1 // SPDX-License-Identifier: GPL-2.0 2 3 //! Operating performance points. 4 //! 5 //! This module provides rust abstractions for interacting with the OPP subsystem. 6 //! 7 //! C header: [`include/linux/pm_opp.h`](srctree/include/linux/pm_opp.h) 8 //! 9 //! Reference: <https://docs.kernel.org/power/opp.html> 10 11 use crate::{ 12 clk::Hertz, 13 cpumask::{Cpumask, CpumaskVar}, 14 device::Device, 15 error::{code::*, from_err_ptr, from_result, to_result, Result, VTABLE_DEFAULT_ERROR}, 16 ffi::c_ulong, 17 prelude::*, 18 str::CString, 19 sync::aref::{ARef, AlwaysRefCounted}, 20 types::Opaque, 21 }; 22 23 #[cfg(CONFIG_CPU_FREQ)] 24 /// Frequency table implementation. 25 mod freq { 26 use super::*; 27 use crate::cpufreq; 28 use core::ops::Deref; 29 30 /// OPP frequency table. 31 /// 32 /// A [`cpufreq::Table`] created from [`Table`]. 33 pub struct FreqTable { 34 dev: ARef<Device>, 35 ptr: *mut bindings::cpufreq_frequency_table, 36 } 37 38 impl FreqTable { 39 /// Creates a new instance of [`FreqTable`] from [`Table`]. 40 pub(crate) fn new(table: &Table) -> Result<Self> { 41 let mut ptr: *mut bindings::cpufreq_frequency_table = ptr::null_mut(); 42 43 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 44 // requirements. 45 to_result(unsafe { 46 bindings::dev_pm_opp_init_cpufreq_table(table.dev.as_raw(), &mut ptr) 47 })?; 48 49 Ok(Self { 50 dev: table.dev.clone(), 51 ptr, 52 }) 53 } 54 55 /// Returns a reference to the underlying [`cpufreq::Table`]. 56 #[inline] 57 fn table(&self) -> &cpufreq::Table { 58 // SAFETY: The `ptr` is guaranteed by the C code to be valid. 59 unsafe { cpufreq::Table::from_raw(self.ptr) } 60 } 61 } 62 63 impl Deref for FreqTable { 64 type Target = cpufreq::Table; 65 66 #[inline] 67 fn deref(&self) -> &Self::Target { 68 self.table() 69 } 70 } 71 72 impl Drop for FreqTable { 73 fn drop(&mut self) { 74 // SAFETY: The pointer was created via `dev_pm_opp_init_cpufreq_table`, and is only 75 // freed here. 76 unsafe { 77 bindings::dev_pm_opp_free_cpufreq_table(self.dev.as_raw(), &mut self.as_raw()) 78 }; 79 } 80 } 81 } 82 83 #[cfg(CONFIG_CPU_FREQ)] 84 pub use freq::FreqTable; 85 86 use core::{marker::PhantomData, ptr}; 87 88 use macros::vtable; 89 90 /// Creates a null-terminated slice of pointers to [`Cstring`]s. 91 fn to_c_str_array(names: &[CString]) -> Result<KVec<*const u8>> { 92 // Allocated a null-terminated vector of pointers. 93 let mut list = KVec::with_capacity(names.len() + 1, GFP_KERNEL)?; 94 95 for name in names.iter() { 96 list.push(name.as_ptr().cast(), GFP_KERNEL)?; 97 } 98 99 list.push(ptr::null(), GFP_KERNEL)?; 100 Ok(list) 101 } 102 103 /// The voltage unit. 104 /// 105 /// Represents voltage in microvolts, wrapping a [`c_ulong`] value. 106 /// 107 /// # Examples 108 /// 109 /// ``` 110 /// use kernel::opp::MicroVolt; 111 /// 112 /// let raw = 90500; 113 /// let volt = MicroVolt(raw); 114 /// 115 /// assert_eq!(usize::from(volt), raw); 116 /// assert_eq!(volt, MicroVolt(raw)); 117 /// ``` 118 #[derive(Copy, Clone, PartialEq, Eq, Debug)] 119 pub struct MicroVolt(pub c_ulong); 120 121 impl From<MicroVolt> for c_ulong { 122 #[inline] 123 fn from(volt: MicroVolt) -> Self { 124 volt.0 125 } 126 } 127 128 /// The power unit. 129 /// 130 /// Represents power in microwatts, wrapping a [`c_ulong`] value. 131 /// 132 /// # Examples 133 /// 134 /// ``` 135 /// use kernel::opp::MicroWatt; 136 /// 137 /// let raw = 1000000; 138 /// let power = MicroWatt(raw); 139 /// 140 /// assert_eq!(usize::from(power), raw); 141 /// assert_eq!(power, MicroWatt(raw)); 142 /// ``` 143 #[derive(Copy, Clone, PartialEq, Eq, Debug)] 144 pub struct MicroWatt(pub c_ulong); 145 146 impl From<MicroWatt> for c_ulong { 147 #[inline] 148 fn from(power: MicroWatt) -> Self { 149 power.0 150 } 151 } 152 153 /// Handle for a dynamically created [`OPP`]. 154 /// 155 /// The associated [`OPP`] is automatically removed when the [`Token`] is dropped. 156 /// 157 /// # Examples 158 /// 159 /// The following example demonstrates how to create an [`OPP`] dynamically. 160 /// 161 /// ``` 162 /// use kernel::clk::Hertz; 163 /// use kernel::device::Device; 164 /// use kernel::error::Result; 165 /// use kernel::opp::{Data, MicroVolt, Token}; 166 /// use kernel::sync::aref::ARef; 167 /// 168 /// fn create_opp(dev: &ARef<Device>, freq: Hertz, volt: MicroVolt, level: u32) -> Result<Token> { 169 /// let data = Data::new(freq, volt, level, false); 170 /// 171 /// // OPP is removed once token goes out of scope. 