dev_pm_opp_add_dynamic(dev.as_raw(), &mut data.0) })?; 185 Ok(Self { 186 dev: dev.clone(), 187 freq: data.freq(), 188 }) 189 } 190 } 191 192 impl Drop for Token { 193 fn drop(&mut self) { 194 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 195 // requirements. 196 unsafe { bindings::dev_pm_opp_remove(self.dev.as_raw(), self.freq.into()) }; 197 } 198 } 199 200 /// OPP data. 201 /// 202 /// Rust abstraction for the C `struct dev_pm_opp_data`, used to define operating performance 203 /// points (OPPs) dynamically. 204 /// 205 /// # Examples 206 /// 207 /// The following example demonstrates how to create an [`OPP`] with [`Data`]. 208 /// 209 /// ``` 210 /// use kernel::clk::Hertz; 211 /// use kernel::device::Device; 212 /// use kernel::error::Result; 213 /// use kernel::opp::{Data, MicroVolt, Token}; 214 /// use kernel::types::ARef; 215 /// 216 /// fn create_opp(dev: &ARef<Device>, freq: Hertz, volt: MicroVolt, level: u32) -> Result<Token> { 217 /// let data = Data::new(freq, volt, level, false); 218 /// 219 /// // OPP is removed once token goes out of scope. 220 /// data.add_opp(dev) 221 /// } 222 /// ``` 223 #[repr(transparent)] 224 pub struct Data(bindings::dev_pm_opp_data); 225 226 impl Data { 227 /// Creates a new instance of [`Data`]. 228 /// 229 /// This can be used to define a dynamic OPP to be added to a device. 230 pub fn new(freq: Hertz, volt: MicroVolt, level: u32, turbo: bool) -> Self { 231 Self(bindings::dev_pm_opp_data { 232 turbo, 233 freq: freq.into(), 234 u_volt: volt.into(), 235 level, 236 }) 237 } 238 239 /// Adds an [`OPP`] dynamically. 240 /// 241 /// Returns a [`Token`] that ensures the OPP is automatically removed 242 /// when it goes out of scope. 243 #[inline] 244 pub fn add_opp(self, dev: &ARef<Device>) -> Result<Token> { 245 Token::new(dev, self) 246 } 247 248 /// Returns the frequency associated with this OPP data. 249 #[inline] 250 fn freq(&self) -> Hertz { 251 Hertz(self.0.freq) 252 } 253 } 254 255 /// [`OPP`] search options. 256 /// 257 /// # Examples 258 /// 259 /// Defines how to search for an [`OPP`] in a [`Table`] relative to a frequency. 260 /// 261 /// ``` 262 /// use kernel::clk::Hertz; 263 /// use kernel::error::Result; 264 /// use kernel::opp::{OPP, SearchType, Table}; 265 /// use kernel::types::ARef; 266 /// 267 /// fn find_opp(table: &Table, freq: Hertz) -> Result<ARef<OPP>> { 268 /// let opp = table.opp_from_freq(freq, Some(true), None, SearchType::Exact)?; 269 /// 270 /// pr_info!("OPP frequency is: {:?}\n", opp.freq(None)); 271 /// pr_info!("OPP voltage is: {:?}\n", opp.voltage()); 272 /// pr_info!("OPP level is: {}\n", opp.level()); 273 /// pr_info!("OPP power is: {:?}\n", opp.power()); 274 /// 275 /// Ok(opp) 276 /// } 277 /// ``` 278 #[derive(Copy, Clone, Debug, Eq, PartialEq)] 279 pub enum SearchType { 280 /// Match the exact frequency. 281 Exact, 282 /// Find the highest frequency less than or equal to the given value. 283 Floor, 284 /// Find the lowest frequency greater than or equal to the given value. 285 Ceil, 286 } 287 288 /// OPP configuration callbacks. 289 /// 290 /// Implement this trait to customize OPP clock and regulator setup for your device. 291 #[vtable] 292 pub trait ConfigOps { 293 /// This is typically used to scale clocks when transitioning between OPPs. 294 #[inline] 295 fn config_clks(_dev: &Device, _table: &Table, _opp: &OPP, _scaling_down: bool) -> Result { 296 build_error!(VTABLE_DEFAULT_ERROR) 297 } 298 299 /// This provides access to the old and new OPPs, allowing for safe regulator adjustments. 300 #[inline] 301 fn config_regulators( 302 _dev: &Device, 303 _opp_old: &OPP, 304 _opp_new: &OPP, 305 _data: *mut *mut bindings::regulator, 306 _count: u32, 307 ) -> Result { 308 build_error!(VTABLE_DEFAULT_ERROR) 309 } 310 } 311 312 /// OPP configuration token. 