1 // SPDX-License-Identifier: Apache-2.0 OR MIT 2 3 //! API to safely and fallibly initialize pinned `struct`s using in-place constructors. 4 //! 5 //! It also allows in-place initialization of big `struct`s that would otherwise produce a stack 6 //! overflow. 7 //! 8 //! Most `struct`s from the [`sync`] module need to be pinned, because they contain self-referential 9 //! `struct`s from C. [Pinning][pinning] is Rust's way of ensuring data does not move. 10 //! 11 //! # Overview 12 //! 13 //! To initialize a `struct` with an in-place constructor you will need two things: 14 //! - an in-place constructor, 15 //! - a memory location that can hold your `struct` (this can be the [stack], an [`Arc<T>`], 16 //! [`UniqueArc<T>`], [`KBox<T>`] or any other smart pointer that implements [`InPlaceInit`]). 17 //! 18 //! To get an in-place constructor there are generally three options: 19 //! - directly creating an in-place constructor using the [`pin_init!`] macro, 20 //! - a custom function/macro returning an in-place constructor provided by someone else, 21 //! - using the unsafe function [`pin_init_from_closure()`] to manually create an initializer. 22 //! 23 //! Aside from pinned initialization, this API also supports in-place construction without pinning, 24 //! the macros/types/functions are generally named like the pinned variants without the `pin` 25 //! prefix. 26 //! 27 //! # Examples 28 //! 29 //! ## Using the [`pin_init!`] macro 30 //! 31 //! If you want to use [`PinInit`], then you will have to annotate your `struct` with 32 //! `#[`[`pin_data`]`]`. It is a macro that uses `#[pin]` as a marker for 33 //! [structurally pinned fields]. After doing this, you can then create an in-place constructor via 34 //! [`pin_init!`]. The syntax is almost the same as normal `struct` initializers. The difference is 35 //! that you need to write `<-` instead of `:` for fields that you want to initialize in-place. 36 //! 37 //! ```rust 38 //! # #![expect(clippy::disallowed_names)] 39 //! use kernel::sync::{new_mutex, Mutex}; 40 //! # use core::pin::Pin; 41 //! #[pin_data] 42 //! struct Foo { 43 //! #[pin] 44 //! a: Mutex<usize>, 45 //! b: u32, 46 //! } 47 //! 48 //! let foo = pin_init!(Foo { 49 //! a <- new_mutex!(42, "Foo::a"), 50 //! b: 24, 51 //! }); 52 //! ``` 53 //! 54 //! `foo` now is of the type [`impl PinInit<Foo>`]. We can now use any smart pointer that we like 55 //! (or just the stack) to actually initialize a `Foo`: 56 //! 57 //! ```rust 58 //! # #![expect(clippy::disallowed_names)] 59 //! # use kernel::sync::{new_mutex, Mutex}; 60 //! # use core::pin::Pin; 61 //! # #[pin_data] 62 //! # struct Foo { 63 //! # #[pin] 64 //! # a: Mutex<usize>, 65 //! # b: u32, 66 //! # } 67 //! # let foo = pin_init!(Foo { 68 //! # a <- new_mutex!(42, "Foo::a"), 69 //! # b: 24, 70 //! # }); 71 //! let foo: Result<Pin<KBox<Foo>>> = KBox::pin_init(foo, GFP_KERNEL); 72 //! ``` 73 //! 74 //! For more information see the [`pin_init!`] macro. 75 //! 76 //! ## Using a custom function/macro that returns an initializer 77 //! 78 //! Many types from the kernel supply a function/macro that returns an initializer, because the 79 //! above method only works for types where you can access the fields. 80 //! 81 //! ```rust 82 //! # use kernel::sync::{new_mutex, Arc, Mutex}; 83 //! let mtx: Result<Arc<Mutex<usize>>> = 84 //! Arc::pin_init(new_mutex!(42, "example::mtx"), GFP_KERNEL); 85 //! ``` 86 //! 87 //! To declare an init macro/function you just return an [`impl PinInit<T, E>`]: 88 //! 89 //! ```rust 90 //! # use kernel::{sync::Mutex, new_mutex, init::PinInit, try_pin_init}; 91 //! #[pin_data] 92 //! struct DriverData { 93 //! #[pin] 94 //! status: Mutex<i32>, 95 //! buffer: KBox<[u8; 1_000_000]>, 96 //! } 97 //! 98 //! impl DriverData { 99 //! fn new() -> impl PinInit<Self, Error> { 100 //! try_pin_init!(Self { 101 //! status <- new_mutex!(0, "DriverData::status"), 102 //! buffer: KBox::init(kernel::init::zeroed(), GFP_KERNEL)?, 103 //! }) 104 //! } 105 //! } 106 //! ``` 107 //! 108 //! ## Manual creation of an initializer 109 //! 110 //! Often when working with primitives the previous approaches are not sufficient. That is where 111 //! [`pin_init_from_closure()`] comes in. This `unsafe` function allows you to create a 112 //! [`impl PinInit<T, E>`] directly from a closure. Of course you have to ensure that the closure 113 //! actually does the initialization in the correct way. Here are the things to look out for 114 //! (we are calling the parameter to the closure `slot`): 115 //! - when the closure returns `Ok(())`, then it has completed the initialization successfully, so 116 //! `slot` now contains a valid bit pattern for the type `T`, 117 //! - when the closure returns `Err(e)`, then the caller may deallocate the memory at `slot`, so 118 //! you need to take care to clean up anything if your initialization fails mid-way, 119 //! - you may assume that `slot` will stay pinned even after the closure returns until `drop` of 120 //! `slot` gets called. 121 //! 122 //! ```rust 123 //! # #![expect(unreachable_pub, clippy::disallowed_names)] 124 //! use kernel::{init, types::Opaque}; 125 //! use core::{ptr::addr_of_mut, marker::PhantomPinned, pin::Pin}; 126 //! # mod bindings { 127 //! # #![expect(non_camel_case_types)] 128 //! # #![expect(clippy::missing_safety_doc)] 129 //! # pub struct foo; 130 //! # pub unsafe fn init_foo(_ptr: *mut foo) {} 131 //! # pub unsafe fn destroy_foo(_ptr: *mut foo) {} 132 //! # pub unsafe fn enable_foo(_ptr: *mut foo, _flags: u32) -> i32 { 0 } 133 //! # } 134 //! # // `Error::from_errno` is `pub(crate)` in the `kernel` crate, thus provide a workaround. 135 //! # trait FromErrno { 136 //! # fn from_errno(errno: kernel::ffi::c_int) -> Error { 137 //! # // Dummy error that can be constructed outside the `kernel` crate. 138 //! # Error::from(core::fmt::Error) 139 //! # } 140 //! # } 141 //! # impl FromErrno for Error {} 142 //! /// # Invariants 143 //! /// 144 //! /// `foo` is always initialized 145 //! #[pin_data(PinnedDrop)] 146 //! pub struct RawFoo { 147 //! #[pin] 148 //! foo: Opaque<bindings::foo>, 149 //! #[pin] 150 //! _p: PhantomPinned, 151 //! } 152 //! 