172 /// data.add_opp(dev) 173 /// } 174 /// ``` 175 pub struct Token { 176 dev: ARef<Device>, 177 freq: Hertz, 178 } 179 180 impl Token { 181 /// Dynamically adds an [`OPP`] and returns a [`Token`] that removes it on drop. 182 fn new(dev: &ARef<Device>, mut data: Data) -> Result<Self> { 183 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 184 // requirements. 185 to_result(unsafe { bindings::dev_pm_opp_add_dynamic(dev.as_raw(), &mut data.0) })?; 186 Ok(Self { 187 dev: dev.clone(), 188 freq: data.freq(), 189 }) 190 } 191 } 192 193 impl Drop for Token { 194 fn drop(&mut self) { 195 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 196 // requirements. 197 unsafe { bindings::dev_pm_opp_remove(self.dev.as_raw(), self.freq.into()) }; 198 } 199 } 200 201 /// OPP data. 202 /// 203 /// Rust abstraction for the C `struct dev_pm_opp_data`, used to define operating performance 204 /// points (OPPs) dynamically. 205 /// 206 /// # Examples 207 /// 208 /// The following example demonstrates how to create an [`OPP`] with [`Data`]. 209 /// 210 /// ``` 211 /// use kernel::clk::Hertz; 212 /// use kernel::device::Device; 213 /// use kernel::error::Result; 214 /// use kernel::opp::{Data, MicroVolt, Token}; 215 /// use kernel::sync::aref::ARef; 216 /// 217 /// fn create_opp(dev: &ARef<Device>, freq: Hertz, volt: MicroVolt, level: u32) -> Result<Token> { 218 /// let data = Data::new(freq, volt, level, false); 219 /// 220 /// // OPP is removed once token goes out of scope. 221 /// data.add_opp(dev) 222 /// } 223 /// ``` 224 #[repr(transparent)] 225 pub struct Data(bindings::dev_pm_opp_data); 226 227 impl Data { 228 /// Creates a new instance of [`Data`]. 229 /// 230 /// This can be used to define a dynamic OPP to be added to a device. 231 pub fn new(freq: Hertz, volt: MicroVolt, level: u32, turbo: bool) -> Self { 232 Self(bindings::dev_pm_opp_data { 233 turbo, 234 freq: freq.into(), 235 u_volt: volt.into(), 236 level, 237 }) 238 } 239 240 /// Adds an [`OPP`] dynamically. 241 /// 242 /// Returns a [`Token`] that ensures the OPP is automatically removed 243 /// when it goes out of scope. 244 #[inline] 245 pub fn add_opp(self, dev: &ARef<Device>) -> Result<Token> { 246 Token::new(dev, self) 247 } 248 249 /// Returns the frequency associated with this OPP data. 250 #[inline] 251 fn freq(&self) -> Hertz { 252 Hertz(self.0.freq) 253 } 254 } 255 256 /// [`OPP`] search options. 257 /// 258 /// # Examples 259 /// 260 /// Defines how to search for an [`OPP`] in a [`Table`] relative to a frequency. 261 /// 262 /// ``` 263 /// use kernel::clk::Hertz; 264 /// use kernel::error::Result; 265 /// use kernel::opp::{OPP, SearchType, Table}; 266 /// use kernel::sync::aref::ARef; 267 /// 268 /// fn find_opp(table: &Table, freq: Hertz) -> Result<ARef<OPP>> { 269 /// let opp = table.opp_from_freq(freq, Some(true), None, SearchType::Exact)?; 270 /// 271 /// pr_info!("OPP frequency is: {:?}\n", opp.freq(None)); 272 /// pr_info!("OPP voltage is: {:?}\n", opp.voltage()); 273 /// pr_info!("OPP level is: {}\n", opp.level()); 274 /// pr_info!("OPP power is: {:?}\n", opp.power()); 275 /// 276 /// Ok(opp) 277 /// } 278 /// ``` 279 #[derive(Copy, Clone, Debug, Eq, PartialEq)] 280 pub enum SearchType { 281 /// Match the exact frequency. 282 Exact, 283 /// Find the highest frequency less than or equal to the given value. 284 Floor, 285 /// Find the lowest frequency greater than or equal to the given value. 286 Ceil, 287 } 288 289 /// OPP configuration callbacks. 290 /// 291 /// Implement this trait to customize OPP clock and regulator setup for your device. 292 #[vtable] 293 pub trait ConfigOps { 294 /// This is typically used to scale clocks when transitioning between OPPs. 295 #[inline] 296 fn config_clks(_dev: &Device, _table: &Table, _opp: &OPP, _scaling_down: bool) -> Result { 297 build_error!(VTABLE_DEFAULT_ERROR) 298 } 299 300 /// This provides access to the old and new OPPs, allowing for safe regulator adjustments. 301 #[inline] 302 fn config_regulators( 303 _dev: &Device, 304 _opp_old: &OPP, 305 _opp_new: &OPP, 306 _data: *mut *mut bindings::regulator, 307 _count: u32, 308 ) -> Result { 309 build_error!(VTABLE_DEFAULT_ERROR) 310 } 311 } 312 313 /// OPP configuration token. 314 /// 315 /// Returned by the OPP core when configuration is applied to a [`Device`]. The associated 316 /// configuration is automatically cleared when the token is dropped. 