xref: /linux/rust/kernel/num/bounded.rs (revision 3a1ec424dd9c9491138a5ebadb24ce9f33e6a822)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Implementation of [`Bounded`], a wrapper around integer types limiting the number of bits
4 //! usable for value representation.
5 
6 use core::{
7     cmp,
8     fmt,
9     ops::{
10         self,
11         Deref, //
12     }, //,
13 };
14 
15 use kernel::{
16     num::Integer,
17     prelude::*, //
18 };
19 
20 /// Evaluates to `true` if `$value` can be represented using at most `$n` bits in a `$type`.
21 ///
22 /// `expr` must be of type `type`, or the result will be incorrect.
23 ///
24 /// Can be used in const context.
25 macro_rules! fits_within {
26     ($value:expr, $type:ty, $n:expr) => {{
27         let shift: u32 = <$type>::BITS - $n;
28 
29         // `value` fits within `$n` bits if shifting it left by the number of unused bits, then
30         // right by the same number, doesn't change it.
31         //
32         // This method has the benefit of working for both unsigned and signed values.
33         ($value << shift) >> shift == $value
34     }};
35 }
36 
37 /// Returns `true` if `value` can be represented with at most `N` bits in a `T`.
38 #[inline(always)]
39 fn fits_within<T: Integer>(value: T, num_bits: u32) -> bool {
40     fits_within!(value, T, num_bits)
41 }
42 
43 /// An integer value that requires only the `N` least significant bits of the wrapped type to be
44 /// encoded.
45 ///
46 /// This limits the number of usable bits in the wrapped integer type, and thus the stored value to
47 /// a narrower range, which provides guarantees that can be useful when working within e.g.
48 /// bitfields.
49 ///
50 /// # Invariants
51 ///
52 /// - `N` is greater than `0`.
53 /// - `N` is less than or equal to `T::BITS`.
54 /// - Stored values can be represented with at most `N` bits.
55 ///
56 /// # Examples
57 ///
58 /// The preferred way to create values is through constants and the [`Bounded::new`] family of
59 /// constructors, as they trigger a build error if the type invariants cannot be upheld.
60 ///
61 /// ```
62 /// use kernel::num::Bounded;
63 ///
64 /// // An unsigned 8-bit integer, of which only the 4 LSBs are used.
65 /// // The value `15` is statically validated to fit that constraint at build time.
66 /// let v = Bounded::<u8, 4>::new::<15>();
67 /// assert_eq!(v.get(), 15);
68 ///
69 /// // Same using signed values.
70 /// let v = Bounded::<i8, 4>::new::<-8>();
71 /// assert_eq!(v.get(), -8);
72 ///
73 /// // This doesn't build: a `u8` is smaller than the requested 9 bits.
74 /// // let _ = Bounded::<u8, 9>::new::<10>();
75 ///
76 /// // This also doesn't build: the requested value doesn't fit within 4 signed bits.
77 /// // let _ = Bounded::<i8, 4>::new::<8>();
78 /// ```
79 ///
80 /// Values can also be validated at runtime with [`Bounded::try_new`].
81 ///
82 /// ```
83 /// use kernel::num::Bounded;
84 ///
85 /// // This succeeds because `15` can be represented with 4 unsigned bits.
86 /// assert!(Bounded::<u8, 4>::try_new(15).is_some());
87 ///
88 /// // This fails because `16` cannot be represented with 4 unsigned bits.
89 /// assert!(Bounded::<u8, 4>::try_new(16).is_none());
90 /// ```
91 ///
92 /// Non-constant expressions can be validated at build-time thanks to compiler optimizations. This
93 /// should be used with caution, on simple expressions only.
94 ///
95 /// ```
96 /// use kernel::num::Bounded;
97 /// # fn some_number() -> u32 { 0xffffffff }
98 ///
99 /// // Here the compiler can infer from the mask that the type invariants are not violated, even
100 /// // though the value returned by `some_number` is not statically known.
101 /// let v = Bounded::<u32, 4>::from_expr(some_number() & 0xf);
102 /// ```
103 ///
104 /// Comparison and arithmetic operations are supported on [`Bounded`]s with a compatible backing
105 /// type, regardless of their number of valid bits.
106 ///
107 /// ```
108 /// use kernel::num::Bounded;
109 ///
110 /// let v1 = Bounded::<u32, 8>::new::<4>();
111 /// let v2 = Bounded::<u32, 4>::new::<15>();
112 ///
113 /// assert!(v1 != v2);
114 /// assert!(v1 < v2);
115 /// assert_eq!(v1 + v2, 19);
116 /// assert_eq!(v2 % v1, 3);
117 /// ```
118 ///
119 /// These operations are also supported between a [`Bounded`] and its backing type.
