xref: /linux/rust/kernel/opp.rs (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Operating performance points.
4 //!
5 //! This module provides rust abstractions for interacting with the OPP subsystem.
6 //!
7 //! C header: [`include/linux/pm_opp.h`](srctree/include/linux/pm_opp.h)
8 //!
9 //! Reference: <https://docs.kernel.org/power/opp.html>
10 
11 use crate::{
12     clk::Hertz,
13     cpumask::{Cpumask, CpumaskVar},
14     device::Device,
15     error::{code::*, from_err_ptr, from_result, to_result, Result, VTABLE_DEFAULT_ERROR},
16     ffi::c_ulong,
17     prelude::*,
18     str::CString,
19     sync::aref::{ARef, AlwaysRefCounted},
20     types::Opaque,
21 };
22 
23 #[cfg(CONFIG_CPU_FREQ)]
24 /// Frequency table implementation.
25 mod freq {
26     use super::*;
27     use crate::cpufreq;
28     use core::ops::Deref;
29 
30     /// OPP frequency table.
31     ///
32     /// A [`cpufreq::Table`] created from [`Table`].
33     pub struct FreqTable {
34         dev: ARef<Device>,
35         ptr: *mut bindings::cpufreq_frequency_table,
36     }
37 
38     impl FreqTable {
39         /// Creates a new instance of [`FreqTable`] from [`Table`].
40         pub(crate) fn new(table: &Table) -> Result<Self> {
41             let mut ptr: *mut bindings::cpufreq_frequency_table = ptr::null_mut();
42 
43             // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
44             // requirements.
45             to_result(unsafe {
46                 bindings::dev_pm_opp_init_cpufreq_table(table.dev.as_raw(), &mut ptr)
47             })?;
48 
49             Ok(Self {
50                 dev: table.dev.clone(),
51                 ptr,
52             })
53         }
54 
55         /// Returns a reference to the underlying [`cpufreq::Table`].
56         #[inline]
57         fn table(&self) -> &cpufreq::Table {
58             // SAFETY: The `ptr` is guaranteed by the C code to be valid.
59             unsafe { cpufreq::Table::from_raw(self.ptr) }
60         }
61     }
62 
63     impl Deref for FreqTable {
64         type Target = cpufreq::Table;
65 
66         #[inline]
67         fn deref(&self) -> &Self::Target {
68             self.table()
69         }
70     }
71 
72     impl Drop for FreqTable {
73         fn drop(&mut self) {
74             // SAFETY: The pointer was created via `dev_pm_opp_init_cpufreq_table`, and is only
75             // freed here.
76             unsafe {
77                 bindings::dev_pm_opp_free_cpufreq_table(self.dev.as_raw(), &mut self.as_raw())
78             };
79         }
80     }
81 }
82 
83 #[cfg(CONFIG_CPU_FREQ)]
84 pub use freq::FreqTable;
85 
86 use core::{marker::PhantomData, ptr};
87 
88 use macros::vtable;
89 
90 /// Creates a null-terminated slice of pointers to [`Cstring`]s.
91 fn to_c_str_array(names: &[CString]) -> Result<KVec<*const u8>> {
92     // Allocated a null-terminated vector of pointers.
93     let mut list = KVec::with_capacity(names.len() + 1, GFP_KERNEL)?;
94 
95     for name in names.iter() {
96         list.push(name.as_ptr().cast(), GFP_KERNEL)?;
97     }
98 
99     list.push(ptr::null(), GFP_KERNEL)?;
100     Ok(list)
101 }
102 
103 /// The voltage unit.
104 ///
105 /// Represents voltage in microvolts, wrapping a [`c_ulong`] value.
106 ///
107 /// # Examples
108 ///
109 /// ```
110 /// use kernel::opp::MicroVolt;
111 ///
112 /// let raw = 90500;
113 /// let volt = MicroVolt(raw);
114 ///
115 /// assert_eq!(usize::from(volt), raw);
116 /// assert_eq!(volt, MicroVolt(raw));
117 /// ```
118 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
119 pub struct MicroVolt(pub c_ulong);
120 
121 impl From<MicroVolt> for c_ulong {
122     #[inline]
123     fn from(volt: MicroVolt) -> Self {
124         volt.0
125     }
126 }
127 
128 /// The power unit.
129 ///
130 /// Represents power in microwatts, wrapping a [`c_ulong`] value.
131 ///
132 /// # Examples
133 ///
134 /// ```
135 /// use kernel::opp::MicroWatt;
136 ///
137 /// let raw = 1000000;
138 /// let power = MicroWatt(raw);
139 ///
140 /// assert_eq!(usize::from(power), raw);
141 /// assert_eq!(power, MicroWatt(raw));
142 /// ```
143 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
144 pub struct MicroWatt(pub c_ulong);
145 
146 impl From<MicroWatt> for c_ulong {
147     #[inline]
148     fn from(power: MicroWatt) -> Self {
149         power.0
150     }
151 }
152 
153 /// Handle for a dynamically created [`OPP`].
154 ///
155 /// The associated [`OPP`] is automatically removed when the [`Token`] is dropped.
156 ///
157 /// # Examples
158 ///
159 /// The following example demonstrates how to create an [`OPP`] dynamically.