317 pub struct ConfigToken(i32); 318 319 impl Drop for ConfigToken { 320 fn drop(&mut self) { 321 // SAFETY: This is the same token value returned by the C code via `dev_pm_opp_set_config`. 322 unsafe { bindings::dev_pm_opp_clear_config(self.0) }; 323 } 324 } 325 326 /// OPP configurations. 327 /// 328 /// Rust abstraction for the C `struct dev_pm_opp_config`. 329 /// 330 /// # Examples 331 /// 332 /// The following example demonstrates how to set OPP property-name configuration for a [`Device`]. 333 /// 334 /// ``` 335 /// use kernel::device::Device; 336 /// use kernel::error::Result; 337 /// use kernel::opp::{Config, ConfigOps, ConfigToken}; 338 /// use kernel::str::CString; 339 /// use kernel::sync::aref::ARef; 340 /// use kernel::macros::vtable; 341 /// 342 /// #[derive(Default)] 343 /// struct Driver; 344 /// 345 /// #[vtable] 346 /// impl ConfigOps for Driver {} 347 /// 348 /// fn configure(dev: &ARef<Device>) -> Result<ConfigToken> { 349 /// let name = CString::try_from_fmt(fmt!("slow"))?; 350 /// 351 /// // The OPP configuration is cleared once the [`ConfigToken`] goes out of scope. 352 /// Config::<Driver>::new() 353 /// .set_prop_name(name)? 354 /// .set(dev) 355 /// } 356 /// ``` 357 #[derive(Default)] 358 pub struct Config<T: ConfigOps> 359 where 360 T: Default, 361 { 362 clk_names: Option<KVec<CString>>, 363 prop_name: Option<CString>, 364 regulator_names: Option<KVec<CString>>, 365 supported_hw: Option<KVec<u32>>, 366 367 // Tuple containing (required device, index) 368 required_dev: Option<(ARef<Device>, u32)>, 369 _data: PhantomData<T>, 370 } 371 372 impl<T: ConfigOps + Default> Config<T> { 373 /// Creates a new instance of [`Config`]. 374 #[inline] 375 pub fn new() -> Self { 376 Self::default() 377 } 378 379 /// Initializes clock names. 380 pub fn set_clk_names(mut self, names: KVec<CString>) -> Result<Self> { 381 if self.clk_names.is_some() { 382 return Err(EBUSY); 383 } 384 385 if names.is_empty() { 386 return Err(EINVAL); 387 } 388 389 self.clk_names = Some(names); 390 Ok(self) 391 } 392 393 /// Initializes property name. 394 pub fn set_prop_name(mut self, name: CString) -> Result<Self> { 395 if self.prop_name.is_some() { 396 return Err(EBUSY); 397 } 398 399 self.prop_name = Some(name); 400 Ok(self) 401 } 402 403 /// Initializes regulator names. 404 pub fn set_regulator_names(mut self, names: KVec<CString>) -> Result<Self> { 405 if self.regulator_names.is_some() { 406 return Err(EBUSY); 407 } 408 409 if names.is_empty() { 410 return Err(EINVAL); 411 } 412 413 self.regulator_names = Some(names); 414 415 Ok(self) 416 } 417 418 /// Initializes required devices. 419 pub fn set_required_dev(mut self, dev: ARef<Device>, index: u32) -> Result<Self> { 420 if self.required_dev.is_some() { 421 return Err(EBUSY); 422 } 423 424 self.required_dev = Some((dev, index)); 425 Ok(self) 426 } 427 428 /// Initializes supported hardware. 429 pub fn set_supported_hw(mut self, hw: KVec<u32>) -> Result<Self> { 430 if self.supported_hw.is_some() { 431 return Err(EBUSY); 432 } 433 434 if hw.is_empty() { 435 return Err(EINVAL); 436 } 437 438 self.supported_hw = Some(hw); 439 Ok(self) 440 } 441 442 /// Sets the configuration with the OPP core. 443 /// 444 /// The returned [`ConfigToken`] will remove the configuration when dropped. 445 pub fn set(self, dev: &Device) -> Result<ConfigToken> { 446 let (_clk_list, clk_names) = match &self.clk_names { 447 Some(x) => { 448 let list = to_c_str_array(x)?; 449 let ptr = list.as_ptr(); 450 (Some(list), ptr) 451 } 452 None => (None, ptr::null()), 453 }; 454 455 let (_regulator_list, regulator_names) = match &self.regulator_names { 456 Some(x) => { 457 let list = to_c_str_array(x)?; 458 let ptr = list.as_ptr(); 459 (Some(list), ptr) 460 } 461 None => (None, ptr::null()), 462 }; 463 464 let prop_name = self 465 .prop_name 466 .as_ref() 467 .map_or(ptr::null(), |p| p.as_char_ptr()); 468 469 let (supported_hw, supported_hw_count) = self 470 .supported_hw 471 .as_ref() 472 .map_or((ptr::null(), 0), |hw| (hw.as_ptr(), hw.len() as u32)); 473 474 let (required_dev, required_dev_index) = self 475 .required_dev 476 .as_ref() 477 .map_or((ptr::null_mut(), 0), |(dev, idx)| (dev.as_raw(), *idx)); 478 479 let mut config = bindings::dev_pm_opp_config { 480 clk_names, 481 config_clks: if T::HAS_CONFIG_CLKS { 482 Some(Self::config_clks) 483 } else { 484 None 485 }, 486 prop_name, 487 regulator_names, 488 config_regulators: if T::HAS_CONFIG_REGULATORS { 489 Some(Self::config_regulators) 490 } else { 491 None 492 }, 493 supported_hw, 494 supported_hw_count, 495 496 required_dev, 497 required_dev_index, 498 }; 499 500 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 501 // requirements. The OPP core guarantees not to access fields of [`Config`] after this call 502 // and so we don't need to save a copy of them for future use. 503 let ret = unsafe { bindings::dev_pm_opp_set_config(dev.as_raw(), &mut config) }; 504 505 to_result(ret).map(|()| ConfigToken(ret)) 506 } 507 508 /// Config's clk callback. 