1 // SPDX-License-Identifier: GPL-2.0 2 3 // Copyright (C) 2024 Google LLC. 4 5 //! A wrapper around `Arc` for linked lists. 6 7 use crate::alloc::{AllocError, Flags}; 8 use crate::prelude::*; 9 use crate::sync::{Arc, ArcBorrow, UniqueArc}; 10 use core::marker::PhantomPinned; 11 use core::ops::Deref; 12 use core::pin::Pin; 13 use core::sync::atomic::{AtomicBool, Ordering}; 14 15 /// Declares that this type has some way to ensure that there is exactly one `ListArc` instance for 16 /// this id. 17 /// 18 /// Types that implement this trait should include some kind of logic for keeping track of whether 19 /// a [`ListArc`] exists or not. We refer to this logic as "the tracking inside `T`". 20 /// 21 /// We allow the case where the tracking inside `T` thinks that a [`ListArc`] exists, but actually, 22 /// there isn't a [`ListArc`]. However, we do not allow the opposite situation where a [`ListArc`] 23 /// exists, but the tracking thinks it doesn't. This is because the former can at most result in us 24 /// failing to create a [`ListArc`] when the operation could succeed, whereas the latter can result 25 /// in the creation of two [`ListArc`] references. Only the latter situation can lead to memory 26 /// safety issues. 27 /// 28 /// A consequence of the above is that you may implement the tracking inside `T` by not actually 29 /// keeping track of anything. To do this, you always claim that a [`ListArc`] exists, even if 30 /// there isn't one. This implementation is allowed by the above rule, but it means that 31 /// [`ListArc`] references can only be created if you have ownership of *all* references to the 32 /// refcounted object, as you otherwise have no way of knowing whether a [`ListArc`] exists. 33 pub trait ListArcSafe<const ID: u64 = 0> { 34 /// Informs the tracking inside this type that it now has a [`ListArc`] reference. 35 /// 36 /// This method may be called even if the tracking inside this type thinks that a `ListArc` 37 /// reference exists. (But only if that's not actually the case.) 38 /// 39 /// # Safety 40 /// 41 /// Must not be called if a [`ListArc`] already exist for this value. 42 unsafe fn on_create_list_arc_from_unique(self: Pin<&mut Self>); 43 44 /// Informs the tracking inside this type that there is no [`ListArc`] reference anymore. 45 /// 46 /// # Safety 47 /// 48 /// Must only be called if there is no [`ListArc`] reference, but the tracking thinks there is. 49 unsafe fn on_drop_list_arc(&self); 50 } 51 52 /// Declares that this type is able to safely attempt to create `ListArc`s at any time. 53 /// 54 /// # Safety 55 /// 56 /// The guarantees of `try_new_list_arc` must be upheld. 57 pub unsafe trait TryNewListArc<const ID: u64 = 0>: ListArcSafe<ID> { 58 /// Attempts to convert an `Arc<Self>` into an `ListArc<Self>`. Returns `true` if the 59 /// conversion was successful. 60 /// 61 /// This method should not be called directly. Use [`ListArc::try_from_arc`] instead. 62 /// 63 /// # Guarantees 64 /// 65 /// If this call returns `true`, then there is no [`ListArc`] pointing to this value. 66 /// Additionally, this call will have transitioned the tracking inside `Self` from not thinking 67 /// that a [`ListArc`] exists, to thinking that a [`ListArc`] exists. 68 fn try_new_list_arc(&self) -> bool; 69 } 70 71 /// Declares that this type supports [`ListArc`]. 72 /// 73 /// This macro supports a few different strategies for implementing the tracking inside the type: 74 /// 75 /// * The `untracked` strategy does not actually keep track of whether a [`ListArc`] exists. When 76 /// using this strategy, the only way to create a [`ListArc`] is using a [`UniqueArc`]. 77 /// * The `tracked_by` strategy defers the tracking to a field of the struct. The user much specify 78 /// which field to defer the tracking to. The field must implement [`ListArcSafe`]. If the field 79 /// implements [`TryNewListArc`], then the type will also implement [`TryNewListArc`]. 