160 ///
161 /// ```
162 /// use kernel::clk::Hertz;
163 /// use kernel::device::Device;
164 /// use kernel::error::Result;
165 /// use kernel::opp::{Data, MicroVolt, Token};
166 /// use kernel::sync::aref::ARef;
167 ///
168 /// fn create_opp(dev: &ARef<Device>, freq: Hertz, volt: MicroVolt, level: u32) -> Result<Token> {
169 ///     let data = Data::new(freq, volt, level, false);
170 ///
171 ///     // OPP is removed once token goes out of scope.
172 ///     data.add_opp(dev)
173 /// }
174 /// ```
175 pub struct Token {
176     dev: ARef<Device>,
177     freq: Hertz,
178 }
179 
180 impl Token {
181     /// Dynamically adds an [`OPP`] and returns a [`Token`] that removes it on drop.
182     fn new(dev: &ARef<Device>, mut data: Data) -> Result<Self> {
183         // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
184         // requirements.
185         to_result(unsafe { bindings::dev_pm_opp_add_dynamic(dev.as_raw(), &mut data.0) })?;
186         Ok(Self {
187             dev: dev.clone(),
188             freq: data.freq(),
189         })
190     }
191 }
192 
193 impl Drop for Token {
194     fn drop(&mut self) {
195         // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
196         // requirements.
197         unsafe { bindings::dev_pm_opp_remove(self.dev.as_raw(), self.freq.into()) };
198     }
199 }
200 
201 /// OPP data.
202 ///
203 /// Rust abstraction for the C `struct dev_pm_opp_data`, used to define operating performance
204 /// points (OPPs) dynamically.
205 ///
206 /// # Examples
207 ///
208 /// The following example demonstrates how to create an [`OPP`] with [`Data`].
209 ///
210 /// ```
211 /// use kernel::clk::Hertz;
212 /// use kernel::device::Device;
213 /// use kernel::error::Result;
214 /// use kernel::opp::{Data, MicroVolt, Token};
215 /// use kernel::sync::aref::ARef;
216 ///
217 /// fn create_opp(dev: &ARef<Device>, freq: Hertz, volt: MicroVolt, level: u32) -> Result<Token> {
218 ///     let data = Data::new(freq, volt, level, false);
219 ///
220 ///     // OPP is removed once token goes out of scope.
221 ///     data.add_opp(dev)
222 /// }
223 /// ```
224 #[repr(transparent)]
225 pub struct Data(bindings::dev_pm_opp_data);
226 
227 impl Data {
228     /// Creates a new instance of [`Data`].
229     ///
230     /// This can be used to define a dynamic OPP to be added to a device.
231     pub fn new(freq: Hertz, volt: MicroVolt, level: u32, turbo: bool) -> Self {
232         Self(bindings::dev_pm_opp_data {
233             turbo,
234             freq: freq.into(),
235             u_volt: volt.into(),
236             level,
237         })
238     }
239 
240     /// Adds an [`OPP`] dynamically.
241     ///
242     /// Returns a [`Token`] that ensures the OPP is automatically removed
243     /// when it goes out of scope.
244     #[inline]
245     pub fn add_opp(self, dev: &ARef<Device>) -> Result<Token> {
246         Token::new(dev, self)
247     }
248 
249     /// Returns the frequency associated with this OPP data.
250     #[inline]
251     fn freq(&self) -> Hertz {
252         Hertz(self.0.freq)
253     }
254 }
255 
256 /// [`OPP`] search options.
257 ///
258 /// # Examples
259 ///
260 /// Defines how to search for an [`OPP`] in a [`Table`] relative to a frequency.
261 ///
262 /// ```
263 /// use kernel::clk::Hertz;
264 /// use kernel::error::Result;
265 /// use kernel::opp::{OPP, SearchType, Table};
266 /// use kernel::sync::aref::ARef;
267 ///
268 /// fn find_opp(table: &Table, freq: Hertz) -> Result<ARef<OPP>> {
269 ///     let opp = table.opp_from_freq(freq, Some(true), None, SearchType::Exact)?;
270 ///
271 ///     pr_info!("OPP frequency is: {:?}\n", opp.freq(None));
272 ///     pr_info!("OPP voltage is: {:?}\n", opp.voltage());
273 ///     pr_info!("OPP level is: {}\n", opp.level());
274 ///     pr_info!("OPP power is: {:?}\n", opp.power());
275 ///
276 ///     Ok(opp)
277 /// }
278 /// ```
279 #[derive(Copy, Clone, Debug, Eq, PartialEq)]
280 pub enum SearchType {
281     /// Match the exact frequency.
282     Exact,
283     /// Find the highest frequency less than or equal to the given value.
284     Floor,
285     /// Find the lowest frequency greater than or equal to the given value.
286     Ceil,
287 }
288 
289 /// OPP configuration callbacks.
290 ///
291 /// Implement this trait to customize OPP clock and regulator setup for your device.
292 #[vtable]
293 pub trait ConfigOps {
294     /// This is typically used to scale clocks when transitioning between OPPs.
295     #[inline]
296     fn config_clks(_dev: &Device, _table: &Table, _opp: &OPP, _scaling_down: bool) -> Result {
297         build_error!(VTABLE_DEFAULT_ERROR)
298     }
299 
300     /// This provides access to the old and new OPPs, allowing for safe regulator adjustments.