509 /// 510 /// SAFETY: Called from C. Inputs must be valid pointers. 511 extern "C" fn config_clks( 512 dev: *mut bindings::device, 513 opp_table: *mut bindings::opp_table, 514 opp: *mut bindings::dev_pm_opp, 515 _data: *mut c_void, 516 scaling_down: bool, 517 ) -> c_int { 518 from_result(|| { 519 // SAFETY: 'dev' is guaranteed by the C code to be valid. 520 let dev = unsafe { Device::get_device(dev) }; 521 T::config_clks( 522 &dev, 523 // SAFETY: 'opp_table' is guaranteed by the C code to be valid. 524 &unsafe { Table::from_raw_table(opp_table, &dev) }, 525 // SAFETY: 'opp' is guaranteed by the C code to be valid. 526 unsafe { OPP::from_raw_opp(opp)? }, 527 scaling_down, 528 ) 529 .map(|()| 0) 530 }) 531 } 532 533 /// Config's regulator callback. 534 /// 535 /// SAFETY: Called from C. Inputs must be valid pointers. 536 extern "C" fn config_regulators( 537 dev: *mut bindings::device, 538 old_opp: *mut bindings::dev_pm_opp, 539 new_opp: *mut bindings::dev_pm_opp, 540 regulators: *mut *mut bindings::regulator, 541 count: c_uint, 542 ) -> c_int { 543 from_result(|| { 544 // SAFETY: 'dev' is guaranteed by the C code to be valid. 545 let dev = unsafe { Device::get_device(dev) }; 546 T::config_regulators( 547 &dev, 548 // SAFETY: 'old_opp' is guaranteed by the C code to be valid. 549 unsafe { OPP::from_raw_opp(old_opp)? }, 550 // SAFETY: 'new_opp' is guaranteed by the C code to be valid. 551 unsafe { OPP::from_raw_opp(new_opp)? }, 552 regulators, 553 count, 554 ) 555 .map(|()| 0) 556 }) 557 } 558 } 559 560 /// A reference-counted OPP table. 561 /// 562 /// Rust abstraction for the C `struct opp_table`. 563 /// 564 /// # Invariants 565 /// 566 /// The pointer stored in `Self` is non-null and valid for the lifetime of the [`Table`]. 567 /// 568 /// Instances of this type are reference-counted. 569 /// 570 /// # Examples 571 /// 572 /// The following example demonstrates how to get OPP [`Table`] for a [`Cpumask`] and set its 573 /// frequency. 574 /// 575 /// ``` 576 /// # #![cfg(CONFIG_OF)] 577 /// use kernel::clk::Hertz; 578 /// use kernel::cpumask::Cpumask; 579 /// use kernel::device::Device; 580 /// use kernel::error::Result; 581 /// use kernel::opp::Table; 582 /// use kernel::sync::aref::ARef; 583 /// 584 /// fn get_table(dev: &ARef<Device>, mask: &mut Cpumask, freq: Hertz) -> Result<Table> { 585 /// let mut opp_table = Table::from_of_cpumask(dev, mask)?; 586 /// 587 /// if opp_table.opp_count()? == 0 { 588 /// return Err(EINVAL); 589 /// } 590 /// 591 /// pr_info!("Max transition latency is: {} ns\n", opp_table.max_transition_latency_ns()); 592 /// pr_info!("Suspend frequency is: {:?}\n", opp_table.suspend_freq()); 593 /// 594 /// opp_table.set_rate(freq)?; 595 /// Ok(opp_table) 596 /// } 597 /// ``` 598 pub struct Table { 599 ptr: *mut bindings::opp_table, 600 dev: ARef<Device>, 601 #[allow(dead_code)] 602 em: bool, 603 #[allow(dead_code)] 604 of: bool, 605 cpus: Option<CpumaskVar>, 606 } 607 608 /// SAFETY: It is okay to send ownership of [`Table`] across thread boundaries. 609 unsafe impl Send for Table {} 610 611 /// SAFETY: It is okay to access [`Table`] through shared references from other threads because 612 /// we're either accessing properties that don't change or that are properly synchronised by C code. 613 unsafe impl Sync for Table {} 614 615 impl Table { 616 /// Creates a new reference-counted [`Table`] from a raw pointer. 617 /// 618 /// # Safety 619 /// 620 /// Callers must ensure that `ptr` is valid and non-null. 621 unsafe fn from_raw_table(ptr: *mut bindings::opp_table, dev: &ARef<Device>) -> Self { 622 // SAFETY: By the safety requirements, ptr is valid and its refcount will be incremented. 623 // 624 // INVARIANT: The reference-count is decremented when [`Table`] goes out of scope. 625 unsafe { bindings::dev_pm_opp_get_opp_table_ref(ptr) }; 626 627 Self { 628 ptr, 629 dev: dev.clone(), 630 em: false, 631 of: false, 632 cpus: None, 633 } 634 } 635 636 /// Creates a new reference-counted [`Table`] instance for a [`Device`]. 