xref: /linux/rust/kernel/io.rs (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Memory-mapped IO.
4 //!
5 //! C header: [`include/asm-generic/io.h`](srctree/include/asm-generic/io.h)
6 
7 use crate::error::{code::EINVAL, Result};
8 use crate::{bindings, build_assert, ffi::c_void};
9 
10 pub mod mem;
11 pub mod poll;
12 pub mod resource;
13 
14 pub use resource::Resource;
15 
16 /// Raw representation of an MMIO region.
17 ///
18 /// By itself, the existence of an instance of this structure does not provide any guarantees that
19 /// the represented MMIO region does exist or is properly mapped.
20 ///
21 /// Instead, the bus specific MMIO implementation must convert this raw representation into an `Io`
22 /// instance providing the actual memory accessors. Only by the conversion into an `Io` structure
23 /// any guarantees are given.
24 pub struct IoRaw<const SIZE: usize = 0> {
25     addr: usize,
26     maxsize: usize,
27 }
28 
29 impl<const SIZE: usize> IoRaw<SIZE> {
30     /// Returns a new `IoRaw` instance on success, an error otherwise.
31     pub fn new(addr: usize, maxsize: usize) -> Result<Self> {
32         if maxsize < SIZE {
33             return Err(EINVAL);
34         }
35 
36         Ok(Self { addr, maxsize })
37     }
38 
39     /// Returns the base address of the MMIO region.
40     #[inline]
41     pub fn addr(&self) -> usize {
42         self.addr
43     }
44 
45     /// Returns the maximum size of the MMIO region.
46     #[inline]
47     pub fn maxsize(&self) -> usize {
48         self.maxsize
49     }
50 }
51 
52 /// IO-mapped memory region.
53 ///
54 /// The creator (usually a subsystem / bus such as PCI) is responsible for creating the
55 /// mapping, performing an additional region request etc.
56 ///
57 /// # Invariant
58 ///
59 /// `addr` is the start and `maxsize` the length of valid I/O mapped memory region of size
60 /// `maxsize`.
61 ///
62 /// # Examples
63 ///
64 /// ```no_run
65 /// # use kernel::{bindings, ffi::c_void, io::{Io, IoRaw}};
66 /// # use core::ops::Deref;
67 ///
68 /// // See also [`pci::Bar`] for a real example.
69 /// struct IoMem<const SIZE: usize>(IoRaw<SIZE>);
70 ///
71 /// impl<const SIZE: usize> IoMem<SIZE> {
72 ///     /// # Safety
73 ///     ///
74 ///     /// [`paddr`, `paddr` + `SIZE`) must be a valid MMIO region that is mappable into the CPUs
75 ///     /// virtual address space.
76 ///     unsafe fn new(paddr: usize) -> Result<Self>{
77 ///         // SAFETY: By the safety requirements of this function [`paddr`, `paddr` + `SIZE`) is
78 ///         // valid for `ioremap`.
79 ///         let addr = unsafe { bindings::ioremap(paddr as bindings::phys_addr_t, SIZE) };
80 ///         if addr.is_null() {
81 ///             return Err(ENOMEM);
82 ///         }
83 ///
84 ///         Ok(IoMem(IoRaw::new(addr as usize, SIZE)?))
85 ///     }
86 /// }
87 ///
88 /// impl<const SIZE: usize> Drop for IoMem<SIZE> {
89 ///     fn drop(&mut self) {
90 ///         // SAFETY: `self.0.addr()` is guaranteed to be properly mapped by `Self::new`.
91 ///         unsafe { bindings::iounmap(self.0.addr() as *mut c_void); };
92 ///     }
93 /// }
94 ///
95 /// impl<const SIZE: usize> Deref for IoMem<SIZE> {
96 ///    type Target = Io<SIZE>;
97 ///
98 ///    fn deref(&self) -> &Self::Target {
99 ///         // SAFETY: The memory range stored in `self` has been properly mapped in `Self::new`.
100 ///         unsafe { Io::from_raw(&self.0) }
101 ///    }
102 /// }
103 ///
104 ///# fn no_run() -> Result<(), Error> {
105 /// // SAFETY: Invalid usage for example purposes.
106 /// let iomem = unsafe { IoMem::<{ core::mem::size_of::<u32>() }>::new(0xBAAAAAAD)? };
107 /// iomem.write32(0x42, 0x0);
108 /// assert!(iomem.try_write32(0x42, 0x0).is_ok());
109 /// assert!(iomem.try_write32(0x42, 0x4).is_err());
110 /// # Ok(())
111 /// # }
112 /// ```
113 #[repr(transparent)]
114 pub struct Io<const SIZE: usize = 0>(IoRaw<SIZE>);
115 
116 macro_rules! define_read {
117     ($(#[$attr:meta])* $name:ident, $try_name:ident, $c_fn:ident -> $type_name:ty) => {
118         /// Read IO data from a given offset known at compile time.
119         ///
120         /// Bound checks are performed on compile time, hence if the offset is not known at compile
121         /// time, the build will fail.
122         $(#[$attr])*
123         #[inline]
124         pub fn $name(&self, offset: usize) -> $type_name {
125             let addr = self.io_addr_assert::<$type_name>(offset);
126 
127             // SAFETY: By the type invariant `addr` is a valid address for MMIO operations.