301     #[inline]
302     fn config_regulators(
303         _dev: &Device,
304         _opp_old: &OPP,
305         _opp_new: &OPP,
306         _data: *mut *mut bindings::regulator,
307         _count: u32,
308     ) -> Result {
309         build_error!(VTABLE_DEFAULT_ERROR)
310     }
311 }
312 
313 /// OPP configuration token.
314 ///
315 /// Returned by the OPP core when configuration is applied to a [`Device`]. The associated
316 /// configuration is automatically cleared when the token is dropped.
317 pub struct ConfigToken(i32);
318 
319 impl Drop for ConfigToken {
320     fn drop(&mut self) {
321         // SAFETY: This is the same token value returned by the C code via `dev_pm_opp_set_config`.
322         unsafe { bindings::dev_pm_opp_clear_config(self.0) };
323     }
324 }
325 
326 /// OPP configurations.
327 ///
328 /// Rust abstraction for the C `struct dev_pm_opp_config`.
329 ///
330 /// # Examples
331 ///
332 /// The following example demonstrates how to set OPP property-name configuration for a [`Device`].
333 ///
334 /// ```
335 /// use kernel::device::Device;
336 /// use kernel::error::Result;
337 /// use kernel::opp::{Config, ConfigOps, ConfigToken};
338 /// use kernel::str::CString;
339 /// use kernel::sync::aref::ARef;
340 /// use kernel::macros::vtable;
341 ///
342 /// #[derive(Default)]
343 /// struct Driver;
344 ///
345 /// #[vtable]
346 /// impl ConfigOps for Driver {}
347 ///
348 /// fn configure(dev: &ARef<Device>) -> Result<ConfigToken> {
349 ///     let name = CString::try_from_fmt(fmt!("slow"))?;
350 ///
351 ///     // The OPP configuration is cleared once the [`ConfigToken`] goes out of scope.
352 ///     Config::<Driver>::new()
353 ///         .set_prop_name(name)?
354 ///         .set(dev)
355 /// }
356 /// ```
357 #[derive(Default)]
358 pub struct Config<T: ConfigOps>
359 where
360     T: Default,
361 {
362     clk_names: Option<KVec<CString>>,
363     prop_name: Option<CString>,
364     regulator_names: Option<KVec<CString>>,
365     supported_hw: Option<KVec<u32>>,
366 
367     // Tuple containing (required device, index)
368     required_dev: Option<(ARef<Device>, u32)>,
369     _data: PhantomData<T>,
370 }
371 
372 impl<T: ConfigOps + Default> Config<T> {
373     /// Creates a new instance of [`Config`].
374     #[inline]
375     pub fn new() -> Self {
376         Self::default()
377     }
378 
379     /// Initializes clock names.
380     pub fn set_clk_names(mut self, names: KVec<CString>) -> Result<Self> {
381         if self.clk_names.is_some() {
382             return Err(EBUSY);
383         }
384 
385         if names.is_empty() {
386             return Err(EINVAL);
387         }
388 
389         self.clk_names = Some(names);
390         Ok(self)
391     }
392 
393     /// Initializes property name.
394     pub fn set_prop_name(mut self, name: CString) -> Result<Self> {
395         if self.prop_name.is_some() {
396             return Err(EBUSY);
397         }
398 
399         self.prop_name = Some(name);
400         Ok(self)
401     }
402 
403     /// Initializes regulator names.
404     pub fn set_regulator_names(mut self, names: KVec<CString>) -> Result<Self> {
405         if self.regulator_names.is_some() {
406             return Err(EBUSY);
407         }
408 
409         if names.is_empty() {
410             return Err(EINVAL);
411         }
412 
413         self.regulator_names = Some(names);
414 
415         Ok(self)
416     }
417 
418     /// Initializes required devices.
419     pub fn set_required_dev(mut self, dev: ARef<Device>, index: u32) -> Result<Self> {
420         if self.required_dev.is_some() {
421             return Err(EBUSY);
422         }
423 
424         self.required_dev = Some((dev, index));
425         Ok(self)
426     }
427 
428     /// Initializes supported hardware.
429     pub fn set_supported_hw(mut self, hw: KVec<u32>) -> Result<Self> {
430         if self.supported_hw.is_some() {
431             return Err(EBUSY);
432         }
433 
434         if hw.is_empty() {
435             return Err(EINVAL);
436         }
437 
438         self.supported_hw = Some(hw);
439         Ok(self)
440     }
441 
442     /// Sets the configuration with the OPP core.
443     ///
444     /// The returned [`ConfigToken`] will remove the configuration when dropped.