637 pub fn from_dev(dev: &Device) -> Result<Self> { 638 // SAFETY: The requirements are satisfied by the existence of the [`Device`] and its safety 639 // requirements. 640 // 641 // INVARIANT: The reference-count is incremented by the C code and is decremented when 642 // [`Table`] goes out of scope. 643 let ptr = from_err_ptr(unsafe { bindings::dev_pm_opp_get_opp_table(dev.as_raw()) })?; 644 645 Ok(Self { 646 ptr, 647 dev: dev.into(), 648 em: false, 649 of: false, 650 cpus: None, 651 }) 652 } 653 654 /// Creates a new reference-counted [`Table`] instance for a [`Device`] based on device tree 655 /// entries. 656 #[cfg(CONFIG_OF)] 657 pub fn from_of(dev: &ARef<Device>, index: i32) -> Result<Self> { 658 // SAFETY: The requirements are satisfied by the existence of the [`Device`] and its safety 659 // requirements. 660 // 661 // INVARIANT: The reference-count is incremented by the C code and is decremented when 662 // [`Table`] goes out of scope. 663 to_result(unsafe { bindings::dev_pm_opp_of_add_table_indexed(dev.as_raw(), index) })?; 664 665 // Get the newly created [`Table`]. 666 let mut table = Self::from_dev(dev)?; 667 table.of = true; 668 669 Ok(table) 670 } 671 672 /// Remove device tree based [`Table`]. 673 #[cfg(CONFIG_OF)] 674 #[inline] 675 fn remove_of(&self) { 676 // SAFETY: The requirements are satisfied by the existence of the [`Device`] and its safety 677 // requirements. We took the reference from [`from_of`] earlier, it is safe to drop the 678 // same now. 679 unsafe { bindings::dev_pm_opp_of_remove_table(self.dev.as_raw()) }; 680 } 681 682 /// Creates a new reference-counted [`Table`] instance for a [`Cpumask`] based on device tree 683 /// entries. 684 #[cfg(CONFIG_OF)] 685 pub fn from_of_cpumask(dev: &Device, cpumask: &mut Cpumask) -> Result<Self> { 686 // SAFETY: The cpumask is valid and the returned pointer will be owned by the [`Table`] 687 // instance. 688 // 689 // INVARIANT: The reference-count is incremented by the C code and is decremented when 690 // [`Table`] goes out of scope. 691 to_result(unsafe { bindings::dev_pm_opp_of_cpumask_add_table(cpumask.as_raw()) })?; 692 693 // Fetch the newly created table. 694 let mut table = Self::from_dev(dev)?; 695 table.cpus = Some(CpumaskVar::try_clone(cpumask)?); 696 697 Ok(table) 698 } 699 700 /// Remove device tree based [`Table`] for a [`Cpumask`]. 701 #[cfg(CONFIG_OF)] 702 #[inline] 703 fn remove_of_cpumask(&self, cpumask: &Cpumask) { 704 // SAFETY: The cpumask is valid and we took the reference from [`from_of_cpumask`] earlier, 705 // it is safe to drop the same now. 706 unsafe { bindings::dev_pm_opp_of_cpumask_remove_table(cpumask.as_raw()) }; 707 } 708 709 /// Returns the number of [`OPP`]s in the [`Table`]. 710 pub fn opp_count(&self) -> Result<u32> { 711 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 712 // requirements. 713 let ret = unsafe { bindings::dev_pm_opp_get_opp_count(self.dev.as_raw()) }; 714 715 to_result(ret).map(|()| ret as u32) 716 } 717 718 /// Returns max clock latency (in nanoseconds) of the [`OPP`]s in the [`Table`]. 719 #[inline] 720 pub fn max_clock_latency_ns(&self) -> usize { 721 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 722 // requirements. 723 unsafe { bindings::dev_pm_opp_get_max_clock_latency(self.dev.as_raw()) } 724 } 725 726 /// Returns max volt latency (in nanoseconds) of the [`OPP`]s in the [`Table`]. 727 #[inline] 728 pub fn max_volt_latency_ns(&self) -> usize { 729 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 730 // requirements. 731 unsafe { bindings::dev_pm_opp_get_max_volt_latency(self.dev.as_raw()) } 732 } 733 734 /// Returns max transition latency (in nanoseconds) of the [`OPP`]s in the [`Table`]. 735 #[inline] 736 pub fn max_transition_latency_ns(&self) -> usize { 737 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 738 // requirements. 739 unsafe { bindings::dev_pm_opp_get_max_transition_latency(self.dev.as_raw()) } 740 } 741 742 /// Returns the suspend [`OPP`]'s frequency. 743 #[inline] 744 pub fn suspend_freq(&self) -> Hertz { 745 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 746 // requirements. 747 Hertz(unsafe { bindings::dev_pm_opp_get_suspend_opp_freq(self.dev.as_raw()) }) 748 } 749 750 /// Synchronizes regulators used by the [`Table`]. 751 #[inline] 752 pub fn sync_regulators(&self) -> Result { 753 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 754 // requirements. 