153 //! impl RawFoo { 154 //! pub fn new(flags: u32) -> impl PinInit<Self, Error> { 155 //! // SAFETY: 156 //! // - when the closure returns `Ok(())`, then it has successfully initialized and 157 //! // enabled `foo`, 158 //! // - when it returns `Err(e)`, then it has cleaned up before 159 //! unsafe { 160 //! init::pin_init_from_closure(move |slot: *mut Self| { 161 //! // `slot` contains uninit memory, avoid creating a reference. 162 //! let foo = addr_of_mut!((*slot).foo); 163 //! 164 //! // Initialize the `foo` 165 //! bindings::init_foo(Opaque::raw_get(foo)); 166 //! 167 //! // Try to enable it. 168 //! let err = bindings::enable_foo(Opaque::raw_get(foo), flags); 169 //! if err != 0 { 170 //! // Enabling has failed, first clean up the foo and then return the error. 171 //! bindings::destroy_foo(Opaque::raw_get(foo)); 172 //! return Err(Error::from_errno(err)); 173 //! } 174 //! 175 //! // All fields of `RawFoo` have been initialized, since `_p` is a ZST. 176 //! Ok(()) 177 //! }) 178 //! } 179 //! } 180 //! } 181 //! 182 //! #[pinned_drop] 183 //! impl PinnedDrop for RawFoo { 184 //! fn drop(self: Pin<&mut Self>) { 185 //! // SAFETY: Since `foo` is initialized, destroying is safe. 186 //! unsafe { bindings::destroy_foo(self.foo.get()) }; 187 //! } 188 //! } 189 //! ``` 190 //! 191 //! For the special case where initializing a field is a single FFI-function call that cannot fail, 192 //! there exist the helper function [`Opaque::ffi_init`]. This function initialize a single 193 //! [`Opaque`] field by just delegating to the supplied closure. You can use these in combination 194 //! with [`pin_init!`]. 195 //! 196 //! For more information on how to use [`pin_init_from_closure()`], take a look at the uses inside 197 //! the `kernel` crate. The [`sync`] module is a good starting point. 198 //! 199 //! [`sync`]: kernel::sync 200 //! [pinning]: https://doc.rust-lang.org/std/pin/index.html 201 //! [structurally pinned fields]: 202 //! https://doc.rust-lang.org/std/pin/index.html#pinning-is-structural-for-field 203 //! [stack]: crate::stack_pin_init 204 //! [`Arc<T>`]: crate::sync::Arc 205 //! [`impl PinInit<Foo>`]: PinInit 206 //! [`impl PinInit<T, E>`]: PinInit 207 //! [`impl Init<T, E>`]: Init 208 //! [`Opaque`]: kernel::types::Opaque 209 //! [`Opaque::ffi_init`]: kernel::types::Opaque::ffi_init 210 //! [`pin_data`]: ::macros::pin_data 211 //! [`pin_init!`]: crate::pin_init! 212 213 use crate::{ 214 alloc::{AllocError, Flags, KBox}, 215 error::{self, Error}, 216 sync::Arc, 217 sync::UniqueArc, 218 types::{Opaque, ScopeGuard}, 219 }; 220 use core::{ 221 cell::UnsafeCell, 222 convert::Infallible, 223 marker::PhantomData, 224 mem::MaybeUninit, 225 num::*, 226 pin::Pin, 227 ptr::{self, NonNull}, 228 }; 229 230 #[doc(hidden)] 231 pub mod __internal; 232 #[doc(hidden)] 233 pub mod macros; 234 235 /// Initialize and pin a type directly on the stack. 236 /// 237 /// # Examples 238 /// 239 /// ```rust 240 /// # #![expect(clippy::disallowed_names)] 241 /// # use kernel::{init, macros::pin_data, pin_init, stack_pin_init, init::*, sync::Mutex, new_mutex}; 242 /// # use core::pin::Pin; 243 /// #[pin_data] 244 /// struct Foo { 245 /// #[pin] 246 /// a: Mutex<usize>, 247 /// b: Bar, 248 /// } 249 /// 250 /// #[pin_data] 251 /// struct Bar { 252 /// x: u32, 253 /// } 254 /// 255 /// stack_pin_init!(let foo = pin_init!(Foo { 256 /// a <- new_mutex!(42), 257 /// b: Bar { 258 /// x: 64, 259 /// }, 260 /// })); 261 /// let foo: Pin<&mut Foo> = foo; 262 /// pr_info!("a: {}", &*foo.a.lock()); 263 /// ``` 264 /// 265 /// # Syntax 266 /// 267 /// A normal `let` binding with optional type annotation. The expression is expected to implement 268 /// [`PinInit`]/[`Init`] with the error type [`Infallible`]. If you want to use a different error 269 /// type, then use [`stack_try_pin_init!`]. 270 /// 271 /// [`stack_try_pin_init!`]: crate::stack_try_pin_init! 272 #[macro_export] 273 macro_rules! stack_pin_init { 274 (let $var:ident $(: $t:ty)? = $val:expr) => { 275 let val = $val; 276 let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit()); 277 let mut $var = match $crate::init::__internal::StackInit::init($var, val) { 278 Ok(res) => res, 279 Err(x) => { 280 let x: ::core::convert::Infallible = x; 281 match x {} 282 } 283 }; 284 }; 285 } 286 287 /// Initialize and pin a type directly on the stack. 288 /// 289 /// # Examples 290 /// 291 /// ```rust,ignore 292 /// # #![expect(clippy::disallowed_names)] 293 /// # use kernel::{ 294 /// # init, 295 /// # pin_init, 296 /// # stack_try_pin_init, 297 /// # init::*, 298 /// # sync::Mutex, 299 /// # new_mutex, 300 /// # alloc::AllocError, 301 /// # }; 302 /// # use macros::pin_data; 303 /// # use core::pin::Pin; 304 /// #[pin_data] 305 /// struct Foo { 306 /// #[pin] 307 /// a: Mutex<usize>, 308 /// b: KBox<Bar>, 309 /// } 310 /// 311 /// struct Bar { 312 /// x: u32, 313 /// } 314 /// 315 /// stack_try_pin_init!(let foo: Result<Pin<&mut Foo>, AllocError> = pin_init!(Foo { 316 /// a <- new_mutex!(42), 317 /// b: KBox::new(Bar { 318 /// x: 64, 319 /// }, GFP_KERNEL)?, 320 /// })); 321 /// let foo = foo.unwrap(); 322 /// pr_info!("a: {}", &*foo.a.lock()); 323 /// ``` 324 /// 325 /// ```rust,ignore 326 /// # #![expect(clippy::disallowed_names)] 327 /// # use kernel::{ 328 /// # init, 329 /// # pin_init, 330 /// # stack_try_pin_init, 331 /// # init::*, 332 /// # sync::Mutex, 333 /// # new_mutex, 334 /// # alloc::AllocError, 335 /// # }; 336 /// # use macros::pin_data; 337 /// # use core::pin::Pin; 338 /// #[pin_data] 339 /// struct Foo { 340 /// #[pin] 341 /// a: Mutex<usize>, 342 /// b: KBox<Bar>, 343 /// } 344 /// 345 /// struct Bar { 346 /// x: u32, 347 /// } 348 /// 349 /// stack_try_pin_init!(let foo: Pin<&mut Foo> =? pin_init!(Foo { 350 /// a <- new_mutex!(42), 351 /// b: KBox::new(Bar { 352 /// x: 64, 353 /// }, GFP_KERNEL)?, 354 /// })); 355 /// pr_info!("a: {}", &*foo.a.lock()); 356 /// # Ok::<_, AllocError>(()) 357 /// ``` 358 /// 359 /// # Syntax 360 /// 361 /// A normal `let` binding with optional type annotation. The expression is expected to implement 362 /// [`PinInit`]/[`Init`]. This macro assigns a result to the given variable, adding a `?` after the 363 /// `=` will propagate this error. 