1 // SPDX-License-Identifier: GPL-2.0 2 3 //! Memory-mapped IO. 4 //! 5 //! C header: [`include/asm-generic/io.h`](srctree/include/asm-generic/io.h) 6 7 use crate::error::{code::EINVAL, Result}; 8 use crate::{bindings, build_assert}; 9 10 pub mod resource; 11 12 pub use resource::Resource; 13 14 /// Raw representation of an MMIO region. 15 /// 16 /// By itself, the existence of an instance of this structure does not provide any guarantees that 17 /// the represented MMIO region does exist or is properly mapped. 18 /// 19 /// Instead, the bus specific MMIO implementation must convert this raw representation into an `Io` 20 /// instance providing the actual memory accessors. Only by the conversion into an `Io` structure 21 /// any guarantees are given. 22 pub struct IoRaw<const SIZE: usize = 0> { 23 addr: usize, 24 maxsize: usize, 25 } 26 27 impl<const SIZE: usize> IoRaw<SIZE> { 28 /// Returns a new `IoRaw` instance on success, an error otherwise. 29 pub fn new(addr: usize, maxsize: usize) -> Result<Self> { 30 if maxsize < SIZE { 31 return Err(EINVAL); 32 } 33 34 Ok(Self { addr, maxsize }) 35 } 36 37 /// Returns the base address of the MMIO region. 38 #[inline] 39 pub fn addr(&self) -> usize { 40 self.addr 41 } 42 43 /// Returns the maximum size of the MMIO region. 44 #[inline] 45 pub fn maxsize(&self) -> usize { 46 self.maxsize 47 } 48 } 49 50 /// IO-mapped memory, starting at the base address @addr and spanning @maxlen bytes. 51 /// 52 /// The creator (usually a subsystem / bus such as PCI) is responsible for creating the 53 /// mapping, performing an additional region request etc. 54 /// 55 /// # Invariant 56 /// 57 /// `addr` is the start and `maxsize` the length of valid I/O mapped memory region of size 58 /// `maxsize`. 59 /// 60 /// # Examples 61 /// 62 /// ```no_run 63 /// # use kernel::{bindings, io::{Io, IoRaw}}; 64 /// # use core::ops::Deref; 65 /// 66 /// // See also [`pci::Bar`] for a real example. 67 /// struct IoMem<const SIZE: usize>(IoRaw<SIZE>); 68 /// 69 /// impl<const SIZE: usize> IoMem<SIZE> { 70 /// /// # Safety 71 /// /// 72 /// /// [`paddr`, `paddr` + `SIZE`) must be a valid MMIO region that is mappable into the CPUs 73 /// /// virtual address space. 74 /// unsafe fn new(paddr: usize) -> Result<Self>{ 75 /// // SAFETY: By the safety requirements of this function [`paddr`, `paddr` + `SIZE`) is 76 /// // valid for `ioremap`. 77 /// let addr = unsafe { bindings::ioremap(paddr as _, SIZE as _) }; 78 /// if addr.is_null() { 79 /// return Err(ENOMEM); 80 /// } 81 /// 82 /// Ok(IoMem(IoRaw::new(addr as _, SIZE)?)) 83 /// } 84 /// } 85 /// 86 /// impl<const SIZE: usize> Drop for IoMem<SIZE> { 87 /// fn drop(&mut self) { 88 /// // SAFETY: `self.0.addr()` is guaranteed to be properly mapped by `Self::new`. 89 /// unsafe { bindings::iounmap(self.0.addr() as _); }; 90 /// } 91 /// } 92 /// 93 /// impl<const SIZE: usize> Deref for IoMem<SIZE> { 94 /// type Target = Io<SIZE>; 95 /// 96 /// fn deref(&self) -> &Self::Target { 97 /// // SAFETY: The memory range stored in `self` has been properly mapped in `Self::new`. 98 /// unsafe { Io::from_raw(&self.0) } 99 /// } 100 /// } 101 /// 102 ///# fn no_run() -> Result<(), Error> { 103 /// // SAFETY: Invalid usage for example purposes. 104 /// let iomem = unsafe { IoMem::<{ core::mem::size_of::<u32>() }>::new(0xBAAAAAAD)? }; 105 /// iomem.write32(0x42, 0x0); 106 /// assert!(iomem.try_write32(0x42, 0x0).is_ok()); 107 /// assert!(iomem.try_write32(0x42, 0x4).is_err()); 108 /// # Ok(()) 109 /// # } 110 /// ``` 111 #[repr(transparent)] 112 pub struct Io<const SIZE: usize = 0>(IoRaw<SIZE>); 113 114 macro_rules! define_read { 115 ($(#[$attr:meta])* $name:ident, $try_name:ident, $c_fn:ident -> $type_name:ty) => { 116 /// Read IO data from a given offset known at compile time. 117 /// 118 /// Bound checks are performed on compile time, hence if the offset is not known at compile 119 /// time, the build will fail. 120 $(#[$attr])* 121 #[inline] 122 pub fn $name(&self, offset: usize) -> $type_name { 123 let addr = self.io_addr_assert::<$type_name>(offset); 124 125 // SAFETY: By the type invariant `addr` is a valid address for MMIO operations. 126 unsafe { bindings::$c_fn(addr as _) } 127 } 128 129 /// Read IO data from a given offset. 