445     pub fn set(self, dev: &Device) -> Result<ConfigToken> {
446         let (_clk_list, clk_names) = match &self.clk_names {
447             Some(x) => {
448                 let list = to_c_str_array(x)?;
449                 let ptr = list.as_ptr();
450                 (Some(list), ptr)
451             }
452             None => (None, ptr::null()),
453         };
454 
455         let (_regulator_list, regulator_names) = match &self.regulator_names {
456             Some(x) => {
457                 let list = to_c_str_array(x)?;
458                 let ptr = list.as_ptr();
459                 (Some(list), ptr)
460             }
461             None => (None, ptr::null()),
462         };
463 
464         let prop_name = self
465             .prop_name
466             .as_ref()
467             .map_or(ptr::null(), |p| p.as_char_ptr());
468 
469         let (supported_hw, supported_hw_count) = self
470             .supported_hw
471             .as_ref()
472             .map_or((ptr::null(), 0), |hw| (hw.as_ptr(), hw.len() as u32));
473 
474         let (required_dev, required_dev_index) = self
475             .required_dev
476             .as_ref()
477             .map_or((ptr::null_mut(), 0), |(dev, idx)| (dev.as_raw(), *idx));
478 
479         let mut config = bindings::dev_pm_opp_config {
480             clk_names,
481             config_clks: if T::HAS_CONFIG_CLKS {
482                 Some(Self::config_clks)
483             } else {
484                 None
485             },
486             prop_name,
487             regulator_names,
488             config_regulators: if T::HAS_CONFIG_REGULATORS {
489                 Some(Self::config_regulators)
490             } else {
491                 None
492             },
493             supported_hw,
494             supported_hw_count,
495 
496             required_dev,
497             required_dev_index,
498         };
499 
500         // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
501         // requirements. The OPP core guarantees not to access fields of [`Config`] after this call
502         // and so we don't need to save a copy of them for future use.
503         let ret = unsafe { bindings::dev_pm_opp_set_config(dev.as_raw(), &mut config) };
504 
505         to_result(ret).map(|()| ConfigToken(ret))
506     }
507 
508     /// Config's clk callback.
509     ///
510     /// SAFETY: Called from C. Inputs must be valid pointers.
511     extern "C" fn config_clks(
512         dev: *mut bindings::device,
513         opp_table: *mut bindings::opp_table,
514         opp: *mut bindings::dev_pm_opp,
515         _data: *mut c_void,
516         scaling_down: bool,
517     ) -> c_int {
518         from_result(|| {
519             // SAFETY: 'dev' is guaranteed by the C code to be valid.
520             let dev = unsafe { Device::get_device(dev) };
521             T::config_clks(
522                 &dev,
523                 // SAFETY: 'opp_table' is guaranteed by the C code to be valid.
524                 &unsafe { Table::from_raw_table(opp_table, &dev) },
525                 // SAFETY: 'opp' is guaranteed by the C code to be valid.
526                 unsafe { OPP::from_raw_opp(opp)? },
527                 scaling_down,
528             )
529             .map(|()| 0)
530         })
531     }
532 
533     /// Config's regulator callback.
534     ///
535     /// SAFETY: Called from C. Inputs must be valid pointers.
536     extern "C" fn config_regulators(
537         dev: *mut bindings::device,
538         old_opp: *mut bindings::dev_pm_opp,
539         new_opp: *mut bindings::dev_pm_opp,
540         regulators: *mut *mut bindings::regulator,
541         count: c_uint,
542     ) -> c_int {
543         from_result(|| {
544             // SAFETY: 'dev' is guaranteed by the C code to be valid.
545             let dev = unsafe { Device::get_device(dev) };
546             T::config_regulators(
547                 &dev,
548                 // SAFETY: 'old_opp' is guaranteed by the C code to be valid.
549                 unsafe { OPP::from_raw_opp(old_opp)? },
550                 // SAFETY: 'new_opp' is guaranteed by the C code to be valid.
551                 unsafe { OPP::from_raw_opp(new_opp)? },
552                 regulators,
553                 count,
554             )
555             .map(|()| 0)
556         })
557     }
558 }
559 
560 /// A reference-counted OPP table.
561 ///
562 /// Rust abstraction for the C `struct opp_table`.
563 ///
564 /// # Invariants
565 ///
566 /// The pointer stored in `Self` is non-null and valid for the lifetime of the [`Table`].
567 ///
568 /// Instances of this type are reference-counted.
569 ///
570 /// # Examples
571 ///
572 /// The following example demonstrates how to get OPP [`Table`] for a [`Cpumask`] and set its
573 /// frequency.
574 ///
575 /// ```
576 /// # #![cfg(CONFIG_OF)]
577 /// use kernel::clk::Hertz;
578 /// use kernel::cpumask::Cpumask;
579 /// use kernel::device::Device;
580 /// use kernel::error::Result;
581 /// use kernel::opp::Table;
582 /// use kernel::sync::aref::ARef;
583 ///
584 /// fn get_table(dev: &ARef<Device>, mask: &mut Cpumask, freq: Hertz) -> Result<Table> {
585 ///     let mut opp_table = Table::from_of_cpumask(dev, mask)?;
586 ///
587 ///     if opp_table.opp_count()? == 0 {
588 ///         return Err(EINVAL);
589 ///     }
590 ///
591 ///     pr_info!("Max transition latency is: {} ns\n", opp_table.max_transition_latency_ns());
592 ///     pr_info!("Suspend frequency is: {:?}\n", opp_table.suspend_freq());
593 ///
594 ///     opp_table.set_rate(freq)?;
595 ///     Ok(opp_table)
596 /// }
597 /// ```
598 pub struct Table {
599     ptr: *mut bindings::opp_table,
600     dev: ARef<Device>,
601     #[allow(dead_code)]
602     em: bool,
603     #[allow(dead_code)]
604     of: bool,
605     cpus: Option<CpumaskVar>,
606 }
607 
608 /// SAFETY: It is okay to send ownership of [`Table`] across thread boundaries.
609 unsafe impl Send for Table {}
610 
611 /// SAFETY: It is okay to access [`Table`] through shared references from other threads because
612 /// we're either accessing properties that don't change or that are properly synchronised by C code.