128             unsafe { bindings::$c_fn(addr as *const c_void) }
129         }
130 
131         /// Read IO data from a given offset.
132         ///
133         /// Bound checks are performed on runtime, it fails if the offset (plus the type size) is
134         /// out of bounds.
135         $(#[$attr])*
136         pub fn $try_name(&self, offset: usize) -> Result<$type_name> {
137             let addr = self.io_addr::<$type_name>(offset)?;
138 
139             // SAFETY: By the type invariant `addr` is a valid address for MMIO operations.
140             Ok(unsafe { bindings::$c_fn(addr as *const c_void) })
141         }
142     };
143 }
144 
145 macro_rules! define_write {
146     ($(#[$attr:meta])* $name:ident, $try_name:ident, $c_fn:ident <- $type_name:ty) => {
147         /// Write IO data from a given offset known at compile time.
148         ///
149         /// Bound checks are performed on compile time, hence if the offset is not known at compile
150         /// time, the build will fail.
151         $(#[$attr])*
152         #[inline]
153         pub fn $name(&self, value: $type_name, offset: usize) {
154             let addr = self.io_addr_assert::<$type_name>(offset);
155 
156             // SAFETY: By the type invariant `addr` is a valid address for MMIO operations.
157             unsafe { bindings::$c_fn(value, addr as *mut c_void) }
158         }
159 
160         /// Write IO data from a given offset.
161         ///
162         /// Bound checks are performed on runtime, it fails if the offset (plus the type size) is
163         /// out of bounds.
164         $(#[$attr])*
165         pub fn $try_name(&self, value: $type_name, offset: usize) -> Result {
166             let addr = self.io_addr::<$type_name>(offset)?;
167 
168             // SAFETY: By the type invariant `addr` is a valid address for MMIO operations.
169             unsafe { bindings::$c_fn(value, addr as *mut c_void) }
170             Ok(())
171         }
172     };
173 }
174 
175 impl<const SIZE: usize> Io<SIZE> {
176     /// Converts an `IoRaw` into an `Io` instance, providing the accessors to the MMIO mapping.
177     ///
178     /// # Safety
179     ///
180     /// Callers must ensure that `addr` is the start of a valid I/O mapped memory region of size
181     /// `maxsize`.
182     pub unsafe fn from_raw(raw: &IoRaw<SIZE>) -> &Self {
183         // SAFETY: `Io` is a transparent wrapper around `IoRaw`.
184         unsafe { &*core::ptr::from_ref(raw).cast() }
185     }
186 
187     /// Returns the base address of this mapping.
188     #[inline]
189     pub fn addr(&self) -> usize {
190         self.0.addr()
191     }
192 
193     /// Returns the maximum size of this mapping.
194     #[inline]
195     pub fn maxsize(&self) -> usize {
196         self.0.maxsize()
197     }
198 
199     #[inline]
200     const fn offset_valid<U>(offset: usize, size: usize) -> bool {
201         let type_size = core::mem::size_of::<U>();
202         if let Some(end) = offset.checked_add(type_size) {
203             end <= size && offset % type_size == 0
204         } else {
205             false
206         }
207     }
208 
209     #[inline]
210     fn io_addr<U>(&self, offset: usize) -> Result<usize> {
211         if !Self::offset_valid::<U>(offset, self.maxsize()) {
212             return Err(EINVAL);
213         }
214 
215         // Probably no need to check, since the safety requirements of `Self::new` guarantee that
216         // this can't overflow.
217         self.addr().checked_add(offset).ok_or(EINVAL)
218     }
219 
220     #[inline]
221     fn io_addr_assert<U>(&self, offset: usize) -> usize {
222         build_assert!(Self::offset_valid::<U>(offset, SIZE));
223 
224         self.addr() + offset
225     }
226 
227     define_read!(read8, try_read8, readb -> u8);
228     define_read!(read16, try_read16, readw -> u16);
229     define_read!(read32, try_read32, readl -> u32);
230     define_read!(
231         #[cfg(CONFIG_64BIT)]
232         read64,
233         try_read64,
234         readq -> u64
235     );
236 
237     define_read!(read8_relaxed, try_read8_relaxed, readb_relaxed -> u8);
238     define_read!(read16_relaxed, try_read16_relaxed, readw_relaxed -> u16);
239     define_read!(read32_relaxed, try_read32_relaxed, readl_relaxed -> u32);
240     define_read!(
241         #[cfg(CONFIG_64BIT)]
242         read64_relaxed,
243         try_read64_relaxed,
244         readq_relaxed -> u64
245     );
246 
247     define_write!(write8, try_write8, writeb <- u8);
248     define_write!(write16, try_write16, writew <- u16);
249     define_write!(write32, try_write32, writel <- u32);
250     define_write!(
251         #[cfg(CONFIG_64BIT)]
252         write64,
253         try_write64,
254         writeq <- u64
255     );
256 
257     define_write!(write8_relaxed, try_write8_relaxed, writeb_relaxed <- u8);
258     define_write!(write16_relaxed, try_write16_relaxed, writew_relaxed <- u16);
259     define_write!(write32_relaxed, try_write32_relaxed, writel_relaxed <- u32);
260     define_write!(
261         #[cfg(CONFIG_64BIT)]
262         write64_relaxed,
263         try_write64_relaxed,
264         writeq_relaxed <- u64
265     );
266 }
267