120 ///
121 /// ```
122 /// use kernel::num::Bounded;
123 ///
124 /// let v = Bounded::<u8, 4>::new::<15>();
125 ///
126 /// assert!(v == 15);
127 /// assert!(v > 12);
128 /// assert_eq!(v + 5, 20);
129 /// assert_eq!(v / 3, 5);
130 /// ```
131 ///
132 /// A change of backing types is possible using [`Bounded::cast`], and the number of valid bits can
133 /// be extended or reduced with [`Bounded::extend`] and [`Bounded::try_shrink`].
134 ///
135 /// ```
136 /// use kernel::num::Bounded;
137 ///
138 /// let v = Bounded::<u32, 12>::new::<127>();
139 ///
140 /// // Changes backing type from `u32` to `u16`.
141 /// let _: Bounded<u16, 12> = v.cast();
142 ///
143 /// // This does not build, as `u8` is smaller than 12 bits.
144 /// // let _: Bounded<u8, 12> = v.cast();
145 ///
146 /// // We can safely extend the number of bits...
147 /// let _ = v.extend::<15>();
148 ///
149 /// // ... to the limits of the backing type. This doesn't build as a `u32` cannot contain 33 bits.
150 /// // let _ = v.extend::<33>();
151 ///
152 /// // Reducing the number of bits is validated at runtime. This works because `127` can be
153 /// // represented with 8 bits.
154 /// assert!(v.try_shrink::<8>().is_some());
155 ///
156 /// // ... but not with 6, so this fails.
157 /// assert!(v.try_shrink::<6>().is_none());
158 /// ```
159 ///
160 /// Infallible conversions from a primitive integer to a large-enough [`Bounded`] are supported.
161 ///
162 /// ```
163 /// use kernel::num::Bounded;
164 ///
165 /// // This unsigned `Bounded` has 8 bits, so it can represent any `u8`.
166 /// let v = Bounded::<u32, 8>::from(128u8);
167 /// assert_eq!(v.get(), 128);
168 ///
169 /// // This signed `Bounded` has 8 bits, so it can represent any `i8`.
170 /// let v = Bounded::<i32, 8>::from(-128i8);
171 /// assert_eq!(v.get(), -128);
172 ///
173 /// // This doesn't build, as this 6-bit `Bounded` does not have enough capacity to represent a
174 /// // `u8` (regardless of the passed value).
175 /// // let _ = Bounded::<u32, 6>::from(10u8);
176 ///
177 /// // Booleans can be converted into single-bit `Bounded`s.
178 ///
179 /// let v = Bounded::<u64, 1>::from(false);
180 /// assert_eq!(v.get(), 0);
181 ///
182 /// let v = Bounded::<u64, 1>::from(true);
183 /// assert_eq!(v.get(), 1);
184 /// ```
185 ///
186 /// Infallible conversions from a [`Bounded`] to a primitive integer are also supported, and
187 /// dependent on the number of bits used for value representation, not on the backing type.
188 ///
189 /// ```
190 /// use kernel::num::Bounded;
191 ///
192 /// // Even though its backing type is `u32`, this `Bounded` only uses 6 bits and thus can safely
193 /// // be converted to a `u8`.
194 /// let v = Bounded::<u32, 6>::new::<63>();
195 /// assert_eq!(u8::from(v), 63);
196 ///
197 /// // Same using signed values.
198 /// let v = Bounded::<i32, 8>::new::<-128>();
199 /// assert_eq!(i8::from(v), -128);
200 ///
201 /// // This however does not build, as 10 bits won't fit into a `u8` (regardless of the actually
202 /// // contained value).
203 /// let _v = Bounded::<u32, 10>::new::<10>();
204 /// // assert_eq!(u8::from(_v), 10);
205 ///
206 /// // Single-bit `Bounded`s can be converted into a boolean.
207 /// let v = Bounded::<u8, 1>::new::<1>();
208 /// assert_eq!(bool::from(v), true);
209 ///
210 /// let v = Bounded::<u8, 1>::new::<0>();
211 /// assert_eq!(bool::from(v), false);
212 /// ```
213 ///
214 /// Fallible conversions from any primitive integer to any [`Bounded`] are also supported using the
215 /// [`TryIntoBounded`] trait.
216 ///
217 /// ```
218 /// use kernel::num::{Bounded, TryIntoBounded};
219 ///
220 /// // Succeeds because `128` fits into 8 bits.
221 /// let v: Option<Bounded<u16, 8>> = 128u32.try_into_bounded();
222 /// assert_eq!(v.as_deref().copied(), Some(128));
223 ///
224 /// // Fails because `128` doesn't fit into 6 bits.
225 /// let v: Option<Bounded<u16, 6>> = 128u32.try_into_bounded();
226 /// assert_eq!(v, None);
227 /// ```
228 #[repr(transparent)]
229 #[derive(Clone, Copy, Debug, Default, Hash)]
230 pub struct Bounded<T: Integer, const N: u32>(T);
231 
232 /// Validating the value as a const expression cannot be done as a regular method, as the
233 /// arithmetic operations we rely on to check the bounds are not const. Thus, implement
234 /// [`Bounded::new`] using a macro.