80 /// 81 /// The `tracked_by` strategy is usually used by deferring to a field of type 82 /// [`AtomicTracker`]. However, it is also possible to defer the tracking to another struct 83 /// using also using this macro. 84 #[macro_export] 85 macro_rules! impl_list_arc_safe { 86 (impl$({$($generics:tt)*})? ListArcSafe<$num:tt> for $t:ty { untracked; } $($rest:tt)*) => { 87 impl$(<$($generics)*>)? $crate::list::ListArcSafe<$num> for $t { 88 unsafe fn on_create_list_arc_from_unique(self: ::core::pin::Pin<&mut Self>) {} 89 unsafe fn on_drop_list_arc(&self) {} 90 } 91 $crate::list::impl_list_arc_safe! { $($rest)* } 92 }; 93 94 (impl$({$($generics:tt)*})? ListArcSafe<$num:tt> for $t:ty { 95 tracked_by $field:ident : $fty:ty; 96 } $($rest:tt)*) => { 97 impl$(<$($generics)*>)? $crate::list::ListArcSafe<$num> for $t { 98 unsafe fn on_create_list_arc_from_unique(self: ::core::pin::Pin<&mut Self>) { 99 $crate::assert_pinned!($t, $field, $fty, inline); 100 101 // SAFETY: This field is structurally pinned as per the above assertion. 102 let field = unsafe { 103 ::core::pin::Pin::map_unchecked_mut(self, |me| &mut me.$field) 104 }; 105 // SAFETY: The caller promises that there is no `ListArc`. 106 unsafe { 107 <$fty as $crate::list::ListArcSafe<$num>>::on_create_list_arc_from_unique(field) 108 }; 109 } 110 unsafe fn on_drop_list_arc(&self) { 111 // SAFETY: The caller promises that there is no `ListArc` reference, and also 112 // promises that the tracking thinks there is a `ListArc` reference. 113 unsafe { <$fty as $crate::list::ListArcSafe<$num>>::on_drop_list_arc(&self.$field) }; 114 } 115 } 116 unsafe impl$(<$($generics)*>)? $crate::list::TryNewListArc<$num> for $t 117 where 118 $fty: TryNewListArc<$num>, 119 { 120 fn try_new_list_arc(&self) -> bool { 121 <$fty as $crate::list::TryNewListArc<$num>>::try_new_list_arc(&self.$field) 122 } 123 } 124 $crate::list::impl_list_arc_safe! { $($rest)* } 125 }; 126 127 () => {}; 128 } 129 pub use impl_list_arc_safe; 130 131 /// A wrapper around [`Arc`] that's guaranteed unique for the given id. 132 /// 133 /// The `ListArc` type can be thought of as a special reference to a refcounted object that owns the 134 /// permission to manipulate the `next`/`prev` pointers stored in the refcounted object. By ensuring 135 /// that each object has only one `ListArc` reference, the owner of that reference is assured 136 /// exclusive access to the `next`/`prev` pointers. When a `ListArc` is inserted into a [`List`], 137 /// the [`List`] takes ownership of the `ListArc` reference. 138 /// 139 /// There are various strategies to ensuring that a value has only one `ListArc` reference. The 140 /// simplest is to convert a [`UniqueArc`] into a `ListArc`. However, the refcounted object could 141 /// also keep track of whether a `ListArc` exists using a boolean, which could allow for the 142 /// creation of new `ListArc` references from an [`Arc`] reference. Whatever strategy is used, the 143 /// relevant tracking is referred to as "the tracking inside `T`", and the [`ListArcSafe`] trait 144 /// (and its subtraits) are used to update the tracking when a `ListArc` is created or destroyed. 145 /// 146 /// Note that we allow the case where the tracking inside `T` thinks that a `ListArc` exists, but 147 /// actually, there isn't a `ListArc`. However, we do not allow the opposite situation where a 148 /// `ListArc` exists, but the tracking thinks it doesn't. This is because the former can at most 149 /// result in us failing to create a `ListArc` when the operation could succeed, whereas the latter 150 /// can result in the creation of two `ListArc` references. 151 /// 152 /// While this `ListArc` is unique for the given id, there still might exist normal `Arc` 153 /// references to the object. 154 /// 155 /// # Invariants 156 /// 157 /// * Each reference counted object has at most one `ListArc` for each value of `ID`. 158 /// * The tracking inside `T` is aware that a `ListArc` reference exists. 