313 /// 314 /// Returned by the OPP core when configuration is applied to a [`Device`]. The associated 315 /// configuration is automatically cleared when the token is dropped. 316 pub struct ConfigToken(i32); 317 318 impl Drop for ConfigToken { 319 fn drop(&mut self) { 320 // SAFETY: This is the same token value returned by the C code via `dev_pm_opp_set_config`. 321 unsafe { bindings::dev_pm_opp_clear_config(self.0) }; 322 } 323 } 324 325 /// OPP configurations. 326 /// 327 /// Rust abstraction for the C `struct dev_pm_opp_config`. 328 /// 329 /// # Examples 330 /// 331 /// The following example demonstrates how to set OPP property-name configuration for a [`Device`]. 332 /// 333 /// ``` 334 /// use kernel::device::Device; 335 /// use kernel::error::Result; 336 /// use kernel::opp::{Config, ConfigOps, ConfigToken}; 337 /// use kernel::str::CString; 338 /// use kernel::types::ARef; 339 /// use kernel::macros::vtable; 340 /// 341 /// #[derive(Default)] 342 /// struct Driver; 343 /// 344 /// #[vtable] 345 /// impl ConfigOps for Driver {} 346 /// 347 /// fn configure(dev: &ARef<Device>) -> Result<ConfigToken> { 348 /// let name = CString::try_from_fmt(fmt!("slow"))?; 349 /// 350 /// // The OPP configuration is cleared once the [`ConfigToken`] goes out of scope. 351 /// Config::<Driver>::new() 352 /// .set_prop_name(name)? 353 /// .set(dev) 354 /// } 355 /// ``` 356 #[derive(Default)] 357 pub struct Config<T: ConfigOps> 358 where 359 T: Default, 360 { 361 clk_names: Option<KVec<CString>>, 362 prop_name: Option<CString>, 363 regulator_names: Option<KVec<CString>>, 364 supported_hw: Option<KVec<u32>>, 365 366 // Tuple containing (required device, index) 367 required_dev: Option<(ARef<Device>, u32)>, 368 _data: PhantomData<T>, 369 } 370 371 impl<T: ConfigOps + Default> Config<T> { 372 /// Creates a new instance of [`Config`]. 373 #[inline] 374 pub fn new() -> Self { 375 Self::default() 376 } 377 378 /// Initializes clock names. 379 pub fn set_clk_names(mut self, names: KVec<CString>) -> Result<Self> { 380 if self.clk_names.is_some() { 381 return Err(EBUSY); 382 } 383 384 if names.is_empty() { 385 return Err(EINVAL); 386 } 387 388 self.clk_names = Some(names); 389 Ok(self) 390 } 391 392 /// Initializes property name. 393 pub fn set_prop_name(mut self, name: CString) -> Result<Self> { 394 if self.prop_name.is_some() { 395 return Err(EBUSY); 396 } 397 398 self.prop_name = Some(name); 399 Ok(self) 400 } 401 402 /// Initializes regulator names. 403 pub fn set_regulator_names(mut self, names: KVec<CString>) -> Result<Self> { 404 if self.regulator_names.is_some() { 405 return Err(EBUSY); 406 } 407 408 if names.is_empty() { 409 return Err(EINVAL); 410 } 411 412 self.regulator_names = Some(names); 413 414 Ok(self) 415 } 416 417 /// Initializes required devices. 418 pub fn set_required_dev(mut self, dev: ARef<Device>, index: u32) -> Result<Self> { 419 if self.required_dev.is_some() { 420 return Err(EBUSY); 421 } 422 423 self.required_dev = Some((dev, index)); 424 Ok(self) 425 } 426 427 /// Initializes supported hardware. 428 pub fn set_supported_hw(mut self, hw: KVec<u32>) -> Result<Self> { 429 if self.supported_hw.is_some() { 430 return Err(EBUSY); 431 } 432 433 if hw.is_empty() { 434 return Err(EINVAL); 435 } 436 437 self.supported_hw = Some(hw); 438 Ok(self) 439 } 440 441 /// Sets the configuration with the OPP core. 442 /// 443 /// The returned [`ConfigToken`] will remove the configuration when dropped. 