364 #[macro_export] 365 macro_rules! stack_try_pin_init { 366 (let $var:ident $(: $t:ty)? = $val:expr) => { 367 let val = $val; 368 let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit()); 369 let mut $var = $crate::init::__internal::StackInit::init($var, val); 370 }; 371 (let $var:ident $(: $t:ty)? =? $val:expr) => { 372 let val = $val; 373 let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit()); 374 let mut $var = $crate::init::__internal::StackInit::init($var, val)?; 375 }; 376 } 377 378 /// Construct an in-place, pinned initializer for `struct`s. 379 /// 380 /// This macro defaults the error to [`Infallible`]. If you need [`Error`], then use 381 /// [`try_pin_init!`]. 382 /// 383 /// The syntax is almost identical to that of a normal `struct` initializer: 384 /// 385 /// ```rust 386 /// # use kernel::{init, pin_init, macros::pin_data, init::*}; 387 /// # use core::pin::Pin; 388 /// #[pin_data] 389 /// struct Foo { 390 /// a: usize, 391 /// b: Bar, 392 /// } 393 /// 394 /// #[pin_data] 395 /// struct Bar { 396 /// x: u32, 397 /// } 398 /// 399 /// # fn demo() -> impl PinInit<Foo> { 400 /// let a = 42; 401 /// 402 /// let initializer = pin_init!(Foo { 403 /// a, 404 /// b: Bar { 405 /// x: 64, 406 /// }, 407 /// }); 408 /// # initializer } 409 /// # KBox::pin_init(demo(), GFP_KERNEL).unwrap(); 410 /// ``` 411 /// 412 /// Arbitrary Rust expressions can be used to set the value of a variable. 413 /// 414 /// The fields are initialized in the order that they appear in the initializer. So it is possible 415 /// to read already initialized fields using raw pointers. 416 /// 417 /// IMPORTANT: You are not allowed to create references to fields of the struct inside of the 418 /// initializer. 419 /// 420 /// # Init-functions 421 /// 422 /// When working with this API it is often desired to let others construct your types without 423 /// giving access to all fields. This is where you would normally write a plain function `new` 424 /// that would return a new instance of your type. With this API that is also possible. 425 /// However, there are a few extra things to keep in mind. 426 /// 427 /// To create an initializer function, simply declare it like this: 428 /// 429 /// ```rust 430 /// # use kernel::{init, pin_init, init::*}; 431 /// # use core::pin::Pin; 432 /// # #[pin_data] 433 /// # struct Foo { 434 /// # a: usize, 435 /// # b: Bar, 436 /// # } 437 /// # #[pin_data] 438 /// # struct Bar { 439 /// # x: u32, 440 /// # } 441 /// impl Foo { 442 /// fn new() -> impl PinInit<Self> { 443 /// pin_init!(Self { 444 /// a: 42, 445 /// b: Bar { 446 /// x: 64, 447 /// }, 448 /// }) 449 /// } 450 /// } 451 /// ``` 452 /// 453 /// Users of `Foo` can now create it like this: 454 /// 455 /// ```rust 456 /// # #![expect(clippy::disallowed_names)] 457 /// # use kernel::{init, pin_init, macros::pin_data, init::*}; 458 /// # use core::pin::Pin; 459 /// # #[pin_data] 460 /// # struct Foo { 461 /// # a: usize, 462 /// # b: Bar, 463 /// # } 464 /// # #[pin_data] 465 /// # struct Bar { 466 /// # x: u32, 467 /// # } 468 /// # impl Foo { 469 /// # fn new() -> impl PinInit<Self> { 470 /// # pin_init!(Self { 471 /// # a: 42, 472 /// # b: Bar { 473 /// # x: 64, 474 /// # }, 475 /// # }) 476 /// # } 477 /// # } 478 /// let foo = KBox::pin_init(Foo::new(), GFP_KERNEL); 479 /// ``` 480 /// 481 /// They can also easily embed it into their own `struct`s: 482 /// 483 /// ```rust 484 /// # use kernel::{init, pin_init, macros::pin_data, init::*}; 485 /// # use core::pin::Pin; 486 /// # #[pin_data] 487 /// # struct Foo { 488 /// # a: usize, 489 /// # b: Bar, 490 /// # } 491 /// # #[pin_data] 492 /// # struct Bar { 493 /// # x: u32, 494 /// # } 495 /// # impl Foo { 496 /// # fn new() -> impl PinInit<Self> { 497 /// # pin_init!(Self { 498 /// # a: 42, 499 /// # b: Bar { 500 /// # x: 64, 501 /// # }, 502 /// # }) 503 /// # } 504 /// # } 505 /// #[pin_data] 506 /// struct FooContainer { 507 /// #[pin] 508 /// foo1: Foo, 509 /// #[pin] 510 /// foo2: Foo, 511 /// other: u32, 512 /// } 513 /// 514 /// impl FooContainer { 515 /// fn new(other: u32) -> impl PinInit<Self> { 516 /// pin_init!(Self { 517 /// foo1 <- Foo::new(), 518 /// foo2 <- Foo::new(), 519 /// other, 520 /// }) 521 /// } 522 /// } 523 /// ``` 524 /// 525 /// Here we see that when using `pin_init!` with `PinInit`, one needs to write `<-` instead of `:`. 526 /// This signifies that the given field is initialized in-place. As with `struct` initializers, just 527 /// writing the field (in this case `other`) without `:` or `<-` means `other: other,`. 528 /// 529 /// # Syntax 530 /// 531 /// As already mentioned in the examples above, inside of `pin_init!` a `struct` initializer with 532 /// the following modifications is expected: 533 /// - Fields that you want to initialize in-place have to use `<-` instead of `:`. 534 /// - In front of the initializer you can write `&this in` to have access to a [`NonNull<Self>`] 535 /// pointer named `this` inside of the initializer. 536 /// - Using struct update syntax one can place `..Zeroable::zeroed()` at the very end of the 537 /// struct, this initializes every field with 0 and then runs all initializers specified in the 538 /// body. This can only be done if [`Zeroable`] is implemented for the struct. 539 /// 540 /// For instance: 541 /// 542 /// ```rust 543 /// # use kernel::{macros::{Zeroable, pin_data}, pin_init}; 544 /// # use core::{ptr::addr_of_mut, marker::PhantomPinned}; 545 /// #[pin_data] 546 /// #[derive(Zeroable)] 547 /// struct Buf { 548 /// // `ptr` points into `buf`. 549 /// ptr: *mut u8, 550 /// buf: [u8; 64], 551 /// #[pin] 552 /// pin: PhantomPinned, 553 /// } 554 /// pin_init!(&this in Buf { 555 /// buf: [0; 64], 556 /// // SAFETY: TODO. 557 /// ptr: unsafe { addr_of_mut!((*this.as_ptr()).buf).cast() }, 558 /// pin: PhantomPinned, 559 /// }); 560 /// pin_init!(Buf { 561 /// buf: [1; 64], 562 /// ..Zeroable::zeroed() 563 /// }); 564 /// ``` 565 /// 566 /// [`try_pin_init!`]: kernel::try_pin_init 567 /// [`NonNull<Self>`]: core::ptr::NonNull 568 // For a detailed example of how this macro works, see the module documentation of the hidden 569 // module `__internal` inside of `init/__internal.rs`. 570 #[macro_export] 571 macro_rules! pin_init { 572 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 573 $($fields:tt)* 574 }) => { 575 $crate::__init_internal!