613 unsafe impl Sync for Table {}
614 
615 impl Table {
616     /// Creates a new reference-counted [`Table`] from a raw pointer.
617     ///
618     /// # Safety
619     ///
620     /// Callers must ensure that `ptr` is valid and non-null.
621     unsafe fn from_raw_table(ptr: *mut bindings::opp_table, dev: &ARef<Device>) -> Self {
622         // SAFETY: By the safety requirements, ptr is valid and its refcount will be incremented.
623         //
624         // INVARIANT: The reference-count is decremented when [`Table`] goes out of scope.
625         unsafe { bindings::dev_pm_opp_get_opp_table_ref(ptr) };
626 
627         Self {
628             ptr,
629             dev: dev.clone(),
630             em: false,
631             of: false,
632             cpus: None,
633         }
634     }
635 
636     /// Creates a new reference-counted [`Table`] instance for a [`Device`].
637     pub fn from_dev(dev: &Device) -> Result<Self> {
638         // SAFETY: The requirements are satisfied by the existence of the [`Device`] and its safety
639         // requirements.
640         //
641         // INVARIANT: The reference-count is incremented by the C code and is decremented when
642         // [`Table`] goes out of scope.
643         let ptr = from_err_ptr(unsafe { bindings::dev_pm_opp_get_opp_table(dev.as_raw()) })?;
644 
645         Ok(Self {
646             ptr,
647             dev: dev.into(),
648             em: false,
649             of: false,
650             cpus: None,
651         })
652     }
653 
654     /// Creates a new reference-counted [`Table`] instance for a [`Device`] based on device tree
655     /// entries.
656     #[cfg(CONFIG_OF)]
657     pub fn from_of(dev: &ARef<Device>, index: i32) -> Result<Self> {
658         // SAFETY: The requirements are satisfied by the existence of the [`Device`] and its safety
659         // requirements.
660         //
661         // INVARIANT: The reference-count is incremented by the C code and is decremented when
662         // [`Table`] goes out of scope.
663         to_result(unsafe { bindings::dev_pm_opp_of_add_table_indexed(dev.as_raw(), index) })?;
664 
665         // Get the newly created [`Table`].
666         let mut table = Self::from_dev(dev)?;
667         table.of = true;
668 
669         Ok(table)
670     }
671 
672     /// Remove device tree based [`Table`].
673     #[cfg(CONFIG_OF)]
674     #[inline]
675     fn remove_of(&self) {
676         // SAFETY: The requirements are satisfied by the existence of the [`Device`] and its safety
677         // requirements. We took the reference from [`from_of`] earlier, it is safe to drop the
678         // same now.
679         unsafe { bindings::dev_pm_opp_of_remove_table(self.dev.as_raw()) };
680     }
681 
682     /// Creates a new reference-counted [`Table`] instance for a [`Cpumask`] based on device tree
683     /// entries.
684     #[cfg(CONFIG_OF)]
685     pub fn from_of_cpumask(dev: &Device, cpumask: &mut Cpumask) -> Result<Self> {
686         // SAFETY: The cpumask is valid and the returned pointer will be owned by the [`Table`]
687         // instance.
688         //
689         // INVARIANT: The reference-count is incremented by the C code and is decremented when
690         // [`Table`] goes out of scope.
691         to_result(unsafe { bindings::dev_pm_opp_of_cpumask_add_table(cpumask.as_raw()) })?;
692 
693         // Fetch the newly created table.
694         let mut table = Self::from_dev(dev)?;
695         table.cpus = Some(CpumaskVar::try_clone(cpumask)?);
696 
697         Ok(table)
698     }
699 
700     /// Remove device tree based [`Table`] for a [`Cpumask`].
701     #[cfg(CONFIG_OF)]
702     #[inline]
703     fn remove_of_cpumask(&self, cpumask: &Cpumask) {
704         // SAFETY: The cpumask is valid and we took the reference from [`from_of_cpumask`] earlier,
705         // it is safe to drop the same now.
706         unsafe { bindings::dev_pm_opp_of_cpumask_remove_table(cpumask.as_raw()) };
707     }
708 
709     /// Returns the number of [`OPP`]s in the [`Table`].
710     pub fn opp_count(&self) -> Result<u32> {
711         // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
712         // requirements.
713         let ret = unsafe { bindings::dev_pm_opp_get_opp_count(self.dev.as_raw()) };
714 
715         to_result(ret).map(|()| ret as u32)
716     }
717 
718     /// Returns max clock latency (in nanoseconds) of the [`OPP`]s in the [`Table`].
719     #[inline]
720     pub fn max_clock_latency_ns(&self) -> usize {
721         // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
722         // requirements.
723         unsafe { bindings::dev_pm_opp_get_max_clock_latency(self.dev.as_raw()) }
724     }
725 
726     /// Returns max volt latency (in nanoseconds) of the [`OPP`]s in the [`Table`].
727     #[inline]
728     pub fn max_volt_latency_ns(&self) -> usize {
729         // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
730         // requirements.
731         unsafe { bindings::dev_pm_opp_get_max_volt_latency(self.dev.as_raw()) }
732     }
733 
734     /// Returns max transition latency (in nanoseconds) of the [`OPP`]s in the [`Table`].
735     #[inline]
736     pub fn max_transition_latency_ns(&self) -> usize {
737         // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
738         // requirements.