444 pub fn set(self, dev: &Device) -> Result<ConfigToken> { 445 let (_clk_list, clk_names) = match &self.clk_names { 446 Some(x) => { 447 let list = to_c_str_array(x)?; 448 let ptr = list.as_ptr(); 449 (Some(list), ptr) 450 } 451 None => (None, ptr::null()), 452 }; 453 454 let (_regulator_list, regulator_names) = match &self.regulator_names { 455 Some(x) => { 456 let list = to_c_str_array(x)?; 457 let ptr = list.as_ptr(); 458 (Some(list), ptr) 459 } 460 None => (None, ptr::null()), 461 }; 462 463 let prop_name = self 464 .prop_name 465 .as_ref() 466 .map_or(ptr::null(), |p| p.as_char_ptr()); 467 468 let (supported_hw, supported_hw_count) = self 469 .supported_hw 470 .as_ref() 471 .map_or((ptr::null(), 0), |hw| (hw.as_ptr(), hw.len() as u32)); 472 473 let (required_dev, required_dev_index) = self 474 .required_dev 475 .as_ref() 476 .map_or((ptr::null_mut(), 0), |(dev, idx)| (dev.as_raw(), *idx)); 477 478 let mut config = bindings::dev_pm_opp_config { 479 clk_names, 480 config_clks: if T::HAS_CONFIG_CLKS { 481 Some(Self::config_clks) 482 } else { 483 None 484 }, 485 prop_name, 486 regulator_names, 487 config_regulators: if T::HAS_CONFIG_REGULATORS { 488 Some(Self::config_regulators) 489 } else { 490 None 491 }, 492 supported_hw, 493 supported_hw_count, 494 495 required_dev, 496 required_dev_index, 497 }; 498 499 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 500 // requirements. The OPP core guarantees not to access fields of [`Config`] after this call 501 // and so we don't need to save a copy of them for future use. 502 let ret = unsafe { bindings::dev_pm_opp_set_config(dev.as_raw(), &mut config) }; 503 if ret < 0 { 504 Err(Error::from_errno(ret)) 505 } else { 506 Ok(ConfigToken(ret)) 507 } 508 } 509 510 /// Config's clk callback. 511 /// 512 /// SAFETY: Called from C. Inputs must be valid pointers. 513 extern "C" fn config_clks( 514 dev: *mut bindings::device, 515 opp_table: *mut bindings::opp_table, 516 opp: *mut bindings::dev_pm_opp, 517 _data: *mut c_void, 518 scaling_down: bool, 519 ) -> c_int { 520 from_result(|| { 521 // SAFETY: 'dev' is guaranteed by the C code to be valid. 522 let dev = unsafe { Device::get_device(dev) }; 523 T::config_clks( 524 &dev, 525 // SAFETY: 'opp_table' is guaranteed by the C code to be valid. 526 &unsafe { Table::from_raw_table(opp_table, &dev) }, 527 // SAFETY: 'opp' is guaranteed by the C code to be valid. 528 unsafe { OPP::from_raw_opp(opp)? }, 529 scaling_down, 530 ) 531 .map(|()| 0) 532 }) 533 } 534 535 /// Config's regulator callback. 536 /// 537 /// SAFETY: Called from C. Inputs must be valid pointers. 538 extern "C" fn config_regulators( 539 dev: *mut bindings::device, 540 old_opp: *mut bindings::dev_pm_opp, 541 new_opp: *mut bindings::dev_pm_opp, 542 regulators: *mut *mut bindings::regulator, 543 count: c_uint, 544 ) -> c_int { 545 from_result(|| { 546 // SAFETY: 'dev' is guaranteed by the C code to be valid. 547 let dev = unsafe { Device::get_device(dev) }; 548 T::config_regulators( 549 &dev, 550 // SAFETY: 'old_opp' is guaranteed by the C code to be valid. 551 unsafe { OPP::from_raw_opp(old_opp)? }, 552 // SAFETY: 'new_opp' is guaranteed by the C code to be valid. 553 unsafe { OPP::from_raw_opp(new_opp)? }, 554 regulators, 555 count, 556 ) 557 .map(|()| 0) 558 }) 559 } 560 } 561 562 /// A reference-counted OPP table. 563 /// 564 /// Rust abstraction for the C `struct opp_table`. 565 /// 566 /// # Invariants 567 /// 568 /// The pointer stored in `Self` is non-null and valid for the lifetime of the [`Table`]. 569 /// 570 /// Instances of this type are reference-counted. 571 /// 572 /// # Examples 573 /// 574 /// The following example demonstrates how to get OPP [`Table`] for a [`Cpumask`] and set its 575 /// frequency. 576 /// 577 /// ``` 578 /// # #![cfg(CONFIG_OF)] 579 /// use kernel::clk::Hertz; 580 /// use kernel::cpumask::Cpumask; 581 /// use kernel::device::Device; 582 /// use kernel::error::Result; 583 /// use kernel::opp::Table; 584 /// use kernel::types::ARef; 585 /// 586 /// fn get_table(dev: &ARef<Device>, mask: &mut Cpumask, freq: Hertz) -> Result<Table> { 587 /// let mut opp_table = Table::from_of_cpumask(dev, mask)?; 588 /// 589 /// if opp_table.opp_count()? == 0 { 590 /// return Err(EINVAL); 591 /// } 592 /// 593 /// pr_info!