130 /// 131 /// Bound checks are performed on runtime, it fails if the offset (plus the type size) is 132 /// out of bounds. 133 $(#[$attr])* 134 pub fn $try_name(&self, offset: usize) -> Result<$type_name> { 135 let addr = self.io_addr::<$type_name>(offset)?; 136 137 // SAFETY: By the type invariant `addr` is a valid address for MMIO operations. 138 Ok(unsafe { bindings::$c_fn(addr as _) }) 139 } 140 }; 141 } 142 143 macro_rules! define_write { 144 ($(#[$attr:meta])* $name:ident, $try_name:ident, $c_fn:ident <- $type_name:ty) => { 145 /// Write IO data from a given offset known at compile time. 146 /// 147 /// Bound checks are performed on compile time, hence if the offset is not known at compile 148 /// time, the build will fail. 149 $(#[$attr])* 150 #[inline] 151 pub fn $name(&self, value: $type_name, offset: usize) { 152 let addr = self.io_addr_assert::<$type_name>(offset); 153 154 // SAFETY: By the type invariant `addr` is a valid address for MMIO operations. 155 unsafe { bindings::$c_fn(value, addr as _, ) } 156 } 157 158 /// Write IO data from a given offset. 159 /// 160 /// Bound checks are performed on runtime, it fails if the offset (plus the type size) is 161 /// out of bounds. 162 $(#[$attr])* 163 pub fn $try_name(&self, value: $type_name, offset: usize) -> Result { 164 let addr = self.io_addr::<$type_name>(offset)?; 165 166 // SAFETY: By the type invariant `addr` is a valid address for MMIO operations. 167 unsafe { bindings::$c_fn(value, addr as _) } 168 Ok(()) 169 } 170 }; 171 } 172 173 impl<const SIZE: usize> Io<SIZE> { 174 /// Converts an `IoRaw` into an `Io` instance, providing the accessors to the MMIO mapping. 175 /// 176 /// # Safety 177 /// 178 /// Callers must ensure that `addr` is the start of a valid I/O mapped memory region of size 179 /// `maxsize`. 180 pub unsafe fn from_raw(raw: &IoRaw<SIZE>) -> &Self { 181 // SAFETY: `Io` is a transparent wrapper around `IoRaw`. 182 unsafe { &*core::ptr::from_ref(raw).cast() } 183 } 184 185 /// Returns the base address of this mapping. 186 #[inline] 187 pub fn addr(&self) -> usize { 188 self.0.addr() 189 } 190 191 /// Returns the maximum size of this mapping. 192 #[inline] 193 pub fn maxsize(&self) -> usize { 194 self.0.maxsize() 195 } 196 197 #[inline] 198 const fn offset_valid<U>(offset: usize, size: usize) -> bool { 199 let type_size = core::mem::size_of::<U>(); 200 if let Some(end) = offset.checked_add(type_size) { 201 end <= size && offset % type_size == 0 202 } else { 203 false 204 } 205 } 206 207 #[inline] 208 fn io_addr<U>(&self, offset: usize) -> Result<usize> { 209 if !Self::offset_valid::<U>(offset, self.maxsize()) { 210 return Err(EINVAL); 211 } 212 213 // Probably no need to check, since the safety requirements of `Self::new` guarantee that 214 // this can't overflow. 215 self.addr().checked_add(offset).ok_or(EINVAL) 216 } 217 218 #[inline] 219 fn io_addr_assert<U>(&self, offset: usize) -> usize { 220 build_assert!(Self::offset_valid::<U>(offset, SIZE)); 221 222 self.addr() + offset 223 } 224 225 define_read!(read8, try_read8, readb -> u8); 226 define_read!(read16, try_read16, readw -> u16); 227 define_read!(read32, try_read32, readl -> u32); 228 define_read!( 229 #[cfg(CONFIG_64BIT)] 230 read64, 231 try_read64, 232 readq -> u64 233 ); 234 235 define_read!(read8_relaxed, try_read8_relaxed, readb_relaxed -> u8); 236 define_read!(read16_relaxed, try_read16_relaxed, readw_relaxed -> u16); 237 define_read!(read32_relaxed, try_read32_relaxed, readl_relaxed -> u32); 238 define_read!( 239 #[cfg(CONFIG_64BIT)] 240 read64_relaxed, 241 try_read64_relaxed, 242 readq_relaxed -> u64 243 ); 244 245 define_write!(write8, try_write8, writeb <- u8); 246 define_write!(write16, try_write16, writew <- u16); 247 define_write!(write32, try_write32, writel <- u32); 248 define_write!( 249 #[cfg(CONFIG_64BIT)] 250 write64, 251 try_write64, 252 writeq <- u64 253 ); 254 255 define_write!(write8_relaxed, try_write8_relaxed, writeb_relaxed <- u8); 256 define_write!(write16_relaxed, try_write16_relaxed, writew_relaxed <- u16); 257 define_write!(write32_relaxed, try_write32_relaxed, writel_relaxed <- u32); 258 define_write!( 259 #[cfg(CONFIG_64BIT)] 260 write64_relaxed, 261 try_write64_relaxed, 262 writeq_relaxed <- u64 263 ); 264 } 265