739         unsafe { bindings::dev_pm_opp_get_max_transition_latency(self.dev.as_raw()) }
740     }
741 
742     /// Returns the suspend [`OPP`]'s frequency.
743     #[inline]
744     pub fn suspend_freq(&self) -> Hertz {
745         // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
746         // requirements.
747         Hertz(unsafe { bindings::dev_pm_opp_get_suspend_opp_freq(self.dev.as_raw()) })
748     }
749 
750     /// Synchronizes regulators used by the [`Table`].
751     #[inline]
752     pub fn sync_regulators(&self) -> Result {
753         // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
754         // requirements.
755         to_result(unsafe { bindings::dev_pm_opp_sync_regulators(self.dev.as_raw()) })
756     }
757 
758     /// Gets sharing CPUs.
759     #[inline]
760     pub fn sharing_cpus(dev: &Device, cpumask: &mut Cpumask) -> Result {
761         // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
762         // requirements.
763         to_result(unsafe { bindings::dev_pm_opp_get_sharing_cpus(dev.as_raw(), cpumask.as_raw()) })
764     }
765 
766     /// Sets sharing CPUs.
767     pub fn set_sharing_cpus(&mut self, cpumask: &mut Cpumask) -> Result {
768         // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
769         // requirements.
770         to_result(unsafe {
771             bindings::dev_pm_opp_set_sharing_cpus(self.dev.as_raw(), cpumask.as_raw())
772         })?;
773 
774         if let Some(mask) = self.cpus.as_mut() {
775             // Update the cpumask as this will be used while removing the table.
776             cpumask.copy(mask);
777         }
778 
779         Ok(())
780     }
781 
782     /// Gets sharing CPUs from device tree.
783     #[cfg(CONFIG_OF)]
784     #[inline]
785     pub fn of_sharing_cpus(dev: &Device, cpumask: &mut Cpumask) -> Result {
786         // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
787         // requirements.
788         to_result(unsafe {
789             bindings::dev_pm_opp_of_get_sharing_cpus(dev.as_raw(), cpumask.as_raw())
790         })
791     }
792 
793     /// Updates the voltage value for an [`OPP`].
794     #[inline]
795     pub fn adjust_voltage(
796         &self,
797         freq: Hertz,
798         volt: MicroVolt,
799         volt_min: MicroVolt,
800         volt_max: MicroVolt,
801     ) -> Result {
802         // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
803         // requirements.
804         to_result(unsafe {
805             bindings::dev_pm_opp_adjust_voltage(
806                 self.dev.as_raw(),
807                 freq.into(),
808                 volt.into(),
809                 volt_min.into(),
810                 volt_max.into(),
811             )
812         })
813     }
814 
815     /// Creates [`FreqTable`] from [`Table`].
816     #[cfg(CONFIG_CPU_FREQ)]
817     #[inline]
818     pub fn cpufreq_table(&mut self) -> Result<FreqTable> {
819         FreqTable::new(self)
820     }
821 
822     /// Configures device with [`OPP`] matching the frequency value.
823     #[inline]
824     pub fn set_rate(&self, freq: Hertz) -> Result {
825         // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
826         // requirements.
827         to_result(unsafe { bindings::dev_pm_opp_set_rate(self.dev.as_raw(), freq.into()) })
828     }
829 
830     /// Configures device with [`OPP`].
831     #[inline]
832     pub fn set_opp(&self, opp: &OPP) -> Result {
833         // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
834         // requirements.
835         to_result(unsafe { bindings::dev_pm_opp_set_opp(self.dev.as_raw(), opp.as_raw()) })
836     }
837 
838     /// Finds [`OPP`] based on frequency.
839     pub fn opp_from_freq(
840         &self,
841         freq: Hertz,
842         available: Option<bool>,
843         index: Option<u32>,
844         stype: SearchType,
845     ) -> Result<ARef<OPP>> {
846         let raw_dev = self.dev.as_raw();
847         let index = index.unwrap_or(0);
848         let mut rate = freq.into();
849 
850         let ptr = from_err_ptr(match stype {
851             SearchType::Exact => {
852                 if let Some(available) = available {
853                     // SAFETY: The requirements are satisfied by the existence of [`Device`] and
854                     // its safety requirements. The returned pointer will be owned by the new
855                     // [`OPP`] instance.
856                     unsafe {
857                         bindings::dev_pm_opp_find_freq_exact_indexed(
858                             raw_dev, rate, index, available,
859                         )
860                     }
861                 } else {
862                     return Err(EINVAL);
863                 }
864             }
865 
866             // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
867             // requirements. The returned pointer will be owned by the new [`OPP`] instance.
868             SearchType::Ceil => unsafe {
869                 bindings::dev_pm_opp_find_freq_ceil_indexed(raw_dev, &mut rate, index)
870             },
871 
872             // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
873             // requirements. The returned pointer will be owned by the new [`OPP`] instance.
874             SearchType::Floor => unsafe {
875                 bindings::dev_pm_opp_find_freq_floor_indexed(raw_dev, &mut rate, index)
876             },
877         })?;
878 
879         // SAFETY: The `ptr` is guaranteed by the C code to be valid.
880         unsafe { OPP::from_raw_opp_owned(ptr) }
881     }
882 
883     /// Finds [`OPP`] based on level.