755 to_result(unsafe { bindings::dev_pm_opp_sync_regulators(self.dev.as_raw()) }) 756 } 757 758 /// Gets sharing CPUs. 759 #[inline] 760 pub fn sharing_cpus(dev: &Device, cpumask: &mut Cpumask) -> Result { 761 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 762 // requirements. 763 to_result(unsafe { bindings::dev_pm_opp_get_sharing_cpus(dev.as_raw(), cpumask.as_raw()) }) 764 } 765 766 /// Sets sharing CPUs. 767 pub fn set_sharing_cpus(&mut self, cpumask: &mut Cpumask) -> Result { 768 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 769 // requirements. 770 to_result(unsafe { 771 bindings::dev_pm_opp_set_sharing_cpus(self.dev.as_raw(), cpumask.as_raw()) 772 })?; 773 774 if let Some(mask) = self.cpus.as_mut() { 775 // Update the cpumask as this will be used while removing the table. 776 cpumask.copy(mask); 777 } 778 779 Ok(()) 780 } 781 782 /// Gets sharing CPUs from device tree. 783 #[cfg(CONFIG_OF)] 784 #[inline] 785 pub fn of_sharing_cpus(dev: &Device, cpumask: &mut Cpumask) -> Result { 786 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 787 // requirements. 788 to_result(unsafe { 789 bindings::dev_pm_opp_of_get_sharing_cpus(dev.as_raw(), cpumask.as_raw()) 790 }) 791 } 792 793 /// Updates the voltage value for an [`OPP`]. 794 #[inline] 795 pub fn adjust_voltage( 796 &self, 797 freq: Hertz, 798 volt: MicroVolt, 799 volt_min: MicroVolt, 800 volt_max: MicroVolt, 801 ) -> Result { 802 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 803 // requirements. 804 to_result(unsafe { 805 bindings::dev_pm_opp_adjust_voltage( 806 self.dev.as_raw(), 807 freq.into(), 808 volt.into(), 809 volt_min.into(), 810 volt_max.into(), 811 ) 812 }) 813 } 814 815 /// Creates [`FreqTable`] from [`Table`]. 816 #[cfg(CONFIG_CPU_FREQ)] 817 #[inline] 818 pub fn cpufreq_table(&mut self) -> Result<FreqTable> { 819 FreqTable::new(self) 820 } 821 822 /// Configures device with [`OPP`] matching the frequency value. 823 #[inline] 824 pub fn set_rate(&self, freq: Hertz) -> Result { 825 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 826 // requirements. 827 to_result(unsafe { bindings::dev_pm_opp_set_rate(self.dev.as_raw(), freq.into()) }) 828 } 829 830 /// Configures device with [`OPP`]. 831 #[inline] 832 pub fn set_opp(&self, opp: &OPP) -> Result { 833 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 834 // requirements. 835 to_result(unsafe { bindings::dev_pm_opp_set_opp(self.dev.as_raw(), opp.as_raw()) }) 836 } 837 838 /// Finds [`OPP`] based on frequency. 839 pub fn opp_from_freq( 840 &self, 841 freq: Hertz, 842 available: Option<bool>, 843 index: Option<u32>, 844 stype: SearchType, 845 ) -> Result<ARef<OPP>> { 846 let raw_dev = self.dev.as_raw(); 847 let index = index.unwrap_or(0); 848 let mut rate = freq.into(); 849 850 let ptr = from_err_ptr(match stype { 851 SearchType::Exact => { 852 if let Some(available) = available { 853 // SAFETY: The requirements are satisfied by the existence of [`Device`] and 854 // its safety requirements. The returned pointer will be owned by the new 855 // [`OPP`] instance. 856 unsafe { 857 bindings::dev_pm_opp_find_freq_exact_indexed( 858 raw_dev, rate, index, available, 859 ) 860 } 861 } else { 862 return Err(EINVAL); 863 } 864 } 865 866 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 867 // requirements. The returned pointer will be owned by the new [`OPP`] instance. 868 SearchType::Ceil => unsafe { 869 bindings::dev_pm_opp_find_freq_ceil_indexed(raw_dev, &mut rate, index) 870 }, 871 872 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 873 // requirements. The returned pointer will be owned by the new [`OPP`] instance. 874 SearchType::Floor => unsafe { 875 bindings::dev_pm_opp_find_freq_floor_indexed(raw_dev, &mut rate, index) 876 }, 877 })?; 878 879 // SAFETY: The `ptr` is guaranteed by the C code to be valid. 880 unsafe { OPP::from_raw_opp_owned(ptr) } 881 } 882 883 /// Finds [`OPP`] based on level. 884 pub fn opp_from_level(&self, mut level: u32, stype: SearchType) -> Result<ARef<OPP>> { 885 let raw_dev = self.dev.as_raw(); 886 887 let ptr = from_err_ptr(match stype { 888 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 889 // requirements. The returned pointer will be owned by the new [`OPP`] instance. 890 SearchType::Exact => unsafe { bindings::dev_pm_opp_find_level_exact(raw_dev, level) }, 891 892 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 893 // requirements. The returned pointer will be owned by the new [`OPP`] instance. 