xref: /linux/rust/kernel/init.rs (revision f2586d921cea4feeddd1cc5ee3495700540dba8f)
1 // SPDX-License-Identifier: Apache-2.0 OR MIT
2 
3 //! API to safely and fallibly initialize pinned `struct`s using in-place constructors.
4 //!
5 //! It also allows in-place initialization of big `struct`s that would otherwise produce a stack
6 //! overflow.
7 //!
8 //! Most `struct`s from the [`sync`] module need to be pinned, because they contain self-referential
9 //! `struct`s from C. [Pinning][pinning] is Rust's way of ensuring data does not move.
10 //!
11 //! # Overview
12 //!
13 //! To initialize a `struct` with an in-place constructor you will need two things:
14 //! - an in-place constructor,
15 //! - a memory location that can hold your `struct` (this can be the [stack], an [`Arc<T>`],
16 //!   [`UniqueArc<T>`], [`Box<T>`] or any other smart pointer that implements [`InPlaceInit`]).
17 //!
18 //! To get an in-place constructor there are generally three options:
19 //! - directly creating an in-place constructor using the [`pin_init!`] macro,
20 //! - a custom function/macro returning an in-place constructor provided by someone else,
21 //! - using the unsafe function [`pin_init_from_closure()`] to manually create an initializer.
22 //!
23 //! Aside from pinned initialization, this API also supports in-place construction without pinning,
24 //! the macros/types/functions are generally named like the pinned variants without the `pin`
25 //! prefix.
26 //!
27 //! # Examples
28 //!
29 //! ## Using the [`pin_init!`] macro
30 //!
31 //! If you want to use [`PinInit`], then you will have to annotate your `struct` with
32 //! `#[`[`pin_data`]`]`. It is a macro that uses `#[pin]` as a marker for
33 //! [structurally pinned fields]. After doing this, you can then create an in-place constructor via
34 //! [`pin_init!`]. The syntax is almost the same as normal `struct` initializers. The difference is
35 //! that you need to write `<-` instead of `:` for fields that you want to initialize in-place.
36 //!
37 //! ```rust
38 //! # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
39 //! use kernel::{prelude::*, sync::Mutex, new_mutex};
40 //! # use core::pin::Pin;
41 //! #[pin_data]
42 //! struct Foo {
43 //!     #[pin]
44 //!     a: Mutex<usize>,
45 //!     b: u32,
46 //! }
47 //!
48 //! let foo = pin_init!(Foo {
49 //!     a <- new_mutex!(42, "Foo::a"),
50 //!     b: 24,
51 //! });
52 //! ```
53 //!
54 //! `foo` now is of the type [`impl PinInit<Foo>`]. We can now use any smart pointer that we like
55 //! (or just the stack) to actually initialize a `Foo`:
56 //!
57 //! ```rust
58 //! # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
59 //! # use kernel::{prelude::*, sync::Mutex, new_mutex};
60 //! # use core::pin::Pin;
61 //! # #[pin_data]
62 //! # struct Foo {
63 //! #     #[pin]
64 //! #     a: Mutex<usize>,
65 //! #     b: u32,
66 //! # }
67 //! # let foo = pin_init!(Foo {
68 //! #     a <- new_mutex!(42, "Foo::a"),
69 //! #     b: 24,
70 //! # });
71 //! let foo: Result<Pin<Box<Foo>>> = Box::pin_init(foo);
72 //! ```
73 //!
74 //! For more information see the [`pin_init!`] macro.
75 //!
76 //! ## Using a custom function/macro that returns an initializer
77 //!
78 //! Many types from the kernel supply a function/macro that returns an initializer, because the
79 //! above method only works for types where you can access the fields.
80 //!
81 //! ```rust
82 //! # use kernel::{new_mutex, sync::{Arc, Mutex}};
83 //! let mtx: Result<Arc<Mutex<usize>>> = Arc::pin_init(new_mutex!(42, "example::mtx"));
84 //! ```
85 //!
86 //! To declare an init macro/function you just return an [`impl PinInit<T, E>`]:
87 //!
88 //! ```rust
89 //! # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
90 //! # use kernel::{sync::Mutex, prelude::*, new_mutex, init::PinInit, try_pin_init};
91 //! #[pin_data]
92 //! struct DriverData {
93 //!     #[pin]
94 //!     status: Mutex<i32>,
95 //!     buffer: Box<[u8; 1_000_000]>,
96 //! }
97 //!
98 //! impl DriverData {
99 //!     fn new() -> impl PinInit<Self, Error> {
100 //!         try_pin_init!(Self {
101 //!             status <- new_mutex!(0, "DriverData::status"),
102 //!             buffer: Box::init(kernel::init::zeroed())?,
103 //!         })
104 //!     }
105 //! }
106 //! ```
107 //!
108 //! ## Manual creation of an initializer
109 //!
110 //! Often when working with primitives the previous approaches are not sufficient. That is where
111 //! [`pin_init_from_closure()`] comes in. This `unsafe` function allows you to create a
112 //! [`impl PinInit<T, E>`] directly from a closure. Of course you have to ensure that the closure
113 //! actually does the initialization in the correct way. Here are the things to look out for
114 //! (we are calling the parameter to the closure `slot`):
115 //! - when the closure returns `Ok(())`, then it has completed the initialization successfully, so
116 //!   `slot` now contains a valid bit pattern for the type `T`,
117 //! - when the closure returns `Err(e)`, then the caller may deallocate the memory at `slot`, so
118 //!   you need to take care to clean up anything if your initialization fails mid-way,
119 //! - you may assume that `slot` will stay pinned even after the closure returns until `drop` of
120 //!   `slot` gets called.