("Max transition latency is: {} ns\n", opp_table.max_transition_latency_ns()); 594 /// pr_info!("Suspend frequency is: {:?}\n", opp_table.suspend_freq()); 595 /// 596 /// opp_table.set_rate(freq)?; 597 /// Ok(opp_table) 598 /// } 599 /// ``` 600 pub struct Table { 601 ptr: *mut bindings::opp_table, 602 dev: ARef<Device>, 603 #[allow(dead_code)] 604 em: bool, 605 #[allow(dead_code)] 606 of: bool, 607 cpus: Option<CpumaskVar>, 608 } 609 610 /// SAFETY: It is okay to send ownership of [`Table`] across thread boundaries. 611 unsafe impl Send for Table {} 612 613 /// SAFETY: It is okay to access [`Table`] through shared references from other threads because 614 /// we're either accessing properties that don't change or that are properly synchronised by C code. 615 unsafe impl Sync for Table {} 616 617 impl Table { 618 /// Creates a new reference-counted [`Table`] from a raw pointer. 619 /// 620 /// # Safety 621 /// 622 /// Callers must ensure that `ptr` is valid and non-null. 623 unsafe fn from_raw_table(ptr: *mut bindings::opp_table, dev: &ARef<Device>) -> Self { 624 // SAFETY: By the safety requirements, ptr is valid and its refcount will be incremented. 625 // 626 // INVARIANT: The reference-count is decremented when [`Table`] goes out of scope. 627 unsafe { bindings::dev_pm_opp_get_opp_table_ref(ptr) }; 628 629 Self { 630 ptr, 631 dev: dev.clone(), 632 em: false, 633 of: false, 634 cpus: None, 635 } 636 } 637 638 /// Creates a new reference-counted [`Table`] instance for a [`Device`]. 639 pub fn from_dev(dev: &Device) -> Result<Self> { 640 // SAFETY: The requirements are satisfied by the existence of the [`Device`] and its safety 641 // requirements. 642 // 643 // INVARIANT: The reference-count is incremented by the C code and is decremented when 644 // [`Table`] goes out of scope. 645 let ptr = from_err_ptr(unsafe { bindings::dev_pm_opp_get_opp_table(dev.as_raw()) })?; 646 647 Ok(Self { 648 ptr, 649 dev: dev.into(), 650 em: false, 651 of: false, 652 cpus: None, 653 }) 654 } 655 656 /// Creates a new reference-counted [`Table`] instance for a [`Device`] based on device tree 657 /// entries. 658 #[cfg(CONFIG_OF)] 659 pub fn from_of(dev: &ARef<Device>, index: i32) -> Result<Self> { 660 // SAFETY: The requirements are satisfied by the existence of the [`Device`] and its safety 661 // requirements. 662 // 663 // INVARIANT: The reference-count is incremented by the C code and is decremented when 664 // [`Table`] goes out of scope. 665 to_result(unsafe { bindings::dev_pm_opp_of_add_table_indexed(dev.as_raw(), index) })?; 666 667 // Get the newly created [`Table`]. 668 let mut table = Self::from_dev(dev)?; 669 table.of = true; 670 671 Ok(table) 672 } 673 674 /// Remove device tree based [`Table`]. 675 #[cfg(CONFIG_OF)] 676 #[inline] 677 fn remove_of(&self) { 678 // SAFETY: The requirements are satisfied by the existence of the [`Device`] and its safety 679 // requirements. We took the reference from [`from_of`] earlier, it is safe to drop the 680 // same now. 681 unsafe { bindings::dev_pm_opp_of_remove_table(self.dev.as_raw()) }; 682 } 683 684 /// Creates a new reference-counted [`Table`] instance for a [`Cpumask`] based on device tree 685 /// entries. 686 #[cfg(CONFIG_OF)] 687 pub fn from_of_cpumask(dev: &Device, cpumask: &mut Cpumask) -> Result<Self> { 688 // SAFETY: The cpumask is valid and the returned pointer will be owned by the [`Table`] 689 // instance. 690 // 691 // INVARIANT: The reference-count is incremented by the C code and is decremented when 692 // [`Table`] goes out of scope. 693 to_result(unsafe { bindings::dev_pm_opp_of_cpumask_add_table(cpumask.as_raw()) })?; 694 695 // Fetch the newly created table. 696 let mut table = Self::from_dev(dev)?; 697 table.cpus = Some(CpumaskVar::try_clone(cpumask)?); 698 699 Ok(table) 700 } 701 702 /// Remove device tree based [`Table`] for a [`Cpumask`]. 