235 macro_rules! impl_const_new {
236     ($($type:ty)*) => {
237         $(
238         impl<const N: u32> Bounded<$type, N> {
239             /// Creates a [`Bounded`] for the constant `VALUE`.
240             ///
241             /// Fails at build time if `VALUE` cannot be represented with `N` bits.
242             ///
243             /// This method should be preferred to [`Self::from_expr`] whenever possible.
244             ///
245             /// # Examples
246             ///
247             /// ```
248             /// use kernel::num::Bounded;
249             ///
250             #[doc = ::core::concat!(
251                 "let v = Bounded::<",
252                 ::core::stringify!($type),
253                 ", 4>::new::<7>();")]
254             /// assert_eq!(v.get(), 7);
255             /// ```
256             pub const fn new<const VALUE: $type>() -> Self {
257                 // Statically assert that `VALUE` fits within the set number of bits.
258                 const {
259                     assert!(fits_within!(VALUE, $type, N));
260                 }
261 
262                 // SAFETY: `fits_within` confirmed that `VALUE` can be represented within
263                 // `N` bits.
264                 unsafe { Self::__new(VALUE) }
265             }
266         }
267         )*
268     };
269 }
270 
271 impl_const_new!(
272     u8 u16 u32 u64 usize
273     i8 i16 i32 i64 isize
274 );
275 
276 impl<T, const N: u32> Bounded<T, N>
277 where
278     T: Integer,
279 {
280     /// Private constructor enforcing the type invariants.
281     ///
282     /// All instances of [`Bounded`] must be created through this method as it enforces most of the
283     /// type invariants.
284     ///
285     /// The caller remains responsible for checking, either statically or dynamically, that `value`
286     /// can be represented as a `T` using at most `N` bits.
287     ///
288     /// # Safety
289     ///
290     /// The caller must ensure that `value` can be represented within `N` bits.
291     const unsafe fn __new(value: T) -> Self {
292         // Enforce the type invariants.
293         const {
294             // `N` cannot be zero.
295             assert!(N != 0);
296             // The backing type is at least as large as `N` bits.
297             assert!(N <= T::BITS);
298         }
299 
300         Self(value)
301     }
302 
303     /// Attempts to turn `value` into a `Bounded` using `N` bits.
304     ///
305     /// Returns [`None`] if `value` doesn't fit within `N` bits.
306     ///
307     /// # Examples
308     ///
309     /// ```
310     /// use kernel::num::Bounded;
311     ///
312     /// let v = Bounded::<u8, 1>::try_new(1);
313     /// assert_eq!(v.as_deref().copied(), Some(1));
314     ///
315     /// let v = Bounded::<i8, 4>::try_new(-2);
316     /// assert_eq!(v.as_deref().copied(), Some(-2));
317     ///
318     /// // `0x1ff` doesn't fit into 8 unsigned bits.
319     /// let v = Bounded::<u32, 8>::try_new(0x1ff);
320     /// assert_eq!(v, None);
321     ///
322     /// // The range of values representable with 4 bits is `[-8..=7]`. The following tests these
323     /// // limits.
324     /// let v = Bounded::<i8, 4>::try_new(-8);
325     /// assert_eq!(v.map(Bounded::get), Some(-8));
326     /// let v = Bounded::<i8, 4>::try_new(-9);
327     /// assert_eq!(v, None);
328     /// let v = Bounded::<i8, 4>::try_new(7);
329     /// assert_eq!(v.map(Bounded::get), Some(7));
330     /// let v = Bounded::<i8, 4>::try_new(8);
331     /// assert_eq!(v, None);
332     /// ```
333     pub fn try_new(value: T) -> Option<Self> {
334         fits_within(value, N).then(|| {
335             // SAFETY: `fits_within` confirmed that `value` can be represented within `N` bits.
336             unsafe { Self::__new(value) }
337         })
338     }
339 
340     /// Checks that `expr` is valid for this type at compile-time and build a new value.
341     ///
342     /// This relies on [`build_assert!`] and guaranteed optimization to perform validation at
343     /// compile-time. If `expr` cannot be proved to be within the requested bounds at compile-time,
344     /// use the fallible [`Self::try_new`] instead.
345     ///
346     /// Limit this to simple, easily provable expressions, and prefer one of the [`Self::new`]
347     /// constructors whenever possible as they statically validate the value instead of relying on
348     /// compiler optimizations.
349     ///
350     /// # Examples
351     ///
352     /// ```
353     /// use kernel::num::Bounded;
354     /// # fn some_number() -> u32 { 0xffffffff }
355     ///
356     /// // Some undefined number.