884     pub fn opp_from_level(&self, mut level: u32, stype: SearchType) -> Result<ARef<OPP>> {
885         let raw_dev = self.dev.as_raw();
886 
887         let ptr = from_err_ptr(match stype {
888             // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
889             // requirements. The returned pointer will be owned by the new [`OPP`] instance.
890             SearchType::Exact => unsafe { bindings::dev_pm_opp_find_level_exact(raw_dev, level) },
891 
892             // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
893             // requirements. The returned pointer will be owned by the new [`OPP`] instance.
894             SearchType::Ceil => unsafe {
895                 bindings::dev_pm_opp_find_level_ceil(raw_dev, &mut level)
896             },
897 
898             // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
899             // requirements. The returned pointer will be owned by the new [`OPP`] instance.
900             SearchType::Floor => unsafe {
901                 bindings::dev_pm_opp_find_level_floor(raw_dev, &mut level)
902             },
903         })?;
904 
905         // SAFETY: The `ptr` is guaranteed by the C code to be valid.
906         unsafe { OPP::from_raw_opp_owned(ptr) }
907     }
908 
909     /// Finds [`OPP`] based on bandwidth.
910     pub fn opp_from_bw(&self, mut bw: u32, index: i32, stype: SearchType) -> Result<ARef<OPP>> {
911         let raw_dev = self.dev.as_raw();
912 
913         let ptr = from_err_ptr(match stype {
914             // The OPP core doesn't support this yet.
915             SearchType::Exact => return Err(EINVAL),
916 
917             // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
918             // requirements. The returned pointer will be owned by the new [`OPP`] instance.
919             SearchType::Ceil => unsafe {
920                 bindings::dev_pm_opp_find_bw_ceil(raw_dev, &mut bw, index)
921             },
922 
923             // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
924             // requirements. The returned pointer will be owned by the new [`OPP`] instance.
925             SearchType::Floor => unsafe {
926                 bindings::dev_pm_opp_find_bw_floor(raw_dev, &mut bw, index)
927             },
928         })?;
929 
930         // SAFETY: The `ptr` is guaranteed by the C code to be valid.
931         unsafe { OPP::from_raw_opp_owned(ptr) }
932     }
933 
934     /// Enables the [`OPP`].
935     #[inline]
936     pub fn enable_opp(&self, freq: Hertz) -> Result {
937         // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
938         // requirements.
939         to_result(unsafe { bindings::dev_pm_opp_enable(self.dev.as_raw(), freq.into()) })
940     }
941 
942     /// Disables the [`OPP`].
943     #[inline]
944     pub fn disable_opp(&self, freq: Hertz) -> Result {
945         // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
946         // requirements.
947         to_result(unsafe { bindings::dev_pm_opp_disable(self.dev.as_raw(), freq.into()) })
948     }
949 
950     /// Registers with the Energy model.
951     #[cfg(CONFIG_OF)]
952     pub fn of_register_em(&mut self, cpumask: &mut Cpumask) -> Result {
953         // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
954         // requirements.
955         to_result(unsafe {
956             bindings::dev_pm_opp_of_register_em(self.dev.as_raw(), cpumask.as_raw())
957         })?;
958 
959         self.em = true;
960         Ok(())
961     }
962 
963     /// Unregisters with the Energy model.
964     #[cfg(all(CONFIG_OF, CONFIG_ENERGY_MODEL))]
965     #[inline]
966     fn of_unregister_em(&self) {
967         // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
968         // requirements. We registered with the EM framework earlier, it is safe to unregister now.
969         unsafe { bindings::em_dev_unregister_perf_domain(self.dev.as_raw()) };
970     }
971 }
972 
973 impl Drop for Table {
974     fn drop(&mut self) {
975         // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe
976         // to relinquish it now.
977         unsafe { bindings::dev_pm_opp_put_opp_table(self.ptr) };
978 
979         #[cfg(CONFIG_OF)]
980         {
981             #[cfg(CONFIG_ENERGY_MODEL)]
982             if self.em {
983                 self.of_unregister_em();
984             }
985 
986             if self.of {
987                 self.remove_of();
988             } else if let Some(cpumask) = self.cpus.take() {
989                 self.remove_of_cpumask(&cpumask);
990             }
991         }
992     }
993 }
994 
995 /// A reference-counted Operating performance point (OPP).
996 ///
997 /// Rust abstraction for the C `struct dev_pm_opp`.
998 ///
999 /// # Invariants
1000 ///
1001 /// The pointer stored in `Self` is non-null and valid for the lifetime of the [`OPP`].
1002 ///
1003 /// Instances of this type are reference-counted. The reference count is incremented by the
1004 /// `dev_pm_opp_get` function and decremented by `dev_pm_opp_put`. The Rust type `ARef<OPP>`
1005 /// represents a pointer that owns a reference count on the [`OPP`].
1006 ///
1007 /// A reference to the [`OPP`], &[`OPP`], isn't refcounted by the Rust code.
1008 ///
1009 /// # Examples
1010 ///
1011 /// The following example demonstrates how to get [`OPP`] corresponding to a frequency value and
1012 /// configure the device with it.