( 576 @this($($this)?), 577 @typ($t $(::<$($generics),*>)?), 578 @fields($($fields)*), 579 @error(::core::convert::Infallible), 580 @data(PinData, use_data), 581 @has_data(HasPinData, __pin_data), 582 @construct_closure(pin_init_from_closure), 583 @munch_fields($($fields)*), 584 ) 585 }; 586 } 587 588 /// Construct an in-place, fallible pinned initializer for `struct`s. 589 /// 590 /// If the initialization can complete without error (or [`Infallible`]), then use [`pin_init!`]. 591 /// 592 /// You can use the `?` operator or use `return Err(err)` inside the initializer to stop 593 /// initialization and return the error. 594 /// 595 /// IMPORTANT: if you have `unsafe` code inside of the initializer you have to ensure that when 596 /// initialization fails, the memory can be safely deallocated without any further modifications. 597 /// 598 /// This macro defaults the error to [`Error`]. 599 /// 600 /// The syntax is identical to [`pin_init!`] with the following exception: you can append `? $type` 601 /// after the `struct` initializer to specify the error type you want to use. 602 /// 603 /// # Examples 604 /// 605 /// ```rust 606 /// use kernel::{init::{self, PinInit}, error::Error}; 607 /// #[pin_data] 608 /// struct BigBuf { 609 /// big: KBox<[u8; 1024 * 1024 * 1024]>, 610 /// small: [u8; 1024 * 1024], 611 /// ptr: *mut u8, 612 /// } 613 /// 614 /// impl BigBuf { 615 /// fn new() -> impl PinInit<Self, Error> { 616 /// try_pin_init!(Self { 617 /// big: KBox::init(init::zeroed(), GFP_KERNEL)?, 618 /// small: [0; 1024 * 1024], 619 /// ptr: core::ptr::null_mut(), 620 /// }? Error) 621 /// } 622 /// } 623 /// ``` 624 // For a detailed example of how this macro works, see the module documentation of the hidden 625 // module `__internal` inside of `init/__internal.rs`. 626 #[macro_export] 627 macro_rules! try_pin_init { 628 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 629 $($fields:tt)* 630 }) => { 631 $crate::__init_internal!( 632 @this($($this)?), 633 @typ($t $(::<$($generics),*>)? ), 634 @fields($($fields)*), 635 @error($crate::error::Error), 636 @data(PinData, use_data), 637 @has_data(HasPinData, __pin_data), 638 @construct_closure(pin_init_from_closure), 639 @munch_fields($($fields)*), 640 ) 641 }; 642 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 643 $($fields:tt)* 644 }? $err:ty) => { 645 $crate::__init_internal!( 646 @this($($this)?), 647 @typ($t $(::<$($generics),*>)? ), 648 @fields($($fields)*), 649 @error($err), 650 @data(PinData, use_data), 651 @has_data(HasPinData, __pin_data), 652 @construct_closure(pin_init_from_closure), 653 @munch_fields($($fields)*), 654 ) 655 }; 656 } 657 658 /// Construct an in-place initializer for `struct`s. 659 /// 660 /// This macro defaults the error to [`Infallible`]. If you need [`Error`], then use 661 /// [`try_init!`]. 662 /// 663 /// The syntax is identical to [`pin_init!`] and its safety caveats also apply: 664 /// - `unsafe` code must guarantee either full initialization or return an error and allow 665 /// deallocation of the memory. 666 /// - the fields are initialized in the order given in the initializer. 667 /// - no references to fields are allowed to be created inside of the initializer. 668 /// 669 /// This initializer is for initializing data in-place that might later be moved. If you want to 670 /// pin-initialize, use [`pin_init!`]. 671 /// 672 /// [`try_init!`]: crate::try_init! 673 // For a detailed example of how this macro works, see the module documentation of the hidden 674 // module `__internal` inside of `init/__internal.rs`. 675 #[macro_export] 676 macro_rules! init { 677 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 678 $($fields:tt)* 679 }) => { 680 $crate::__init_internal!( 681 @this($($this)?), 682 @typ($t $(::<$($generics),*>)?), 683 @fields($($fields)*), 684 @error(::core::convert::Infallible), 685 @data(InitData, /*no use_data*/), 686 @has_data(HasInitData, __init_data), 687 @construct_closure(init_from_closure), 688 @munch_fields($($fields)*), 689 ) 690 } 691 } 692 693 /// Construct an in-place fallible initializer for `struct`s. 694 /// 695 /// This macro defaults the error to [`Error`]. If you need [`Infallible`], then use 696 /// [`init!`]. 697 /// 698 /// The syntax is identical to [`try_pin_init!`]. If you want to specify a custom error, 699 /// append `? $type` after the `struct` initializer. 700 /// The safety caveats from [`try_pin_init!`] also apply: 701 /// - `unsafe` code must guarantee either full initialization or return an error and allow 702 /// deallocation of the memory. 703 /// - the fields are initialized in the order given in the initializer. 704 /// - no references to fields are allowed to be created inside of the initializer. 705 /// 706 /// # Examples 707 /// 708 /// ```rust 709 /// use kernel::{alloc::KBox, init::{PinInit, zeroed}, error::Error}; 710 /// struct BigBuf { 711 /// big: KBox<[u8; 1024 * 1024 * 1024]>, 712 /// small: [u8; 1024 * 1024], 713 /// } 714 /// 715 /// impl BigBuf { 716 /// fn new() -> impl Init<Self, Error> { 717 /// try_init!(Self { 718 /// big: KBox::init(zeroed(), GFP_KERNEL)?, 719 /// small: [0; 1024 * 1024], 720 /// }? Error) 721 /// } 722 /// } 723 /// ``` 724 // For a detailed example of how this macro works, see the module documentation of the hidden 725 // module `__internal` inside of `init/__internal.rs`. 726 #[macro_export] 727 macro_rules! try_init { 728 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 729 $($fields:tt)* 730 }) => { 731 $crate::__init_internal!( 732 @this($($this)?), 733 @typ($t $(::<$($generics),*>)?), 734 @fields($($fields)*), 735 @error($crate::error::Error), 736 @data(InitData, /*no use_data*/), 737 @has_data(HasInitData, __init_data), 738 @construct_closure(init_from_closure), 739 @munch_fields($($fields)*), 740 ) 741 }; 742 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 743 $($fields:tt)* 744 }? $err:ty) => { 745 $crate::__init_internal!( 746 @this($($this)?), 747 @typ($t $(::<$($generics),*>)?), 748 @fields($($fields)*), 749 @error($err), 750 @data(InitData, /*no use_data*/), 751 @has_data(HasInitData, __init_data), 752 @construct_closure(init_from_closure), 753 @munch_fields($($fields)*), 754 ) 755 }; 756 } 757 758 /// Asserts that a field on a struct using `#[pin_data]` is marked with `#[pin]` ie. that it is 759 /// structurally pinned. 