894 SearchType::Ceil => unsafe { 895 bindings::dev_pm_opp_find_level_ceil(raw_dev, &mut level) 896 }, 897 898 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 899 // requirements. The returned pointer will be owned by the new [`OPP`] instance. 900 SearchType::Floor => unsafe { 901 bindings::dev_pm_opp_find_level_floor(raw_dev, &mut level) 902 }, 903 })?; 904 905 // SAFETY: The `ptr` is guaranteed by the C code to be valid. 906 unsafe { OPP::from_raw_opp_owned(ptr) } 907 } 908 909 /// Finds [`OPP`] based on bandwidth. 910 pub fn opp_from_bw(&self, mut bw: u32, index: i32, stype: SearchType) -> Result<ARef<OPP>> { 911 let raw_dev = self.dev.as_raw(); 912 913 let ptr = from_err_ptr(match stype { 914 // The OPP core doesn't support this yet. 915 SearchType::Exact => return Err(EINVAL), 916 917 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 918 // requirements. The returned pointer will be owned by the new [`OPP`] instance. 919 SearchType::Ceil => unsafe { 920 bindings::dev_pm_opp_find_bw_ceil(raw_dev, &mut bw, index) 921 }, 922 923 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 924 // requirements. The returned pointer will be owned by the new [`OPP`] instance. 925 SearchType::Floor => unsafe { 926 bindings::dev_pm_opp_find_bw_floor(raw_dev, &mut bw, index) 927 }, 928 })?; 929 930 // SAFETY: The `ptr` is guaranteed by the C code to be valid. 931 unsafe { OPP::from_raw_opp_owned(ptr) } 932 } 933 934 /// Enables the [`OPP`]. 935 #[inline] 936 pub fn enable_opp(&self, freq: Hertz) -> Result { 937 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 938 // requirements. 939 to_result(unsafe { bindings::dev_pm_opp_enable(self.dev.as_raw(), freq.into()) }) 940 } 941 942 /// Disables the [`OPP`]. 943 #[inline] 944 pub fn disable_opp(&self, freq: Hertz) -> Result { 945 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 946 // requirements. 947 to_result(unsafe { bindings::dev_pm_opp_disable(self.dev.as_raw(), freq.into()) }) 948 } 949 950 /// Registers with the Energy model. 951 #[cfg(CONFIG_OF)] 952 pub fn of_register_em(&mut self, cpumask: &mut Cpumask) -> Result { 953 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 954 // requirements. 955 to_result(unsafe { 956 bindings::dev_pm_opp_of_register_em(self.dev.as_raw(), cpumask.as_raw()) 957 })?; 958 959 self.em = true; 960 Ok(()) 961 } 962 963 /// Unregisters with the Energy model. 964 #[cfg(all(CONFIG_OF, CONFIG_ENERGY_MODEL))] 965 #[inline] 966 fn of_unregister_em(&self) { 967 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety 968 // requirements. We registered with the EM framework earlier, it is safe to unregister now. 969 unsafe { bindings::em_dev_unregister_perf_domain(self.dev.as_raw()) }; 970 } 971 } 972 973 impl Drop for Table { 974 fn drop(&mut self) { 975 // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe 976 // to relinquish it now. 977 unsafe { bindings::dev_pm_opp_put_opp_table(self.ptr) }; 978 979 #[cfg(CONFIG_OF)] 980 { 981 #[cfg(CONFIG_ENERGY_MODEL)] 982 if self.em { 983 self.of_unregister_em(); 984 } 985 986 if self.of { 987 self.remove_of(); 988 } else if let Some(cpumask) = self.cpus.take() { 989 self.remove_of_cpumask(&cpumask); 990 } 991 } 992 } 993 } 994 995 /// A reference-counted Operating performance point (OPP). 996 /// 997 /// Rust abstraction for the C `struct dev_pm_opp`. 998 /// 999 /// # Invariants 1000 /// 1001 /// The pointer stored in `Self` is non-null and valid for the lifetime of the [`OPP`]. 1002 /// 1003 /// Instances of this type are reference-counted. The reference count is incremented by the 1004 /// `dev_pm_opp_get` function and decremented by `dev_pm_opp_put`. The Rust type `ARef<OPP>` 1005 /// represents a pointer that owns a reference count on the [`OPP`]. 1006 /// 1007 /// A reference to the [`OPP`], &[`OPP`], isn't refcounted by the Rust code. 1008 /// 1009 /// # Examples 1010 /// 1011 /// The following example demonstrates how to get [`OPP`] corresponding to a frequency value and 1012 /// configure the device with it. 1013 /// 1014 /// ``` 1015 /// use kernel::clk::Hertz; 1016 /// use kernel::error::Result; 1017 /// use kernel::opp::{SearchType, Table}; 1018 /// 1019 /// fn configure_opp(table: &Table, freq: Hertz) -> Result { 1020 /// let opp = table.opp_from_freq(freq, Some(true), None, SearchType::Exact)?; 1021 /// 1022 /// if opp.freq(None) != freq { 1023 /// return Err(EINVAL); 1024 /// } 1025 /// 1026 /// table.set_opp(&opp) 1027 /// } 1028 /// ``` 1029 #[repr(transparent)] 1030 pub struct OPP(Opaque<bindings::dev_pm_opp>); 1031 1032 /// SAFETY: It is okay to send the ownership of [`OPP`] across thread boundaries. 