1013 ///
1014 /// ```
1015 /// use kernel::clk::Hertz;
1016 /// use kernel::error::Result;
1017 /// use kernel::opp::{SearchType, Table};
1018 ///
1019 /// fn configure_opp(table: &Table, freq: Hertz) -> Result {
1020 ///     let opp = table.opp_from_freq(freq, Some(true), None, SearchType::Exact)?;
1021 ///
1022 ///     if opp.freq(None) != freq {
1023 ///         return Err(EINVAL);
1024 ///     }
1025 ///
1026 ///     table.set_opp(&opp)
1027 /// }
1028 /// ```
1029 #[repr(transparent)]
1030 pub struct OPP(Opaque<bindings::dev_pm_opp>);
1031 
1032 /// SAFETY: It is okay to send the ownership of [`OPP`] across thread boundaries.
1033 unsafe impl Send for OPP {}
1034 
1035 /// SAFETY: It is okay to access [`OPP`] through shared references from other threads because we're
1036 /// either accessing properties that don't change or that are properly synchronised by C code.
1037 unsafe impl Sync for OPP {}
1038 
1039 /// SAFETY: The type invariants guarantee that [`OPP`] is always refcounted.
1040 unsafe impl AlwaysRefCounted for OPP {
1041     fn inc_ref(&self) {
1042         // SAFETY: The existence of a shared reference means that the refcount is nonzero.
1043         unsafe { bindings::dev_pm_opp_get(self.0.get()) };
1044     }
1045 
1046     unsafe fn dec_ref(obj: ptr::NonNull<Self>) {
1047         // SAFETY: The safety requirements guarantee that the refcount is nonzero.
1048         unsafe { bindings::dev_pm_opp_put(obj.cast().as_ptr()) }
1049     }
1050 }
1051 
1052 impl OPP {
1053     /// Creates an owned reference to a [`OPP`] from a valid pointer.
1054     ///
1055     /// The refcount is incremented by the C code and will be decremented by `dec_ref` when the
1056     /// [`ARef`] object is dropped.
1057     ///
1058     /// # Safety
1059     ///
1060     /// The caller must ensure that `ptr` is valid and the refcount of the [`OPP`] is incremented.
1061     /// The caller must also ensure that it doesn't explicitly drop the refcount of the [`OPP`], as
1062     /// the returned [`ARef`] object takes over the refcount increment on the underlying object and
1063     /// the same will be dropped along with it.
1064     pub unsafe fn from_raw_opp_owned(ptr: *mut bindings::dev_pm_opp) -> Result<ARef<Self>> {
1065         let ptr = ptr::NonNull::new(ptr).ok_or(ENODEV)?;
1066 
1067         // SAFETY: The safety requirements guarantee the validity of the pointer.
1068         //
1069         // INVARIANT: The reference-count is decremented when [`OPP`] goes out of scope.
1070         Ok(unsafe { ARef::from_raw(ptr.cast()) })
1071     }
1072 
1073     /// Creates a reference to a [`OPP`] from a valid pointer.
1074     ///
1075     /// The refcount is not updated by the Rust API unless the returned reference is converted to
1076     /// an [`ARef`] object.
1077     ///
1078     /// # Safety
1079     ///
1080     /// The caller must ensure that `ptr` is valid and remains valid for the duration of `'a`.
1081     #[inline]
1082     pub unsafe fn from_raw_opp<'a>(ptr: *mut bindings::dev_pm_opp) -> Result<&'a Self> {
1083         // SAFETY: The caller guarantees that the pointer is not dangling and stays valid for the
1084         // duration of 'a. The cast is okay because [`OPP`] is `repr(transparent)`.
1085         Ok(unsafe { &*ptr.cast() })
1086     }
1087 
1088     #[inline]
1089     fn as_raw(&self) -> *mut bindings::dev_pm_opp {
1090         self.0.get()
1091     }
1092 
1093     /// Returns the frequency of an [`OPP`].
1094     pub fn freq(&self, index: Option<u32>) -> Hertz {
1095         let index = index.unwrap_or(0);
1096 
1097         // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to
1098         // use it.
1099         Hertz(unsafe { bindings::dev_pm_opp_get_freq_indexed(self.as_raw(), index) })
1100     }
1101 
1102     /// Returns the voltage of an [`OPP`].
1103     #[inline]
1104     pub fn voltage(&self) -> MicroVolt {
1105         // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to
1106         // use it.
1107         MicroVolt(unsafe { bindings::dev_pm_opp_get_voltage(self.as_raw()) })
1108     }
1109 
1110     /// Returns the level of an [`OPP`].
1111     #[inline]
1112     pub fn level(&self) -> u32 {
1113         // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to
1114         // use it.
1115         unsafe { bindings::dev_pm_opp_get_level(self.as_raw()) }
1116     }
1117 
1118     /// Returns the power of an [`OPP`].
1119     #[inline]
1120     pub fn power(&self) -> MicroWatt {
1121         // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to
1122         // use it.
1123         MicroWatt(unsafe { bindings::dev_pm_opp_get_power(self.as_raw()) })
1124     }
1125 
1126     /// Returns the required pstate of an [`OPP`].
1127     #[inline]
1128     pub fn required_pstate(&self, index: u32) -> u32 {
1129         // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to
1130         // use it.
1131         unsafe { bindings::dev_pm_opp_get_required_pstate(self.as_raw(), index) }
1132     }
1133 
1134     /// Returns true if the [`OPP`] is turbo.
1135     #[inline]
1136     pub fn is_turbo(&self) -> bool {
1137         // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to
1138         // use it.
1139         unsafe { bindings::dev_pm_opp_is_turbo(self.as_raw()) }
1140     }
1141 }
1142