357     /// let v: u32 = some_number();
358     ///
359     /// // Triggers a build error as `v` cannot be asserted to fit within 4 bits...
360     /// // let _ = Bounded::<u32, 4>::from_expr(v);
361     ///
362     /// // ... but this works as the compiler can assert the range from the mask.
363     /// let _ = Bounded::<u32, 4>::from_expr(v & 0xf);
364     ///
365     /// // These expressions are simple enough to be proven correct, but since they are static the
366     /// // `new` constructor should be preferred.
367     /// assert_eq!(Bounded::<u8, 1>::from_expr(1).get(), 1);
368     /// assert_eq!(Bounded::<u16, 8>::from_expr(0xff).get(), 0xff);
369     /// ```
370     #[inline(always)]
371     pub fn from_expr(expr: T) -> Self {
372         crate::build_assert!(
373             fits_within(expr, N),
374             "Requested value larger than maximal representable value."
375         );
376 
377         // SAFETY: `fits_within` confirmed that `expr` can be represented within `N` bits.
378         unsafe { Self::__new(expr) }
379     }
380 
381     /// Returns the wrapped value as the backing type.
382     ///
383     /// # Examples
384     ///
385     /// ```
386     /// use kernel::num::Bounded;
387     ///
388     /// let v = Bounded::<u32, 4>::new::<7>();
389     /// assert_eq!(v.get(), 7u32);
390     /// ```
391     pub fn get(self) -> T {
392         *self.deref()
393     }
394 
395     /// Increases the number of bits usable for `self`.
396     ///
397     /// This operation cannot fail.
398     ///
399     /// # Examples
400     ///
401     /// ```
402     /// use kernel::num::Bounded;
403     ///
404     /// let v = Bounded::<u32, 4>::new::<7>();
405     /// let larger_v = v.extend::<12>();
406     /// // The contained values are equal even though `larger_v` has a bigger capacity.
407     /// assert_eq!(larger_v, v);
408     /// ```
409     pub const fn extend<const M: u32>(self) -> Bounded<T, M> {
410         const {
411             assert!(
412                 M >= N,
413                 "Requested number of bits is less than the current representation."
414             );
415         }
416 
417         // SAFETY: The value did fit within `N` bits, so it will all the more fit within
418         // the larger `M` bits.
419         unsafe { Bounded::__new(self.0) }
420     }
421 
422     /// Attempts to shrink the number of bits usable for `self`.
423     ///
424     /// Returns [`None`] if the value of `self` cannot be represented within `M` bits.
425     ///
426     /// # Examples
427     ///
428     /// ```
429     /// use kernel::num::Bounded;
430     ///
431     /// let v = Bounded::<u32, 12>::new::<7>();
432     ///
433     /// // `7` can be represented using 3 unsigned bits...
434     /// let smaller_v = v.try_shrink::<3>();
435     /// assert_eq!(smaller_v.as_deref().copied(), Some(7));
436     ///
437     /// // ... but doesn't fit within `2` bits.
438     /// assert_eq!(v.try_shrink::<2>(), None);
439     /// ```
440     pub fn try_shrink<const M: u32>(self) -> Option<Bounded<T, M>> {
441         Bounded::<T, M>::try_new(self.get())
442     }
443 
444     /// Casts `self` into a [`Bounded`] backed by a different storage type, but using the same
445     /// number of valid bits.
446     ///
447     /// Both `T` and `U` must be of same signedness, and `U` must be at least as large as
448     /// `N` bits, or a build error will occur.
449     ///
450     /// # Examples
451     ///
452     /// ```
453     /// use kernel::num::Bounded;
454     ///
455     /// let v = Bounded::<u32, 12>::new::<127>();
456     ///
457     /// let u16_v: Bounded<u16, 12> = v.cast();
458     /// assert_eq!(u16_v.get(), 127);
459     ///
460     /// // This won't build: a `u8` is smaller than the required 12 bits.
461     /// // let _: Bounded<u8, 12> = v.cast();
462     /// ```
463     pub fn cast<U>(self) -> Bounded<U, N>
464     where
465         U: TryFrom<T> + Integer,
466         T: Integer,
467         U: Integer<Signedness = T::Signedness>,
468     {
469         // SAFETY: The converted value is represented using `N` bits, `U` can contain `N` bits, and
470         // `U` and `T` have the same sign, hence this conversion cannot fail.
471         let value = unsafe { U::try_from(self.get()).unwrap_unchecked() };
472 
473         // SAFETY: Although the backing type has changed, the value is still represented within
474         // `N` bits, and with the same signedness.
475         unsafe { Bounded::__new(value) }
476     }
477 }
478 
479 impl<T, const N: u32> Deref for Bounded<T, N>
480 where
481     T: Integer,
482 {
483     type Target = T;
484 
485     fn deref(&self) -> &Self::Target {
486         // Enforce the invariant to inform the compiler of the bounds of the value.