760 /// 761 /// # Example 762 /// 763 /// This will succeed: 764 /// ``` 765 /// use kernel::assert_pinned; 766 /// #[pin_data] 767 /// struct MyStruct { 768 /// #[pin] 769 /// some_field: u64, 770 /// } 771 /// 772 /// assert_pinned!(MyStruct, some_field, u64); 773 /// ``` 774 /// 775 /// This will fail: 776 // TODO: replace with `compile_fail` when supported. 777 /// ```ignore 778 /// use kernel::assert_pinned; 779 /// #[pin_data] 780 /// struct MyStruct { 781 /// some_field: u64, 782 /// } 783 /// 784 /// assert_pinned!(MyStruct, some_field, u64); 785 /// ``` 786 /// 787 /// Some uses of the macro may trigger the `can't use generic parameters from outer item` error. To 788 /// work around this, you may pass the `inline` parameter to the macro. The `inline` parameter can 789 /// only be used when the macro is invoked from a function body. 790 /// ``` 791 /// use kernel::assert_pinned; 792 /// #[pin_data] 793 /// struct Foo<T> { 794 /// #[pin] 795 /// elem: T, 796 /// } 797 /// 798 /// impl<T> Foo<T> { 799 /// fn project(self: Pin<&mut Self>) -> Pin<&mut T> { 800 /// assert_pinned!(Foo<T>, elem, T, inline); 801 /// 802 /// // SAFETY: The field is structurally pinned. 803 /// unsafe { self.map_unchecked_mut(|me| &mut me.elem) } 804 /// } 805 /// } 806 /// ``` 807 #[macro_export] 808 macro_rules! assert_pinned { 809 ($ty:ty, $field:ident, $field_ty:ty, inline) => { 810 let _ = move |ptr: *mut $field_ty| { 811 // SAFETY: This code is unreachable. 812 let data = unsafe { <$ty as $crate::init::__internal::HasPinData>::__pin_data() }; 813 let init = $crate::init::__internal::AlwaysFail::<$field_ty>::new(); 814 // SAFETY: This code is unreachable. 815 unsafe { data.$field(ptr, init) }.ok(); 816 }; 817 }; 818 819 ($ty:ty, $field:ident, $field_ty:ty) => { 820 const _: () = { 821 $crate::assert_pinned!($ty, $field, $field_ty, inline); 822 }; 823 }; 824 } 825 826 /// A pin-initializer for the type `T`. 827 /// 828 /// To use this initializer, you will need a suitable memory location that can hold a `T`. This can 829 /// be [`KBox<T>`], [`Arc<T>`], [`UniqueArc<T>`] or even the stack (see [`stack_pin_init!`]). Use 830 /// the [`InPlaceInit::pin_init`] function of a smart pointer like [`Arc<T>`] on this. 831 /// 832 /// Also see the [module description](self). 833 /// 834 /// # Safety 835 /// 836 /// When implementing this trait you will need to take great care. Also there are probably very few 837 /// cases where a manual implementation is necessary. Use [`pin_init_from_closure`] where possible. 838 /// 839 /// The [`PinInit::__pinned_init`] function: 840 /// - returns `Ok(())` if it initialized every field of `slot`, 841 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 842 /// - `slot` can be deallocated without UB occurring, 843 /// - `slot` does not need to be dropped, 844 /// - `slot` is not partially initialized. 845 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 846 /// 847 /// [`Arc<T>`]: crate::sync::Arc 848 /// [`Arc::pin_init`]: crate::sync::Arc::pin_init 849 #[must_use = "An initializer must be used in order to create its value."] 850 pub unsafe trait PinInit<T: ?Sized, E = Infallible>: Sized { 851 /// Initializes `slot`. 852 /// 853 /// # Safety 854 /// 855 /// - `slot` is a valid pointer to uninitialized memory. 856 /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to 857 /// deallocate. 858 /// - `slot` will not move until it is dropped, i.e. it will be pinned. 859 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E>; 860 861 /// First initializes the value using `self` then calls the function `f` with the initialized 862 /// value. 863 /// 864 /// If `f` returns an error the value is dropped and the initializer will forward the error. 865 /// 866 /// # Examples 867 /// 868 /// ```rust 869 /// # #![expect(clippy::disallowed_names)] 870 /// use kernel::{types::Opaque, init::pin_init_from_closure}; 871 /// #[repr(C)] 872 /// struct RawFoo([u8; 16]); 873 /// extern { 874 /// fn init_foo(_: *mut RawFoo); 875 /// } 876 /// 877 /// #[pin_data] 878 /// struct Foo { 879 /// #[pin] 880 /// raw: Opaque<RawFoo>, 881 /// } 882 /// 883 /// impl Foo { 884 /// fn setup(self: Pin<&mut Self>) { 885 /// pr_info!("Setting up foo"); 886 /// } 887 /// } 888 /// 889 /// let foo = pin_init!(Foo { 890 /// // SAFETY: TODO. 891 /// raw <- unsafe { 892 /// Opaque::ffi_init(|s| { 893 /// init_foo(s); 894 /// }) 895 /// }, 896 /// }).pin_chain(|foo| { 897 /// foo.setup(); 898 /// Ok(()) 899 /// }); 900 /// ``` 901 fn pin_chain<F>(self, f: F) -> ChainPinInit<Self, F, T, E> 902 where 903 F: FnOnce(Pin<&mut T>) -> Result<(), E>, 904 { 905 ChainPinInit(self, f, PhantomData) 906 } 907 } 908 909 /// An initializer returned by [`PinInit::pin_chain`]. 910 pub struct ChainPinInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, KBox<T>)>); 911 912 // SAFETY: The `__pinned_init` function is implemented such that it 913 // - returns `Ok(())` on successful initialization, 914 // - returns `Err(err)` on error and in this case `slot` will be dropped. 915 // - considers `slot` pinned. 916 unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainPinInit<I, F, T, E> 917 where 918 I: PinInit<T, E>, 919 F: FnOnce(Pin<&mut T>) -> Result<(), E>, 920 { 921 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> { 922 // SAFETY: All requirements fulfilled since this function is `__pinned_init`. 923 unsafe { self.0.__pinned_init(slot)? }; 924 // SAFETY: The above call initialized `slot` and we still have unique access. 925 let val = unsafe { &mut *slot }; 926 // SAFETY: `slot` is considered pinned. 927 let val = unsafe { Pin::new_unchecked(val) }; 928 // SAFETY: `slot` was initialized above. 929 (self.1)(val).inspect_err(|_| unsafe { core::ptr::drop_in_place(slot) }) 930 } 931 } 932 933 /// An initializer for `T`. 934 /// 935 /// To use this initializer, you will need a suitable memory location that can hold a `T`. This can 936 /// be [`KBox<T>`], [`Arc<T>`], [`UniqueArc<T>`] or even the stack (see [`stack_pin_init!`]). Use 937 /// the [`InPlaceInit::init`] function of a smart pointer like [`Arc<T>`] on this. Because 938 /// [`PinInit<T, E>`] is a super trait, you can use every function that takes it as well. 939 /// 940 /// Also see the [module description](self). 