703 #[cfg(CONFIG_OF)] 704 #[inline] 705 fn remove_of_cpumask(&self, cpumask: &Cpumask) { 706 // SAFETY: The cpumask is valid and we took the reference from [`from_of_cpumask`] earlier, 707 // it is safe to drop the same now. 708 unsafe { bindings::dev_pm_opp_of_cpumask_remove_table(cpumask.as_raw()) }; 709 } 710 711 /// Returns the number of [`OPP`]s in the [`Table`]. 712 pub fn opp_count(&self) -> Result<u32> { 713 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 714 // requirements. 715 let ret = unsafe { bindings::dev_pm_opp_get_opp_count(self.dev.as_raw()) }; 716 if ret < 0 { 717 Err(Error::from_errno(ret)) 718 } else { 719 Ok(ret as u32) 720 } 721 } 722 723 /// Returns max clock latency (in nanoseconds) of the [`OPP`]s in the [`Table`]. 724 #[inline] 725 pub fn max_clock_latency_ns(&self) -> usize { 726 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 727 // requirements. 728 unsafe { bindings::dev_pm_opp_get_max_clock_latency(self.dev.as_raw()) } 729 } 730 731 /// Returns max volt latency (in nanoseconds) of the [`OPP`]s in the [`Table`]. 732 #[inline] 733 pub fn max_volt_latency_ns(&self) -> usize { 734 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 735 // requirements. 736 unsafe { bindings::dev_pm_opp_get_max_volt_latency(self.dev.as_raw()) } 737 } 738 739 /// Returns max transition latency (in nanoseconds) of the [`OPP`]s in the [`Table`]. 740 #[inline] 741 pub fn max_transition_latency_ns(&self) -> usize { 742 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 743 // requirements. 744 unsafe { bindings::dev_pm_opp_get_max_transition_latency(self.dev.as_raw()) } 745 } 746 747 /// Returns the suspend [`OPP`]'s frequency. 748 #[inline] 749 pub fn suspend_freq(&self) -> Hertz { 750 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 751 // requirements. 752 Hertz(unsafe { bindings::dev_pm_opp_get_suspend_opp_freq(self.dev.as_raw()) }) 753 } 754 755 /// Synchronizes regulators used by the [`Table`]. 756 #[inline] 757 pub fn sync_regulators(&self) -> Result { 758 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 759 // requirements. 760 to_result(unsafe { bindings::dev_pm_opp_sync_regulators(self.dev.as_raw()) }) 761 } 762 763 /// Gets sharing CPUs. 764 #[inline] 765 pub fn sharing_cpus(dev: &Device, cpumask: &mut Cpumask) -> Result { 766 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 767 // requirements. 768 to_result(unsafe { bindings::dev_pm_opp_get_sharing_cpus(dev.as_raw(), cpumask.as_raw()) }) 769 } 770 771 /// Sets sharing CPUs. 772 pub fn set_sharing_cpus(&mut self, cpumask: &mut Cpumask) -> Result { 773 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 774 // requirements. 775 to_result(unsafe { 776 bindings::dev_pm_opp_set_sharing_cpus(self.dev.as_raw(), cpumask.as_raw()) 777 })?; 778 779 if let Some(mask) = self.cpus.as_mut() { 780 // Update the cpumask as this will be used while removing the table. 781 cpumask.copy(mask); 782 } 783 784 Ok(()) 785 } 786 787 /// Gets sharing CPUs from device tree. 788 #[cfg(CONFIG_OF)] 789 #[inline] 790 pub fn of_sharing_cpus(dev: &Device, cpumask: &mut Cpumask) -> Result { 791 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 792 // requirements. 793 to_result(unsafe { 794 bindings::dev_pm_opp_of_get_sharing_cpus(dev.as_raw(), cpumask.as_raw()) 795 }) 796 } 797 798 /// Updates the voltage value for an [`OPP`]. 799 #[inline] 800 pub fn adjust_voltage( 801 &self, 802 freq: Hertz, 803 volt: MicroVolt, 804 volt_min: MicroVolt, 805 volt_max: MicroVolt, 806 ) -> Result { 807 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 808 // requirements. 809 to_result(unsafe { 810 bindings::dev_pm_opp_adjust_voltage( 811 self.dev.as_raw(), 812 freq.into(), 813 volt.into(), 814 volt_min.into(), 815 volt_max.into(), 816 ) 817 }) 818 } 819 820 /// Creates [`FreqTable`] from [`Table`]. 