159 /// 160 /// [`List`]: crate::list::List 161 #[repr(transparent)] 162 #[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, derive(core::marker::CoercePointee))] 163 pub struct ListArc<T, const ID: u64 = 0> 164 where 165 T: ListArcSafe<ID> + ?Sized, 166 { 167 arc: Arc<T>, 168 } 169 170 impl<T: ListArcSafe<ID>, const ID: u64> ListArc<T, ID> { 171 /// Constructs a new reference counted instance of `T`. 172 #[inline] 173 pub fn new(contents: T, flags: Flags) -> Result<Self, AllocError> { 174 Ok(Self::from(UniqueArc::new(contents, flags)?)) 175 } 176 177 /// Use the given initializer to in-place initialize a `T`. 178 /// 179 /// If `T: !Unpin` it will not be able to move afterwards. 180 // We don't implement `InPlaceInit` because `ListArc` is implicitly pinned. This is similar to 181 // what we do for `Arc`. 182 #[inline] 183 pub fn pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self, E> 184 where 185 E: From<AllocError>, 186 { 187 Ok(Self::from(UniqueArc::try_pin_init(init, flags)?)) 188 } 189 190 /// Use the given initializer to in-place initialize a `T`. 191 /// 192 /// This is equivalent to [`ListArc<T>::pin_init`], since a [`ListArc`] is always pinned. 193 #[inline] 194 pub fn init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E> 195 where 196 E: From<AllocError>, 197 { 198 Ok(Self::from(UniqueArc::try_init(init, flags)?)) 199 } 200 } 201 202 impl<T, const ID: u64> From<UniqueArc<T>> for ListArc<T, ID> 203 where 204 T: ListArcSafe<ID> + ?Sized, 205 { 206 /// Convert a [`UniqueArc`] into a [`ListArc`]. 207 #[inline] 208 fn from(unique: UniqueArc<T>) -> Self { 209 Self::from(Pin::from(unique)) 210 } 211 } 212 213 impl<T, const ID: u64> From<Pin<UniqueArc<T>>> for ListArc<T, ID> 214 where 215 T: ListArcSafe<ID> + ?Sized, 216 { 217 /// Convert a pinned [`UniqueArc`] into a [`ListArc`]. 218 #[inline] 219 fn from(mut unique: Pin<UniqueArc<T>>) -> Self { 220 // SAFETY: We have a `UniqueArc`, so there is no `ListArc`. 221 unsafe { T::on_create_list_arc_from_unique(unique.as_mut()) }; 222 let arc = Arc::from(unique); 223 // SAFETY: We just called `on_create_list_arc_from_unique` on an arc without a `ListArc`, 224 // so we can create a `ListArc`. 225 unsafe { Self::transmute_from_arc(arc) } 226 } 227 } 228 229 impl<T, const ID: u64> ListArc<T, ID> 230 where 231 T: ListArcSafe<ID> + ?Sized, 232 { 233 /// Creates two `ListArc`s from a [`UniqueArc`]. 234 /// 235 /// The two ids must be different. 236 #[inline] 237 pub fn pair_from_unique<const ID2: u64>(unique: UniqueArc<T>) -> (Self, ListArc<T, ID2>) 238 where 239 T: ListArcSafe<ID2>, 240 { 241 Self::pair_from_pin_unique(Pin::from(unique)) 242 } 243 244 /// Creates two `ListArc`s from a pinned [`UniqueArc`]. 245 /// 246 /// The two ids must be different. 247 #[inline] 248 pub fn pair_from_pin_unique<const ID2: u64>( 249 mut unique: Pin<UniqueArc<T>>, 250 ) -> (Self, ListArc<T, ID2>) 251 where 252 T: ListArcSafe<ID2>, 253 { 254 build_assert!(ID != ID2); 255 256 // SAFETY: We have a `UniqueArc`, so there is no `ListArc`. 257 unsafe { <T as ListArcSafe<ID>>::on_create_list_arc_from_unique(unique.as_mut()) }; 258 // SAFETY: We have a `UniqueArc`, so there is no `ListArc`. 259 unsafe { <T as ListArcSafe<ID2>>::on_create_list_arc_from_unique(unique.as_mut()) }; 260 261 let arc1 = Arc::from(unique); 262 let arc2 = Arc::clone(&arc1); 263 264 // SAFETY: We just called `on_create_list_arc_from_unique` on an arc without a `ListArc` 265 // for both IDs (which are different), so we can create two `ListArc`s. 266 unsafe { 267 ( 268 Self::transmute_from_arc(arc1), 269 ListArc::transmute_from_arc(arc2), 270 ) 271 } 272 } 273 274 /// Try to create a new `ListArc`. 275 /// 276 /// This fails if this value already has a `ListArc`. 277 pub fn try_from_arc(arc: Arc<T>) -> Result<Self, Arc<T>> 278 where 279 T: TryNewListArc<ID>, 280 { 281 if arc.try_new_list_arc() { 282 // SAFETY: The `try_new_list_arc` method returned true, so we made the tracking think 283 // that a `ListArc` exists. This lets us create a `ListArc`. 284 Ok(unsafe { Self::transmute_from_arc(arc) }) 285 } else { 286 Err(arc) 287 } 288 } 289 290 /// Try to create a new `ListArc`. 