487         if !fits_within(self.0, N) {
488             // SAFETY: Per the `Bounded` invariants, `fits_within` can never return `false` on the
489             // value of a valid instance.
490             unsafe { core::hint::unreachable_unchecked() }
491         }
492 
493         &self.0
494     }
495 }
496 
497 /// Trait similar to [`TryInto`] but for [`Bounded`], to avoid conflicting implementations.
498 ///
499 /// # Examples
500 ///
501 /// ```
502 /// use kernel::num::{Bounded, TryIntoBounded};
503 ///
504 /// // Succeeds because `128` fits into 8 bits.
505 /// let v: Option<Bounded<u16, 8>> = 128u32.try_into_bounded();
506 /// assert_eq!(v.as_deref().copied(), Some(128));
507 ///
508 /// // Fails because `128` doesn't fit into 6 bits.
509 /// let v: Option<Bounded<u16, 6>> = 128u32.try_into_bounded();
510 /// assert_eq!(v, None);
511 /// ```
512 pub trait TryIntoBounded<T: Integer, const N: u32> {
513     /// Attempts to convert `self` into a [`Bounded`] using `N` bits.
514     ///
515     /// Returns [`None`] if `self` does not fit into the target type.
516     fn try_into_bounded(self) -> Option<Bounded<T, N>>;
517 }
518 
519 /// Any integer value can be attempted to be converted into a [`Bounded`] of any size.
520 impl<T, U, const N: u32> TryIntoBounded<T, N> for U
521 where
522     T: Integer,
523     U: TryInto<T>,
524 {
525     fn try_into_bounded(self) -> Option<Bounded<T, N>> {
526         self.try_into().ok().and_then(Bounded::try_new)
527     }
528 }
529 
530 // Comparisons between `Bounded`s.
531 
532 impl<T, U, const N: u32, const M: u32> PartialEq<Bounded<U, M>> for Bounded<T, N>
533 where
534     T: Integer,
535     U: Integer,
536     T: PartialEq<U>,
537 {
538     fn eq(&self, other: &Bounded<U, M>) -> bool {
539         self.get() == other.get()
540     }
541 }
542 
543 impl<T, const N: u32> Eq for Bounded<T, N> where T: Integer {}
544 
545 impl<T, U, const N: u32, const M: u32> PartialOrd<Bounded<U, M>> for Bounded<T, N>
546 where
547     T: Integer,
548     U: Integer,
549     T: PartialOrd<U>,
550 {
551     fn partial_cmp(&self, other: &Bounded<U, M>) -> Option<cmp::Ordering> {
552         self.get().partial_cmp(&other.get())
553     }
554 }
555 
556 impl<T, const N: u32> Ord for Bounded<T, N>
557 where
558     T: Integer,
559     T: Ord,
560 {
561     fn cmp(&self, other: &Self) -> cmp::Ordering {
562         self.get().cmp(&other.get())
563     }
564 }
565 
566 // Comparisons between a `Bounded` and its backing type.
567 
568 impl<T, const N: u32> PartialEq<T> for Bounded<T, N>
569 where
570     T: Integer,
571     T: PartialEq,
572 {
573     fn eq(&self, other: &T) -> bool {
574         self.get() == *other
575     }
576 }
577 
578 impl<T, const N: u32> PartialOrd<T> for Bounded<T, N>
579 where
580     T: Integer,
581     T: PartialOrd,
582 {
583     fn partial_cmp(&self, other: &T) -> Option<cmp::Ordering> {
584         self.get().partial_cmp(other)
585     }
586 }
587 
588 // Implementations of `core::ops` for two `Bounded` with the same backing type.