821 #[cfg(CONFIG_CPU_FREQ)] 822 #[inline] 823 pub fn cpufreq_table(&mut self) -> Result<FreqTable> { 824 FreqTable::new(self) 825 } 826 827 /// Configures device with [`OPP`] matching the frequency value. 828 #[inline] 829 pub fn set_rate(&self, freq: Hertz) -> Result { 830 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 831 // requirements. 832 to_result(unsafe { bindings::dev_pm_opp_set_rate(self.dev.as_raw(), freq.into()) }) 833 } 834 835 /// Configures device with [`OPP`]. 836 #[inline] 837 pub fn set_opp(&self, opp: &OPP) -> Result { 838 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 839 // requirements. 840 to_result(unsafe { bindings::dev_pm_opp_set_opp(self.dev.as_raw(), opp.as_raw()) }) 841 } 842 843 /// Finds [`OPP`] based on frequency. 844 pub fn opp_from_freq( 845 &self, 846 freq: Hertz, 847 available: Option<bool>, 848 index: Option<u32>, 849 stype: SearchType, 850 ) -> Result<ARef<OPP>> { 851 let raw_dev = self.dev.as_raw(); 852 let index = index.unwrap_or(0); 853 let mut rate = freq.into(); 854 855 let ptr = from_err_ptr(match stype { 856 SearchType::Exact => { 857 if let Some(available) = available { 858 // SAFETY: The requirements are satisfied by the existence of [`Device`] and 859 // its safety requirements. The returned pointer will be owned by the new 860 // [`OPP`] instance. 861 unsafe { 862 bindings::dev_pm_opp_find_freq_exact_indexed( 863 raw_dev, rate, index, available, 864 ) 865 } 866 } else { 867 return Err(EINVAL); 868 } 869 } 870 871 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 872 // requirements. The returned pointer will be owned by the new [`OPP`] instance. 873 SearchType::Ceil => unsafe { 874 bindings::dev_pm_opp_find_freq_ceil_indexed(raw_dev, &mut rate, index) 875 }, 876 877 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 878 // requirements. The returned pointer will be owned by the new [`OPP`] instance. 879 SearchType::Floor => unsafe { 880 bindings::dev_pm_opp_find_freq_floor_indexed(raw_dev, &mut rate, index) 881 }, 882 })?; 883 884 // SAFETY: The `ptr` is guaranteed by the C code to be valid. 885 unsafe { OPP::from_raw_opp_owned(ptr) } 886 } 887 888 /// Finds [`OPP`] based on level. 889 pub fn opp_from_level(&self, mut level: u32, stype: SearchType) -> Result<ARef<OPP>> { 890 let raw_dev = self.dev.as_raw(); 891 892 let ptr = from_err_ptr(match stype { 893 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 894 // requirements. The returned pointer will be owned by the new [`OPP`] instance. 895 SearchType::Exact => unsafe { bindings::dev_pm_opp_find_level_exact(raw_dev, level) }, 896 897 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 898 // requirements. The returned pointer will be owned by the new [`OPP`] instance. 899 SearchType::Ceil => unsafe { 900 bindings::dev_pm_opp_find_level_ceil(raw_dev, &mut level) 901 }, 902 903 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 904 // requirements. The returned pointer will be owned by the new [`OPP`] instance. 905 SearchType::Floor => unsafe { 906 bindings::dev_pm_opp_find_level_floor(raw_dev, &mut level) 907 }, 908 })?; 909 910 // SAFETY: The `ptr` is guaranteed by the C code to be valid. 911 unsafe { OPP::from_raw_opp_owned(ptr) } 912 } 913 914 /// Finds [`OPP`] based on bandwidth. 915 pub fn opp_from_bw(&self, mut bw: u32, index: i32, stype: SearchType) -> Result<ARef<OPP>> { 916 let raw_dev = self.dev.as_raw(); 917 918 let ptr = from_err_ptr(match stype { 919 // The OPP core doesn't support this yet. 920 SearchType::Exact => return Err(EINVAL), 921 922 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 923 // requirements. The returned pointer will be owned by the new [`OPP`] instance. 924 SearchType::Ceil => unsafe { 925 bindings::dev_pm_opp_find_bw_ceil(raw_dev, &mut bw, index) 926 }, 927 928 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 929 // requirements. The returned pointer will be owned by the new [`OPP`] instance. 