941 /// 942 /// # Safety 943 /// 944 /// When implementing this trait you will need to take great care. Also there are probably very few 945 /// cases where a manual implementation is necessary. Use [`init_from_closure`] where possible. 946 /// 947 /// The [`Init::__init`] function: 948 /// - returns `Ok(())` if it initialized every field of `slot`, 949 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 950 /// - `slot` can be deallocated without UB occurring, 951 /// - `slot` does not need to be dropped, 952 /// - `slot` is not partially initialized. 953 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 954 /// 955 /// The `__pinned_init` function from the supertrait [`PinInit`] needs to execute the exact same 956 /// code as `__init`. 957 /// 958 /// Contrary to its supertype [`PinInit<T, E>`] the caller is allowed to 959 /// move the pointee after initialization. 960 /// 961 /// [`Arc<T>`]: crate::sync::Arc 962 #[must_use = "An initializer must be used in order to create its value."] 963 pub unsafe trait Init<T: ?Sized, E = Infallible>: PinInit<T, E> { 964 /// Initializes `slot`. 965 /// 966 /// # Safety 967 /// 968 /// - `slot` is a valid pointer to uninitialized memory. 969 /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to 970 /// deallocate. 971 unsafe fn __init(self, slot: *mut T) -> Result<(), E>; 972 973 /// First initializes the value using `self` then calls the function `f` with the initialized 974 /// value. 975 /// 976 /// If `f` returns an error the value is dropped and the initializer will forward the error. 977 /// 978 /// # Examples 979 /// 980 /// ```rust 981 /// # #![expect(clippy::disallowed_names)] 982 /// use kernel::{types::Opaque, init::{self, init_from_closure}}; 983 /// struct Foo { 984 /// buf: [u8; 1_000_000], 985 /// } 986 /// 987 /// impl Foo { 988 /// fn setup(&mut self) { 989 /// pr_info!("Setting up foo"); 990 /// } 991 /// } 992 /// 993 /// let foo = init!(Foo { 994 /// buf <- init::zeroed() 995 /// }).chain(|foo| { 996 /// foo.setup(); 997 /// Ok(()) 998 /// }); 999 /// ``` 1000 fn chain<F>(self, f: F) -> ChainInit<Self, F, T, E> 1001 where 1002 F: FnOnce(&mut T) -> Result<(), E>, 1003 { 1004 ChainInit(self, f, PhantomData) 1005 } 1006 } 1007 1008 /// An initializer returned by [`Init::chain`]. 1009 pub struct ChainInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, KBox<T>)>); 1010 1011 // SAFETY: The `__init` function is implemented such that it 1012 // - returns `Ok(())` on successful initialization, 1013 // - returns `Err(err)` on error and in this case `slot` will be dropped. 1014 unsafe impl<T: ?Sized, E, I, F> Init<T, E> for ChainInit<I, F, T, E> 1015 where 1016 I: Init<T, E>, 1017 F: FnOnce(&mut T) -> Result<(), E>, 1018 { 1019 unsafe fn __init(self, slot: *mut T) -> Result<(), E> { 1020 // SAFETY: All requirements fulfilled since this function is `__init`. 1021 unsafe { self.0.__pinned_init(slot)? }; 1022 // SAFETY: The above call initialized `slot` and we still have unique access. 1023 (self.1)(unsafe { &mut *slot }).inspect_err(|_| 1024 // SAFETY: `slot` was initialized above. 1025 unsafe { core::ptr::drop_in_place(slot) }) 1026 } 1027 } 1028 1029 // SAFETY: `__pinned_init` behaves exactly the same as `__init`. 1030 unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainInit<I, F, T, E> 1031 where 1032 I: Init<T, E>, 1033 F: FnOnce(&mut T) -> Result<(), E>, 1034 { 1035 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> { 1036 // SAFETY: `__init` has less strict requirements compared to `__pinned_init`. 1037 unsafe { self.__init(slot) } 1038 } 1039 } 1040 1041 /// Creates a new [`PinInit<T, E>`] from the given closure. 1042 /// 1043 /// # Safety 1044 /// 1045 /// The closure: 1046 /// - returns `Ok(())` if it initialized every field of `slot`, 1047 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 1048 /// - `slot` can be deallocated without UB occurring, 1049 /// - `slot` does not need to be dropped, 1050 /// - `slot` is not partially initialized. 1051 /// - may assume that the `slot` does not move if `T: !Unpin`, 1052 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 1053 #[inline] 1054 pub const unsafe fn pin_init_from_closure<T: ?Sized, E>( 1055 f: impl FnOnce(*mut T) -> Result<(), E>, 1056 ) -> impl PinInit<T, E> { 1057 __internal::InitClosure(f, PhantomData) 1058 } 1059 1060 /// Creates a new [`Init<T, E>`] from the given closure. 1061 /// 1062 /// # Safety 1063 /// 1064 /// The closure: 1065 /// - returns `Ok(())` if it initialized every field of `slot`, 1066 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 1067 /// - `slot` can be deallocated without UB occurring, 1068 /// - `slot` does not need to be dropped, 1069 /// - `slot` is not partially initialized. 1070 /// - the `slot` may move after initialization. 1071 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 1072 #[inline] 1073 pub const unsafe fn init_from_closure<T: ?Sized, E>( 1074 f: impl FnOnce(*mut T) -> Result<(), E>, 1075 ) -> impl Init<T, E> { 1076 __internal::InitClosure(f, PhantomData) 1077 } 1078 1079 /// An initializer that leaves the memory uninitialized. 1080 /// 1081 /// The initializer is a no-op. The `slot` memory is not changed. 1082 #[inline] 1083 pub fn uninit<T, E>() -> impl Init<MaybeUninit<T>, E> { 1084 // SAFETY: The memory is allowed to be uninitialized. 1085 unsafe { init_from_closure(|_| Ok(())) } 1086 } 1087 1088 /// Initializes an array by initializing each element via the provided initializer. 1089 /// 1090 /// # Examples 1091 /// 1092 /// ```rust 1093 /// use kernel::{alloc::KBox, error::Error, init::init_array_from_fn}; 1094 /// let array: KBox<[usize; 1_000]> = 1095 /// KBox::init::<Error>(init_array_from_fn(|i| i), GFP_KERNEL)?; 1096 /// assert_eq!(array.len(), 1_000); 1097 /// # Ok::<(), Error>(()) 1098 /// ``` 1099 pub fn init_array_from_fn<I, const N: usize, T, E>( 1100 mut make_init: impl FnMut(usize) -> I, 1101 ) -> impl Init<[T; N], E> 1102 where 1103 I: Init<T, E>, 1104 { 1105 let init = move |slot: *mut [T; N]| { 1106 let slot = slot.cast::<T>(); 1107 // Counts the number of initialized elements and when dropped drops that many elements from 1108 // `slot`. 1109 let mut init_count = ScopeGuard::new_with_data(0, |i| { 1110 // We now free every element that has been initialized before. 