589 
590 impl<T, const N: u32, const M: u32> ops::Add<Bounded<T, M>> for Bounded<T, N>
591 where
592     T: Integer,
593     T: ops::Add<Output = T>,
594 {
595     type Output = T;
596 
597     fn add(self, rhs: Bounded<T, M>) -> Self::Output {
598         self.get() + rhs.get()
599     }
600 }
601 
602 impl<T, const N: u32, const M: u32> ops::BitAnd<Bounded<T, M>> for Bounded<T, N>
603 where
604     T: Integer,
605     T: ops::BitAnd<Output = T>,
606 {
607     type Output = T;
608 
609     fn bitand(self, rhs: Bounded<T, M>) -> Self::Output {
610         self.get() & rhs.get()
611     }
612 }
613 
614 impl<T, const N: u32, const M: u32> ops::BitOr<Bounded<T, M>> for Bounded<T, N>
615 where
616     T: Integer,
617     T: ops::BitOr<Output = T>,
618 {
619     type Output = T;
620 
621     fn bitor(self, rhs: Bounded<T, M>) -> Self::Output {
622         self.get() | rhs.get()
623     }
624 }
625 
626 impl<T, const N: u32, const M: u32> ops::BitXor<Bounded<T, M>> for Bounded<T, N>
627 where
628     T: Integer,
629     T: ops::BitXor<Output = T>,
630 {
631     type Output = T;
632 
633     fn bitxor(self, rhs: Bounded<T, M>) -> Self::Output {
634         self.get() ^ rhs.get()
635     }
636 }
637 
638 impl<T, const N: u32, const M: u32> ops::Div<Bounded<T, M>> for Bounded<T, N>
639 where
640     T: Integer,
641     T: ops::Div<Output = T>,
642 {
643     type Output = T;
644 
645     fn div(self, rhs: Bounded<T, M>) -> Self::Output {
646         self.get() / rhs.get()
647     }
648 }
649 
650 impl<T, const N: u32, const M: u32> ops::Mul<Bounded<T, M>> for Bounded<T, N>
651 where
652     T: Integer,
653     T: ops::Mul<Output = T>,
654 {
655     type Output = T;
656 
657     fn mul(self, rhs: Bounded<T, M>) -> Self::Output {
658         self.get() * rhs.get()
659     }
660 }
661 
662 impl<T, const N: u32, const M: u32> ops::Rem<Bounded<T, M>> for Bounded<T, N>
663 where
664     T: Integer,
665     T: ops::Rem<Output = T>,
666 {
667     type Output = T;
668 
669     fn rem(self, rhs: Bounded<T, M>) -> Self::Output {
670         self.get() % rhs.get()
671     }
672 }
673 
674 impl<T, const N: u32, const M: u32> ops::Sub<Bounded<T, M>> for Bounded<T, N>
675 where
676     T: Integer,
677     T: ops::Sub<Output = T>,
678 {
679     type Output = T;
680 
681     fn sub(self, rhs: Bounded<T, M>) -> Self::Output {
682         self.get() - rhs.get()
683     }
684 }
685 
686 // Implementations of `core::ops` between a `Bounded` and its backing type.
687 
688 impl<T, const N: u32> ops::Add<T> for Bounded<T, N>
689 where
690     T: Integer,
691     T: ops::Add<Output = T>,
692 {
693     type Output = T;
694 
695     fn add(self, rhs: T) -> Self::Output {
696         self.get() + rhs
697     }
698 }
699 
700 impl<T, const N: u32> ops::BitAnd<T> for Bounded<T, N>
701 where
702     T: Integer,
703     T: ops::BitAnd<Output = T>,
704 {
705     type Output = T;
706 
707     fn bitand(self, rhs: T) -> Self::Output {
708         self.get() & rhs
709     }
710 }
711 
712 impl<T, const N: u32> ops::BitOr<T> for Bounded<T, N>
713 where
714     T: Integer,
715     T: ops::BitOr<Output = T>,
716 {
717     type Output = T;
718 
719     fn bitor(self, rhs: T) -> Self::Output {
720         self.get() | rhs
721     }
722 }
723 
724 impl<T, const N: u32> ops::BitXor<T> for Bounded<T, N>
725 where
726     T: Integer,
727     T: ops::BitXor<Output = T>,
728 {
729     type Output = T;
730 
731     fn bitxor(self, rhs: T) -> Self::Output {
732         self.get() ^ rhs
733     }
734 }
735 
736 impl<T, const N: u32> ops::Div<T> for Bounded<T, N>
737 where
738     T: Integer,
739     T: ops::Div<Output = T>,
740 {
741     type Output = T;
742 
743     fn div(self, rhs: T) -> Self::Output {
744         self.get() / rhs
745     }
746 }
747 
748 impl<T, const N: u32> ops::Mul<T> for Bounded<T, N>
749 where
750     T: Integer,
751     T: ops::Mul<Output = T>,
752 {
753     type Output = T;
754 
755     fn mul(self, rhs: T) -> Self::Output {
756         self.get() * rhs
757     }
758 }
759 
760 impl<T, const N: u32> ops::Neg for Bounded<T, N>
761 where
762     T: Integer,
763     T: ops::Neg<Output = T>,
764 {
765     type Output = T;
766 
767     fn neg(self) -> Self::Output {
768         -self.get()
769     }
770 }
771 
772 impl<T, const N: u32> ops::Not for Bounded<T, N>
773 where
774     T: Integer,
775     T: ops::Not<Output = T>,
776 {
777     type Output = T;
778 
779     fn not(self) -> Self::Output {
780         !self.get()
781     }
782 }
783 
784 impl<T, const N: u32> ops::Rem<T> for Bounded<T, N>
785 where
786     T: Integer,
787     T: ops::Rem<Output = T>,
788 {
789     type Output = T;
790 
791     fn rem(self, rhs: T) -> Self::Output {
792         self.get() % rhs
793     }
794 }
795 
796 impl<T, const N: u32> ops::Sub<T> for Bounded<T, N>
797 where
798     T: Integer,
799     T: ops::Sub<Output = T>,
800 {
801     type Output = T;
802 
803     fn sub(self, rhs: T) -> Self::Output {
804         self.get() - rhs
805     }
806 }
807 
808 // Proxy implementations of `core::fmt`.