930 SearchType::Floor => unsafe { 931 bindings::dev_pm_opp_find_bw_floor(raw_dev, &mut bw, index) 932 }, 933 })?; 934 935 // SAFETY: The `ptr` is guaranteed by the C code to be valid. 936 unsafe { OPP::from_raw_opp_owned(ptr) } 937 } 938 939 /// Enables the [`OPP`]. 940 #[inline] 941 pub fn enable_opp(&self, freq: Hertz) -> Result { 942 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 943 // requirements. 944 to_result(unsafe { bindings::dev_pm_opp_enable(self.dev.as_raw(), freq.into()) }) 945 } 946 947 /// Disables the [`OPP`]. 948 #[inline] 949 pub fn disable_opp(&self, freq: Hertz) -> Result { 950 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 951 // requirements. 952 to_result(unsafe { bindings::dev_pm_opp_disable(self.dev.as_raw(), freq.into()) }) 953 } 954 955 /// Registers with the Energy model. 956 #[cfg(CONFIG_OF)] 957 pub fn of_register_em(&mut self, cpumask: &mut Cpumask) -> Result { 958 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 959 // requirements. 960 to_result(unsafe { 961 bindings::dev_pm_opp_of_register_em(self.dev.as_raw(), cpumask.as_raw()) 962 })?; 963 964 self.em = true; 965 Ok(()) 966 } 967 968 /// Unregisters with the Energy model. 969 #[cfg(all(CONFIG_OF, CONFIG_ENERGY_MODEL))] 970 #[inline] 971 fn of_unregister_em(&self) { 972 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 973 // requirements. We registered with the EM framework earlier, it is safe to unregister now. 974 unsafe { bindings::em_dev_unregister_perf_domain(self.dev.as_raw()) }; 975 } 976 } 977 978 impl Drop for Table { 979 fn drop(&mut self) { 980 // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe 981 // to relinquish it now. 982 unsafe { bindings::dev_pm_opp_put_opp_table(self.ptr) }; 983 984 #[cfg(CONFIG_OF)] 985 { 986 #[cfg(CONFIG_ENERGY_MODEL)] 987 if self.em { 988 self.of_unregister_em(); 989 } 990 991 if self.of { 992 self.remove_of(); 993 } else if let Some(cpumask) = self.cpus.take() { 994 self.remove_of_cpumask(&cpumask); 995 } 996 } 997 } 998 } 999 1000 /// A reference-counted Operating performance point (OPP). 1001 /// 1002 /// Rust abstraction for the C `struct dev_pm_opp`. 1003 /// 1004 /// # Invariants 1005 /// 1006 /// The pointer stored in `Self` is non-null and valid for the lifetime of the [`OPP`]. 1007 /// 1008 /// Instances of this type are reference-counted. The reference count is incremented by the 1009 /// `dev_pm_opp_get` function and decremented by `dev_pm_opp_put`. The Rust type `ARef<OPP>` 1010 /// represents a pointer that owns a reference count on the [`OPP`]. 1011 /// 1012 /// A reference to the [`OPP`], &[`OPP`], isn't refcounted by the Rust code. 1013 /// 1014 /// # Examples 1015 /// 1016 /// The following example demonstrates how to get [`OPP`] corresponding to a frequency value and 1017 /// configure the device with it. 1018 /// 1019 /// ``` 1020 /// use kernel::clk::Hertz; 1021 /// use kernel::error::Result; 1022 /// use kernel::opp::{SearchType, Table}; 1023 /// 1024 /// fn configure_opp(table: &Table, freq: Hertz) -> Result { 1025 /// let opp = table.opp_from_freq(freq, Some(true), None, SearchType::Exact)?; 1026 /// 1027 /// if opp.freq(None) != freq { 1028 /// return Err(EINVAL); 1029 /// } 1030 /// 1031 /// table.set_opp(&opp) 1032 /// } 1033 /// ``` 1034 #[repr(transparent)] 1035 pub struct OPP(Opaque<bindings::dev_pm_opp>); 1036 1037 /// SAFETY: It is okay to send the ownership of [`OPP`] across thread boundaries. 1038 unsafe impl Send for OPP {} 1039 1040 /// SAFETY: It is okay to access [`OPP`] through shared references from other threads because we're 1041 /// either accessing properties that don't change or that are properly synchronised by C code. 1042 unsafe impl Sync for OPP {} 1043 1044 /// SAFETY: The type invariants guarantee that [`OPP`] is always refcounted. 