1111 // SAFETY: The loop initialized exactly the values from 0..i and since we 1112 // return `Err` below, the caller will consider the memory at `slot` as 1113 // uninitialized. 1114 unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) }; 1115 }); 1116 for i in 0..N { 1117 let init = make_init(i); 1118 // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`. 1119 let ptr = unsafe { slot.add(i) }; 1120 // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init` 1121 // requirements. 1122 unsafe { init.__init(ptr) }?; 1123 *init_count += 1; 1124 } 1125 init_count.dismiss(); 1126 Ok(()) 1127 }; 1128 // SAFETY: The initializer above initializes every element of the array. On failure it drops 1129 // any initialized elements and returns `Err`. 1130 unsafe { init_from_closure(init) } 1131 } 1132 1133 /// Initializes an array by initializing each element via the provided initializer. 1134 /// 1135 /// # Examples 1136 /// 1137 /// ```rust 1138 /// use kernel::{sync::{Arc, Mutex}, init::pin_init_array_from_fn, new_mutex}; 1139 /// let array: Arc<[Mutex<usize>; 1_000]> = 1140 /// Arc::pin_init(pin_init_array_from_fn(|i| new_mutex!(i)), GFP_KERNEL)?; 1141 /// assert_eq!(array.len(), 1_000); 1142 /// # Ok::<(), Error>(()) 1143 /// ``` 1144 pub fn pin_init_array_from_fn<I, const N: usize, T, E>( 1145 mut make_init: impl FnMut(usize) -> I, 1146 ) -> impl PinInit<[T; N], E> 1147 where 1148 I: PinInit<T, E>, 1149 { 1150 let init = move |slot: *mut [T; N]| { 1151 let slot = slot.cast::<T>(); 1152 // Counts the number of initialized elements and when dropped drops that many elements from 1153 // `slot`. 1154 let mut init_count = ScopeGuard::new_with_data(0, |i| { 1155 // We now free every element that has been initialized before. 1156 // SAFETY: The loop initialized exactly the values from 0..i and since we 1157 // return `Err` below, the caller will consider the memory at `slot` as 1158 // uninitialized. 1159 unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) }; 1160 }); 1161 for i in 0..N { 1162 let init = make_init(i); 1163 // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`. 1164 let ptr = unsafe { slot.add(i) }; 1165 // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init` 1166 // requirements. 1167 unsafe { init.__pinned_init(ptr) }?; 1168 *init_count += 1; 1169 } 1170 init_count.dismiss(); 1171 Ok(()) 1172 }; 1173 // SAFETY: The initializer above initializes every element of the array. On failure it drops 1174 // any initialized elements and returns `Err`. 1175 unsafe { pin_init_from_closure(init) } 1176 } 1177 1178 // SAFETY: Every type can be initialized by-value. 1179 unsafe impl<T, E> Init<T, E> for T { 1180 unsafe fn __init(self, slot: *mut T) -> Result<(), E> { 1181 // SAFETY: TODO. 1182 unsafe { slot.write(self) }; 1183 Ok(()) 1184 } 1185 } 1186 1187 // SAFETY: Every type can be initialized by-value. `__pinned_init` calls `__init`. 1188 unsafe impl<T, E> PinInit<T, E> for T { 1189 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> { 1190 // SAFETY: TODO. 1191 unsafe { self.__init(slot) } 1192 } 1193 } 1194 1195 /// Smart pointer that can initialize memory in-place. 1196 pub trait InPlaceInit<T>: Sized { 1197 /// Pinned version of `Self`. 1198 /// 1199 /// If a type already implicitly pins its pointee, `Pin<Self>` is unnecessary. In this case use 1200 /// `Self`, otherwise just use `Pin<Self>`. 1201 type PinnedSelf; 1202 1203 /// Use the given pin-initializer to pin-initialize a `T` inside of a new smart pointer of this 1204 /// type. 1205 /// 1206 /// If `T: !Unpin` it will not be able to move afterwards. 1207 fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E> 1208 where 1209 E: From<AllocError>; 1210 1211 /// Use the given pin-initializer to pin-initialize a `T` inside of a new smart pointer of this 1212 /// type. 1213 /// 1214 /// If `T: !Unpin` it will not be able to move afterwards. 1215 fn pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> error::Result<Self::PinnedSelf> 1216 where 1217 Error: From<E>, 1218 { 1219 // SAFETY: We delegate to `init` and only change the error type. 1220 let init = unsafe { 1221 pin_init_from_closure(|slot| init.__pinned_init(slot).map_err(|e| Error::from(e))) 1222 }; 1223 Self::try_pin_init(init, flags) 1224 } 1225 1226 /// Use the given initializer to in-place initialize a `T`. 1227 fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E> 1228 where 1229 E: From<AllocError>; 1230 1231 /// Use the given initializer to in-place initialize a `T`. 1232 fn init<E>(init: impl Init<T, E>, flags: Flags) -> error::Result<Self> 1233 where 1234 Error: From<E>, 1235 { 1236 // SAFETY: We delegate to `init` and only change the error type. 1237 let init = unsafe { 1238 init_from_closure(|slot| init.__pinned_init(slot).map_err(|e| Error::from(e))) 1239 }; 1240 Self::try_init(init, flags) 1241 } 1242 } 1243 1244 impl<T> InPlaceInit<T> for Arc<T> { 1245 type PinnedSelf = Self; 1246 1247 #[inline] 1248 fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E> 1249 where 1250 E: From<AllocError>, 1251 { 1252 UniqueArc::try_pin_init(init, flags).map(|u| u.into()) 1253 } 1254 1255 #[inline] 1256 fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E> 1257 where 1258 E: From<AllocError>, 1259 { 1260 UniqueArc::try_init(init, flags).map(|u| u.into()) 1261 } 1262 } 1263 1264 impl<T> InPlaceInit<T> for UniqueArc<T> { 1265 type PinnedSelf = Pin<Self>; 1266 1267 #[inline] 1268 fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E> 1269 where 1270 E: From<AllocError>, 1271 { 1272 UniqueArc::new_uninit(flags)?.write_pin_init(init) 1273 } 1274 1275 #[inline] 1276 fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E> 1277 where 1278 E: From<AllocError>, 1279 { 1280 UniqueArc::new_uninit(flags)?.write_init(init) 1281 } 1282 } 1283 1284 /// Smart pointer containing uninitialized memory and that can write a value. 1285 pub trait InPlaceWrite<T> { 1286 /// The type `Self` turns into when the contents are initialized. 1287 type Initialized; 1288 1289 /// Use the given initializer to write a value into `self`. 1290 /// 1291 /// Does not drop the current value and considers it as uninitialized memory. 1292 fn write_init<E>(self, init: impl Init<T, E>) -> Result<Self::Initialized, E>; 1293 1294 /// Use the given pin-initializer to write a value into `self`. 