1033 unsafe impl Send for OPP {} 1034 1035 /// SAFETY: It is okay to access [`OPP`] through shared references from other threads because we're 1036 /// either accessing properties that don't change or that are properly synchronised by C code. 1037 unsafe impl Sync for OPP {} 1038 1039 /// SAFETY: The type invariants guarantee that [`OPP`] is always refcounted. 1040 unsafe impl AlwaysRefCounted for OPP { 1041 fn inc_ref(&self) { 1042 // SAFETY: The existence of a shared reference means that the refcount is nonzero. 1043 unsafe { bindings::dev_pm_opp_get(self.0.get()) }; 1044 } 1045 1046 unsafe fn dec_ref(obj: ptr::NonNull<Self>) { 1047 // SAFETY: The safety requirements guarantee that the refcount is nonzero. 1048 unsafe { bindings::dev_pm_opp_put(obj.cast().as_ptr()) } 1049 } 1050 } 1051 1052 impl OPP { 1053 /// Creates an owned reference to a [`OPP`] from a valid pointer. 1054 /// 1055 /// The refcount is incremented by the C code and will be decremented by `dec_ref` when the 1056 /// [`ARef`] object is dropped. 1057 /// 1058 /// # Safety 1059 /// 1060 /// The caller must ensure that `ptr` is valid and the refcount of the [`OPP`] is incremented. 1061 /// The caller must also ensure that it doesn't explicitly drop the refcount of the [`OPP`], as 1062 /// the returned [`ARef`] object takes over the refcount increment on the underlying object and 1063 /// the same will be dropped along with it. 1064 pub unsafe fn from_raw_opp_owned(ptr: *mut bindings::dev_pm_opp) -> Result<ARef<Self>> { 1065 let ptr = ptr::NonNull::new(ptr).ok_or(ENODEV)?; 1066 1067 // SAFETY: The safety requirements guarantee the validity of the pointer. 1068 // 1069 // INVARIANT: The reference-count is decremented when [`OPP`] goes out of scope. 1070 Ok(unsafe { ARef::from_raw(ptr.cast()) }) 1071 } 1072 1073 /// Creates a reference to a [`OPP`] from a valid pointer. 1074 /// 1075 /// The refcount is not updated by the Rust API unless the returned reference is converted to 1076 /// an [`ARef`] object. 1077 /// 1078 /// # Safety 1079 /// 1080 /// The caller must ensure that `ptr` is valid and remains valid for the duration of `'a`. 1081 #[inline] 1082 pub unsafe fn from_raw_opp<'a>(ptr: *mut bindings::dev_pm_opp) -> Result<&'a Self> { 1083 // SAFETY: The caller guarantees that the pointer is not dangling and stays valid for the 1084 // duration of 'a. The cast is okay because [`OPP`] is `repr(transparent)`. 1085 Ok(unsafe { &*ptr.cast() }) 1086 } 1087 1088 #[inline] 1089 fn as_raw(&self) -> *mut bindings::dev_pm_opp { 1090 self.0.get() 1091 } 1092 1093 /// Returns the frequency of an [`OPP`]. 1094 pub fn freq(&self, index: Option<u32>) -> Hertz { 1095 let index = index.unwrap_or(0); 1096 1097 // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to 1098 // use it. 1099 Hertz(unsafe { bindings::dev_pm_opp_get_freq_indexed(self.as_raw(), index) }) 1100 } 1101 1102 /// Returns the voltage of an [`OPP`]. 1103 #[inline] 1104 pub fn voltage(&self) -> MicroVolt { 1105 // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to 1106 // use it. 1107 MicroVolt(unsafe { bindings::dev_pm_opp_get_voltage(self.as_raw()) }) 1108 } 1109 1110 /// Returns the level of an [`OPP`]. 1111 #[inline] 1112 pub fn level(&self) -> u32 { 1113 // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to 1114 // use it. 1115 unsafe { bindings::dev_pm_opp_get_level(self.as_raw()) } 1116 } 1117 1118 /// Returns the power of an [`OPP`]. 1119 #[inline] 1120 pub fn power(&self) -> MicroWatt { 1121 // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to 1122 // use it. 1123 MicroWatt(unsafe { bindings::dev_pm_opp_get_power(self.as_raw()) }) 1124 } 1125 1126 /// Returns the required pstate of an [`OPP`]. 1127 #[inline] 1128 pub fn required_pstate(&self, index: u32) -> u32 { 1129 // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to 1130 // use it. 1131 unsafe { bindings::dev_pm_opp_get_required_pstate(self.as_raw(), index) } 1132 } 1133 1134 /// Returns true if the [`OPP`] is turbo. 1135 #[inline] 1136 pub fn is_turbo(&self) -> bool { 1137 // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to 1138 // use it. 1139 unsafe { bindings::dev_pm_opp_is_turbo(self.as_raw()) } 1140 } 1141 } 1142