809 
810 impl<T, const N: u32> fmt::Display for Bounded<T, N>
811 where
812     T: Integer,
813     T: fmt::Display,
814 {
815     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
816         self.get().fmt(f)
817     }
818 }
819 
820 impl<T, const N: u32> fmt::Binary for Bounded<T, N>
821 where
822     T: Integer,
823     T: fmt::Binary,
824 {
825     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
826         self.get().fmt(f)
827     }
828 }
829 
830 impl<T, const N: u32> fmt::LowerExp for Bounded<T, N>
831 where
832     T: Integer,
833     T: fmt::LowerExp,
834 {
835     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
836         self.get().fmt(f)
837     }
838 }
839 
840 impl<T, const N: u32> fmt::LowerHex for Bounded<T, N>
841 where
842     T: Integer,
843     T: fmt::LowerHex,
844 {
845     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
846         self.get().fmt(f)
847     }
848 }
849 
850 impl<T, const N: u32> fmt::Octal for Bounded<T, N>
851 where
852     T: Integer,
853     T: fmt::Octal,
854 {
855     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
856         self.get().fmt(f)
857     }
858 }
859 
860 impl<T, const N: u32> fmt::UpperExp for Bounded<T, N>
861 where
862     T: Integer,
863     T: fmt::UpperExp,
864 {
865     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
866         self.get().fmt(f)
867     }
868 }
869 
870 impl<T, const N: u32> fmt::UpperHex for Bounded<T, N>
871 where
872     T: Integer,
873     T: fmt::UpperHex,
874 {
875     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
876         self.get().fmt(f)
877     }
878 }
879 
880 /// Implements `$trait` for all [`Bounded`] types represented using `$num_bits`.
881 ///
882 /// This is used to declare size properties as traits that we can constrain against in impl blocks.
883 macro_rules! impl_size_rule {
884     ($trait:ty, $($num_bits:literal)*) => {
885         $(
886         impl<T> $trait for Bounded<T, $num_bits> where T: Integer {}
887         )*
888     };
889 }
890 
891 /// Local trait expressing the fact that a given [`Bounded`] has at least `N` bits used for value
892 /// representation.
893 trait AtLeastXBits<const N: usize> {}
894 
895 /// Implementations for infallibly converting a primitive type into a [`Bounded`] that can contain
896 /// it.
897 ///
898 /// Put into their own module for readability, and to avoid cluttering the rustdoc of the parent
899 /// module.
900 mod atleast_impls {
901     use super::*;
902 
903     // Number of bits at least as large as 64.
904     impl_size_rule!(AtLeastXBits<64>, 64);
905 
906     // Anything 64 bits or more is also larger than 32.
907     impl<T> AtLeastXBits<32> for T where T: AtLeastXBits<64> {}
908     // Other numbers of bits at least as large as 32.
909     impl_size_rule!(AtLeastXBits<32>,
910         32 33 34 35 36 37 38 39
911         40 41 42 43 44 45 46 47
912         48 49 50 51 52 53 54 55
913         56 57 58 59 60 61 62 63
914     );
915 
916     // Anything 32 bits or more is also larger than 16.
917     impl<T> AtLeastXBits<16> for T where T: AtLeastXBits<32> {}
918     // Other numbers of bits at least as large as 16.
919     impl_size_rule!(AtLeastXBits<16>,
920         16 17 18 19 20 21 22 23
921         24 25 26 27 28 29 30 31
922     );
923 
924     // Anything 16 bits or more is also larger than 8.
925     impl<T> AtLeastXBits<8> for T where T: AtLeastXBits<16> {}
926     // Other numbers of bits at least as large as 8.
927     impl_size_rule!(AtLeastXBits<8>, 8 9 10 11 12 13 14 15);
928 }
929 
930 /// Generates `From` implementations from a primitive type into a [`Bounded`] with
931 /// enough bits to store any value of that type.
932 ///
933 /// Note: The only reason for having this macro is that if we pass `$type` as a generic
934 /// parameter, we cannot use it in the const context of [`AtLeastXBits`]'s generic parameter. This
935 /// can be fixed once the `generic_const_exprs` feature is usable, and this macro replaced by a
936 /// regular `impl` block.
937 macro_rules! impl_from_primitive {
938     ($($type:ty)*) => {
939         $(
940         #[doc = ::core::concat!(
941             "Conversion from a [`",
942             ::core::stringify!($type),
943             "`] into a [`Bounded`] of same signedness with enough bits to store it.")]