1295 /// 1296 /// Does not drop the current value and considers it as uninitialized memory. 1297 fn write_pin_init<E>(self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E>; 1298 } 1299 1300 impl<T> InPlaceWrite<T> for UniqueArc<MaybeUninit<T>> { 1301 type Initialized = UniqueArc<T>; 1302 1303 fn write_init<E>(mut self, init: impl Init<T, E>) -> Result<Self::Initialized, E> { 1304 let slot = self.as_mut_ptr(); 1305 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 1306 // slot is valid. 1307 unsafe { init.__init(slot)? }; 1308 // SAFETY: All fields have been initialized. 1309 Ok(unsafe { self.assume_init() }) 1310 } 1311 1312 fn write_pin_init<E>(mut self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E> { 1313 let slot = self.as_mut_ptr(); 1314 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 1315 // slot is valid and will not be moved, because we pin it later. 1316 unsafe { init.__pinned_init(slot)? }; 1317 // SAFETY: All fields have been initialized. 1318 Ok(unsafe { self.assume_init() }.into()) 1319 } 1320 } 1321 1322 /// Trait facilitating pinned destruction. 1323 /// 1324 /// Use [`pinned_drop`] to implement this trait safely: 1325 /// 1326 /// ```rust 1327 /// # use kernel::sync::Mutex; 1328 /// use kernel::macros::pinned_drop; 1329 /// use core::pin::Pin; 1330 /// #[pin_data(PinnedDrop)] 1331 /// struct Foo { 1332 /// #[pin] 1333 /// mtx: Mutex<usize>, 1334 /// } 1335 /// 1336 /// #[pinned_drop] 1337 /// impl PinnedDrop for Foo { 1338 /// fn drop(self: Pin<&mut Self>) { 1339 /// pr_info!("Foo is being dropped!"); 1340 /// } 1341 /// } 1342 /// ``` 1343 /// 1344 /// # Safety 1345 /// 1346 /// This trait must be implemented via the [`pinned_drop`] proc-macro attribute on the impl. 1347 /// 1348 /// [`pinned_drop`]: kernel::macros::pinned_drop 1349 pub unsafe trait PinnedDrop: __internal::HasPinData { 1350 /// Executes the pinned destructor of this type. 1351 /// 1352 /// While this function is marked safe, it is actually unsafe to call it manually. For this 1353 /// reason it takes an additional parameter. This type can only be constructed by `unsafe` code 1354 /// and thus prevents this function from being called where it should not. 1355 /// 1356 /// This extra parameter will be generated by the `#[pinned_drop]` proc-macro attribute 1357 /// automatically. 1358 fn drop(self: Pin<&mut Self>, only_call_from_drop: __internal::OnlyCallFromDrop); 1359 } 1360 1361 /// Marker trait for types that can be initialized by writing just zeroes. 1362 /// 1363 /// # Safety 1364 /// 1365 /// The bit pattern consisting of only zeroes is a valid bit pattern for this type. In other words, 1366 /// this is not UB: 1367 /// 1368 /// ```rust,ignore 1369 /// let val: Self = unsafe { core::mem::zeroed() }; 1370 /// ``` 1371 pub unsafe trait Zeroable {} 1372 1373 /// Create a new zeroed T. 1374 /// 1375 /// The returned initializer will write `0x00` to every byte of the given `slot`. 1376 #[inline] 1377 pub fn zeroed<T: Zeroable>() -> impl Init<T> { 1378 // SAFETY: Because `T: Zeroable`, all bytes zero is a valid bit pattern for `T` 1379 // and because we write all zeroes, the memory is initialized. 1380 unsafe { 1381 init_from_closure(|slot: *mut T| { 1382 slot.write_bytes(0, 1); 1383 Ok(()) 1384 }) 1385 } 1386 } 1387 1388 macro_rules! impl_zeroable { 1389 ($($({$($generics:tt)*})? $t:ty, )*) => { 1390 // SAFETY: Safety comments written in the macro invocation. 1391 $(unsafe impl$($($generics)*)? Zeroable for $t {})* 1392 }; 1393 } 1394 1395 impl_zeroable! { 1396 // SAFETY: All primitives that are allowed to be zero. 1397 bool, 1398 char, 1399 u8, u16, u32, u64, u128, usize, 1400 i8, i16, i32, i64, i128, isize, 1401 f32, f64, 1402 1403 // Note: do not add uninhabited types (such as `!` or `core::convert::Infallible`) to this list; 1404 // creating an instance of an uninhabited type is immediate undefined behavior. For more on 1405 // uninhabited/empty types, consult The Rustonomicon: 1406 // <https://doc.rust-lang.org/stable/nomicon/exotic-sizes.html#empty-types>. The Rust Reference 1407 // also has information on undefined behavior: 1408 // <https://doc.rust-lang.org/stable/reference/behavior-considered-undefined.html>. 1409 // 1410 // SAFETY: These are inhabited ZSTs; there is nothing to zero and a valid value exists. 1411 {<T: ?Sized>} PhantomData<T>, core::marker::PhantomPinned, (), 1412 1413 // SAFETY: Type is allowed to take any value, including all zeros. 1414 {<T>} MaybeUninit<T>, 1415 // SAFETY: Type is allowed to take any value, including all zeros. 1416 {<T>} Opaque<T>, 1417 1418 // SAFETY: `T: Zeroable` and `UnsafeCell` is `repr(transparent)`. 1419 {<T: ?Sized + Zeroable>} UnsafeCell<T>, 1420 1421 // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee). 1422 Option<NonZeroU8>, Option<NonZeroU16>, Option<NonZeroU32>, Option<NonZeroU64>, 1423 Option<NonZeroU128>, Option<NonZeroUsize>, 1424 Option<NonZeroI8>, Option<NonZeroI16>, Option<NonZeroI32>, Option<NonZeroI64>, 1425 Option<NonZeroI128>, Option<NonZeroIsize>, 1426 1427 // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee). 1428 // 1429 // In this case we are allowed to use `T: ?Sized`, since all zeros is the `None` variant. 1430 {<T: ?Sized>} Option<NonNull<T>>, 1431 {<T: ?Sized>} Option<KBox<T>>, 1432 1433 // SAFETY: `null` pointer is valid. 1434 // 1435 // We cannot use `T: ?Sized`, since the VTABLE pointer part of fat pointers is not allowed to be 1436 // null. 1437 // 1438 // When `Pointee` gets stabilized, we could use 1439 // `T: ?Sized where <T as Pointee>::Metadata: Zeroable` 1440 {<T>} *mut T, {<T>} *const T, 1441 1442 // SAFETY: `null` pointer is valid and the metadata part of these fat pointers is allowed to be 1443 // zero. 1444 {<T>} *mut [T], {<T>} *const [T], *mut str, *const str, 1445 1446 // SAFETY: `T` is `Zeroable`. 1447 {<const N: usize, T: Zeroable>} [T; N], {<T: Zeroable>} Wrapping<T>, 1448 } 1449 1450 macro_rules! impl_tuple_zeroable { 1451 ($(,)?) => {}; 1452 ($first:ident, $($t:ident),* $(,)?) => { 1453 // SAFETY: All elements are zeroable and padding can be zero. 1454 unsafe impl<$first: Zeroable, $($t: Zeroable),*> Zeroable for ($first, $($t),*) {} 1455 impl_tuple_zeroable!($($t),* ,); 1456 } 1457 } 1458 1459 impl_tuple_zeroable!(A, B, C, D, E, F, G, H, I, J); 1460