1045 unsafe impl AlwaysRefCounted for OPP { 1046 fn inc_ref(&self) { 1047 // SAFETY: The existence of a shared reference means that the refcount is nonzero. 1048 unsafe { bindings::dev_pm_opp_get(self.0.get()) }; 1049 } 1050 1051 unsafe fn dec_ref(obj: ptr::NonNull<Self>) { 1052 // SAFETY: The safety requirements guarantee that the refcount is nonzero. 1053 unsafe { bindings::dev_pm_opp_put(obj.cast().as_ptr()) } 1054 } 1055 } 1056 1057 impl OPP { 1058 /// Creates an owned reference to a [`OPP`] from a valid pointer. 1059 /// 1060 /// The refcount is incremented by the C code and will be decremented by `dec_ref` when the 1061 /// [`ARef`] object is dropped. 1062 /// 1063 /// # Safety 1064 /// 1065 /// The caller must ensure that `ptr` is valid and the refcount of the [`OPP`] is incremented. 1066 /// The caller must also ensure that it doesn't explicitly drop the refcount of the [`OPP`], as 1067 /// the returned [`ARef`] object takes over the refcount increment on the underlying object and 1068 /// the same will be dropped along with it. 1069 pub unsafe fn from_raw_opp_owned(ptr: *mut bindings::dev_pm_opp) -> Result<ARef<Self>> { 1070 let ptr = ptr::NonNull::new(ptr).ok_or(ENODEV)?; 1071 1072 // SAFETY: The safety requirements guarantee the validity of the pointer. 1073 // 1074 // INVARIANT: The reference-count is decremented when [`OPP`] goes out of scope. 1075 Ok(unsafe { ARef::from_raw(ptr.cast()) }) 1076 } 1077 1078 /// Creates a reference to a [`OPP`] from a valid pointer. 1079 /// 1080 /// The refcount is not updated by the Rust API unless the returned reference is converted to 1081 /// an [`ARef`] object. 1082 /// 1083 /// # Safety 1084 /// 1085 /// The caller must ensure that `ptr` is valid and remains valid for the duration of `'a`. 1086 #[inline] 1087 pub unsafe fn from_raw_opp<'a>(ptr: *mut bindings::dev_pm_opp) -> Result<&'a Self> { 1088 // SAFETY: The caller guarantees that the pointer is not dangling and stays valid for the 1089 // duration of 'a. The cast is okay because [`OPP`] is `repr(transparent)`. 1090 Ok(unsafe { &*ptr.cast() }) 1091 } 1092 1093 #[inline] 1094 fn as_raw(&self) -> *mut bindings::dev_pm_opp { 1095 self.0.get() 1096 } 1097 1098 /// Returns the frequency of an [`OPP`]. 1099 pub fn freq(&self, index: Option<u32>) -> Hertz { 1100 let index = index.unwrap_or(0); 1101 1102 // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to 1103 // use it. 1104 Hertz(unsafe { bindings::dev_pm_opp_get_freq_indexed(self.as_raw(), index) }) 1105 } 1106 1107 /// Returns the voltage of an [`OPP`]. 1108 #[inline] 1109 pub fn voltage(&self) -> MicroVolt { 1110 // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to 1111 // use it. 1112 MicroVolt(unsafe { bindings::dev_pm_opp_get_voltage(self.as_raw()) }) 1113 } 1114 1115 /// Returns the level of an [`OPP`]. 1116 #[inline] 1117 pub fn level(&self) -> u32 { 1118 // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to 1119 // use it. 1120 unsafe { bindings::dev_pm_opp_get_level(self.as_raw()) } 1121 } 1122 1123 /// Returns the power of an [`OPP`]. 1124 #[inline] 1125 pub fn power(&self) -> MicroWatt { 1126 // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to 1127 // use it. 1128 MicroWatt(unsafe { bindings::dev_pm_opp_get_power(self.as_raw()) }) 1129 } 1130 1131 /// Returns the required pstate of an [`OPP`]. 1132 #[inline] 1133 pub fn required_pstate(&self, index: u32) -> u32 { 1134 // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to 1135 // use it. 1136 unsafe { bindings::dev_pm_opp_get_required_pstate(self.as_raw(), index) } 1137 } 1138 1139 /// Returns true if the [`OPP`] is turbo. 1140 #[inline] 1141 pub fn is_turbo(&self) -> bool { 1142 // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to 1143 // use it. 1144 unsafe { bindings::dev_pm_opp_is_turbo(self.as_raw()) } 1145 } 1146 } 1147