944         impl<T, const N: u32> From<$type> for Bounded<T, N>
945         where
946             $type: Integer,
947             T: Integer<Signedness = <$type as Integer>::Signedness> + From<$type>,
948             Self: AtLeastXBits<{ <$type as Integer>::BITS as usize }>,
949         {
950             fn from(value: $type) -> Self {
951                 // SAFETY: The trait bound on `Self` guarantees that `N` bits is
952                 // enough to hold any value of the source type.
953                 unsafe { Self::__new(T::from(value)) }
954             }
955         }
956         )*
957     }
958 }
959 
960 impl_from_primitive!(
961     u8 u16 u32 u64 usize
962     i8 i16 i32 i64 isize
963 );
964 
965 /// Local trait expressing the fact that a given [`Bounded`] fits into a primitive type of `N` bits,
966 /// provided they have the same signedness.
967 trait FitsInXBits<const N: usize> {}
968 
969 /// Implementations for infallibly converting a [`Bounded`] into a primitive type that can contain
970 /// it.
971 ///
972 /// Put into their own module for readability, and to avoid cluttering the rustdoc of the parent
973 /// module.
974 mod fits_impls {
975     use super::*;
976 
977     // Number of bits that fit into a 8-bits primitive.
978     impl_size_rule!(FitsInXBits<8>, 1 2 3 4 5 6 7 8);
979 
980     // Anything that fits into 8 bits also fits into 16.
981     impl<T> FitsInXBits<16> for T where T: FitsInXBits<8> {}
982     // Other number of bits that fit into a 16-bits primitive.
983     impl_size_rule!(FitsInXBits<16>, 9 10 11 12 13 14 15 16);
984 
985     // Anything that fits into 16 bits also fits into 32.
986     impl<T> FitsInXBits<32> for T where T: FitsInXBits<16> {}
987     // Other number of bits that fit into a 32-bits primitive.
988     impl_size_rule!(FitsInXBits<32>,
989         17 18 19 20 21 22 23 24
990         25 26 27 28 29 30 31 32
991     );
992 
993     // Anything that fits into 32 bits also fits into 64.
994     impl<T> FitsInXBits<64> for T where T: FitsInXBits<32> {}
995     // Other number of bits that fit into a 64-bits primitive.
996     impl_size_rule!(FitsInXBits<64>,
997         33 34 35 36 37 38 39 40
998         41 42 43 44 45 46 47 48
999         49 50 51 52 53 54 55 56
1000         57 58 59 60 61 62 63 64
1001     );
1002 }
1003 
1004 /// Generates [`From`] implementations from a [`Bounded`] into a primitive type that is
1005 /// guaranteed to contain it.
1006 ///
1007 /// Note: The only reason for having this macro is that if we pass `$type` as a generic
1008 /// parameter, we cannot use it in the const context of `AtLeastXBits`'s generic parameter. This
1009 /// can be fixed once the `generic_const_exprs` feature is usable, and this macro replaced by a
1010 /// regular `impl` block.
1011 macro_rules! impl_into_primitive {
1012     ($($type:ty)*) => {
1013         $(
1014         #[doc = ::core::concat!(
1015             "Conversion from a [`Bounded`] with no more bits than a [`",
1016             ::core::stringify!($type),
1017             "`] and of same signedness into [`",
1018             ::core::stringify!($type),
1019             "`]")]
1020         impl<T, const N: u32> From<Bounded<T, N>> for $type
1021         where
1022             $type: Integer + TryFrom<T>,
1023             T: Integer<Signedness = <$type as Integer>::Signedness>,
1024             Bounded<T, N>: FitsInXBits<{ <$type as Integer>::BITS as usize }>,
1025         {
1026             fn from(value: Bounded<T, N>) -> $type {
1027                 // SAFETY: The trait bound on `Bounded` ensures that any value it holds (which
1028                 // is constrained to `N` bits) can fit into the destination type, so this
1029                 // conversion cannot fail.
1030                 unsafe { <$type>::try_from(value.get()).unwrap_unchecked() }
1031             }
1032         }
1033         )*
1034     }
1035 }
1036 
1037 impl_into_primitive!(
1038     u8 u16 u32 u64 usize
1039     i8 i16 i32 i64 isize
1040 );
1041 
1042 // Single-bit `Bounded`s can be converted from/to a boolean.
1043 
1044 impl<T> From<Bounded<T, 1>> for bool
1045 where
1046     T: Integer + Zeroable,
1047 {
1048     fn from(value: Bounded<T, 1>) -> Self {
1049         value.get() != Zeroable::zeroed()
1050     }
1051 }
1052 
1053 impl<T, const N: u32> From<bool> for Bounded<T, N>
1054 where
1055     T: Integer + From<bool>,
1056 {
1057     fn from(value: bool) -> Self {
1058         // SAFETY: A boolean can be represented using a single bit, and thus fits within any
1059         // integer type for any `N` > 0.
1060         unsafe { Self::__new(T::from(value)) }
1061     }
1062 }
1063