291 /// 292 /// This fails if this value already has a `ListArc`. 293 pub fn try_from_arc_borrow(arc: ArcBorrow<'_, T>) -> Option<Self> 294 where 295 T: TryNewListArc<ID>, 296 { 297 if arc.try_new_list_arc() { 298 // SAFETY: The `try_new_list_arc` method returned true, so we made the tracking think 299 // that a `ListArc` exists. This lets us create a `ListArc`. 300 Some(unsafe { Self::transmute_from_arc(Arc::from(arc)) }) 301 } else { 302 None 303 } 304 } 305 306 /// Try to create a new `ListArc`. 307 /// 308 /// If it's not possible to create a new `ListArc`, then the `Arc` is dropped. This will never 309 /// run the destructor of the value. 310 pub fn try_from_arc_or_drop(arc: Arc<T>) -> Option<Self> 311 where 312 T: TryNewListArc<ID>, 313 { 314 match Self::try_from_arc(arc) { 315 Ok(list_arc) => Some(list_arc), 316 Err(arc) => Arc::into_unique_or_drop(arc).map(Self::from), 317 } 318 } 319 320 /// Transmutes an [`Arc`] into a `ListArc` without updating the tracking inside `T`. 321 /// 322 /// # Safety 323 /// 324 /// * The value must not already have a `ListArc` reference. 325 /// * The tracking inside `T` must think that there is a `ListArc` reference. 326 #[inline] 327 unsafe fn transmute_from_arc(arc: Arc<T>) -> Self { 328 // INVARIANT: By the safety requirements, the invariants on `ListArc` are satisfied. 329 Self { arc } 330 } 331 332 /// Transmutes a `ListArc` into an [`Arc`] without updating the tracking inside `T`. 333 /// 334 /// After this call, the tracking inside `T` will still think that there is a `ListArc` 335 /// reference. 336 #[inline] 337 fn transmute_to_arc(self) -> Arc<T> { 338 // Use a transmute to skip destructor. 339 // 340 // SAFETY: ListArc is repr(transparent). 341 unsafe { core::mem::transmute(self) } 342 } 343 344 /// Convert ownership of this `ListArc` into a raw pointer. 345 /// 346 /// The returned pointer is indistinguishable from pointers returned by [`Arc::into_raw`]. The 347 /// tracking inside `T` will still think that a `ListArc` exists after this call. 348 #[inline] 349 pub fn into_raw(self) -> *const T { 350 Arc::into_raw(Self::transmute_to_arc(self)) 351 } 352 353 /// Take ownership of the `ListArc` from a raw pointer. 354 /// 355 /// # Safety 356 /// 357 /// * `ptr` must satisfy the safety requirements of [`Arc::from_raw`]. 358 /// * The value must not already have a `ListArc` reference. 359 /// * The tracking inside `T` must think that there is a `ListArc` reference. 360 #[inline] 361 pub unsafe fn from_raw(ptr: *const T) -> Self { 362 // SAFETY: The pointer satisfies the safety requirements for `Arc::from_raw`. 363 let arc = unsafe { Arc::from_raw(ptr) }; 364 // SAFETY: The value doesn't already have a `ListArc` reference, but the tracking thinks it 365 // does. 366 unsafe { Self::transmute_from_arc(arc) } 367 } 368 369 /// Converts the `ListArc` into an [`Arc`]. 370 #[inline] 371 pub fn into_arc(self) -> Arc<T> { 372 let arc = Self::transmute_to_arc(self); 373 // SAFETY: There is no longer a `ListArc`, but the tracking thinks there is. 374 unsafe { T::on_drop_list_arc(&arc) }; 375 arc 376 } 377 378 /// Clone a `ListArc` into an [`Arc`]. 379 #[inline] 380 pub fn clone_arc(&self) -> Arc<T> { 381 self.arc.clone() 382 } 383 384 /// Returns a reference to an [`Arc`] from the given [`ListArc`]. 385 /// 386 /// This is useful when the argument of a function call is an [`&Arc`] (e.g., in a method 387 /// receiver), but we have a [`ListArc`] instead. 388 /// 389 /// [`&Arc`]: Arc 390 #[inline] 391 pub fn as_arc(&self) -> &Arc<T> { 392 &self.arc 393 } 394 395 /// Returns an [`ArcBorrow`] from the given [`ListArc`]. 396 /// 397 /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method 398 /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised. 399 #[inline] 400 pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> { 401 self.arc.as_arc_borrow() 402 } 403 404 /// Compare whether two [`ListArc`] pointers reference the same underlying object. 405 #[inline] 406 pub fn ptr_eq(this: &Self, other: &Self) -> bool { 407 Arc::ptr_eq(&this.arc, &other.arc) 408 } 409 } 410 411 impl<T, const ID: u64> Deref for ListArc<T, ID> 412 where 413 T: ListArcSafe<ID> + ?Sized, 414 { 415 type Target = T; 416 417 #[inline] 418 fn deref(&self) -> &Self::Target { 419 self.arc.deref() 420 } 421 } 422 423 impl<T, const ID: u64> Drop for ListArc<T, ID> 424 where 425 T: ListArcSafe<ID> + ?Sized, 426 { 427 #[inline] 428 fn drop(&mut self) { 429 // SAFETY: There is no longer a `ListArc`, but the tracking thinks there is by the type 430 // invariants on `Self`. 431 unsafe { T::on_drop_list_arc(&self.arc) }; 432 } 433 } 434 435 impl<T, const ID: u64> AsRef<Arc<T>> for ListArc<T, ID> 436 where 437 T: ListArcSafe<ID> + ?Sized, 438 { 439 #[inline] 440 fn as_ref(&self) -> &Arc<T> { 441 self.as_arc() 442 } 443 } 444 445 // This is to allow coercion from `ListArc<T>` to `ListArc<U>` if `T` can be converted to the 446 // dynamically-sized type (DST) `U`. 447 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))] 448 impl<T, U, const ID: u64> core::ops::CoerceUnsized<ListArc<U, ID>> for ListArc<T, ID> 449 where 450 T: ListArcSafe<ID> + core::marker::Unsize<U> + ?Sized, 451 U: ListArcSafe<ID> + ?Sized, 452 { 453 } 454 455 // This is to allow `ListArc<U>` to be dispatched on when `ListArc<T>` can be coerced into 456 // `ListArc<U>`. 457 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))] 458 impl<T, U, const ID: u64> core::ops::DispatchFromDyn<ListArc<U, ID>> for ListArc<T, ID> 459 where 460 T: ListArcSafe<ID> + core::marker::Unsize<U> + ?Sized, 461 U: ListArcSafe<ID> + ?Sized, 462 { 463 } 464 465 /// A utility for tracking whether a [`ListArc`] exists using an atomic. 466 /// 467 /// # Invariant 468 /// 469 /// If the boolean is `false`, then there is no [`ListArc`] for this value. 470 #[repr(transparent)] 471 pub struct AtomicTracker<const ID: u64 = 0> { 472 inner: AtomicBool, 473 // This value needs to be pinned to justify the INVARIANT: comment in `AtomicTracker::new`. 474 _pin: PhantomPinned, 475 } 476 477 impl<const ID: u64> AtomicTracker<ID> { 478 /// Creates a new initializer for this type. 479 pub fn new() -> impl PinInit<Self> { 480 // INVARIANT: Pin-init initializers can't be used on an existing `Arc`, so this value will 481 // not be constructed in an `Arc` that already has a `ListArc`. 482 Self { 483 inner: AtomicBool::new(false), 484 _pin: PhantomPinned, 485 } 486 } 487 488 fn project_inner(self: Pin<&mut Self>) -> &mut AtomicBool { 489 // SAFETY: The `inner` field is not structurally pinned, so we may obtain a mutable 490 // reference to it even if we only have a pinned reference to `self`. 491 unsafe { &mut Pin::into_inner_unchecked(self).inner } 492 } 493 } 494 495 impl<const ID: u64> ListArcSafe<ID> for AtomicTracker<ID> { 496 unsafe fn on_create_list_arc_from_unique(self: Pin<&mut Self>) { 497 // INVARIANT: We just created a ListArc, so the boolean should be true. 498 *self.project_inner().get_mut() = true; 499 } 500 501 unsafe fn on_drop_list_arc(&self) { 502 // INVARIANT: We just dropped a ListArc, so the boolean should be false. 503 self.inner.store(false, Ordering::Release); 504 } 505 } 506 507 // SAFETY: If this method returns `true`, then by the type invariant there is no `ListArc` before 508 // this call, so it is okay to create a new `ListArc`. 509 // 510 // The acquire ordering will synchronize with the release store from the destruction of any 511 // previous `ListArc`, so if there was a previous `ListArc`, then the destruction of the previous 512 // `ListArc` happens-before the creation of the new `ListArc`. 513 unsafe impl<const ID: u64> TryNewListArc<ID> for AtomicTracker<ID> { 514 fn try_new_list_arc(&self) -> bool { 515 // INVARIANT: If this method returns true, then the boolean used to be false, and is no 516 // longer false, so it is okay for the caller to create a new [`ListArc`]. 517 self.inner 518 .compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed) 519 .is_ok() 520 } 521 } 522