121 //!
122 //! ```rust
123 //! # #![allow(unreachable_pub, clippy::disallowed_names)]
124 //! use kernel::{prelude::*, init, types::Opaque};
125 //! use core::{ptr::addr_of_mut, marker::PhantomPinned, pin::Pin};
126 //! # mod bindings {
127 //! #     #![allow(non_camel_case_types)]
128 //! #     pub struct foo;
129 //! #     pub unsafe fn init_foo(_ptr: *mut foo) {}
130 //! #     pub unsafe fn destroy_foo(_ptr: *mut foo) {}
131 //! #     pub unsafe fn enable_foo(_ptr: *mut foo, _flags: u32) -> i32 { 0 }
132 //! # }
133 //! # // `Error::from_errno` is `pub(crate)` in the `kernel` crate, thus provide a workaround.
134 //! # trait FromErrno {
135 //! #     fn from_errno(errno: core::ffi::c_int) -> Error {
136 //! #         // Dummy error that can be constructed outside the `kernel` crate.
137 //! #         Error::from(core::fmt::Error)
138 //! #     }
139 //! # }
140 //! # impl FromErrno for Error {}
141 //! /// # Invariants
142 //! ///
143 //! /// `foo` is always initialized
144 //! #[pin_data(PinnedDrop)]
145 //! pub struct RawFoo {
146 //!     #[pin]
147 //!     foo: Opaque<bindings::foo>,
148 //!     #[pin]
149 //!     _p: PhantomPinned,
150 //! }
151 //!
152 //! impl RawFoo {
153 //!     pub fn new(flags: u32) -> impl PinInit<Self, Error> {
154 //!         // SAFETY:
155 //!         // - when the closure returns `Ok(())`, then it has successfully initialized and
156 //!         //   enabled `foo`,
157 //!         // - when it returns `Err(e)`, then it has cleaned up before
158 //!         unsafe {
159 //!             init::pin_init_from_closure(move |slot: *mut Self| {
160 //!                 // `slot` contains uninit memory, avoid creating a reference.
161 //!                 let foo = addr_of_mut!((*slot).foo);
162 //!
163 //!                 // Initialize the `foo`
164 //!                 bindings::init_foo(Opaque::raw_get(foo));
165 //!
166 //!                 // Try to enable it.
167 //!                 let err = bindings::enable_foo(Opaque::raw_get(foo), flags);
168 //!                 if err != 0 {
169 //!                     // Enabling has failed, first clean up the foo and then return the error.
170 //!                     bindings::destroy_foo(Opaque::raw_get(foo));
171 //!                     return Err(Error::from_errno(err));
172 //!                 }
173 //!
174 //!                 // All fields of `RawFoo` have been initialized, since `_p` is a ZST.
175 //!                 Ok(())
176 //!             })
177 //!         }
178 //!     }
179 //! }
180 //!
181 //! #[pinned_drop]
182 //! impl PinnedDrop for RawFoo {
183 //!     fn drop(self: Pin<&mut Self>) {
184 //!         // SAFETY: Since `foo` is initialized, destroying is safe.
185 //!         unsafe { bindings::destroy_foo(self.foo.get()) };
186 //!     }
187 //! }
188 //! ```
189 //!
190 //! For the special case where initializing a field is a single FFI-function call that cannot fail,
191 //! there exist the helper function [`Opaque::ffi_init`]. This function initialize a single
192 //! [`Opaque`] field by just delegating to the supplied closure. You can use these in combination
193 //! with [`pin_init!`].
194 //!
195 //! For more information on how to use [`pin_init_from_closure()`], take a look at the uses inside
196 //! the `kernel` crate. The [`sync`] module is a good starting point.
197 //!
198 //! [`sync`]: kernel::sync
199 //! [pinning]: https://doc.rust-lang.org/std/pin/index.html
200 //! [structurally pinned fields]:
201 //!     https://doc.rust-lang.org/std/pin/index.html#pinning-is-structural-for-field
202 //! [stack]: crate::stack_pin_init
203 //! [`Arc<T>`]: crate::sync::Arc
204 //! [`impl PinInit<Foo>`]: PinInit
205 //! [`impl PinInit<T, E>`]: PinInit
206 //! [`impl Init<T, E>`]: Init
207 //! [`Opaque`]: kernel::types::Opaque
208 //! [`Opaque::ffi_init`]: kernel::types::Opaque::ffi_init
209 //! [`pin_data`]: ::macros::pin_data
210 //! [`pin_init!`]: crate::pin_init!
211 
212 use crate::{
213     error::{self, Error},
214     sync::UniqueArc,
215 };
216 use alloc::boxed::Box;
217 use core::{
218     alloc::AllocError,
219     cell::Cell,
220     convert::Infallible,
221     marker::PhantomData,
222     mem::MaybeUninit,
223     num::*,
224     pin::Pin,
225     ptr::{self, NonNull},
226 };
227 
228 #[doc(hidden)]
229 pub mod __internal;
230 #[doc(hidden)]
231 pub mod macros;
232 
233 /// Initialize and pin a type directly on the stack.
234 ///
235 /// # Examples
236 ///
237 /// ```rust
238 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
239 /// # use kernel::{init, macros::pin_data, pin_init, stack_pin_init, init::*, sync::Mutex, new_mutex};
240 /// # use core::pin::Pin;
241 /// #[pin_data]
242 /// struct Foo {
243 ///     #[pin]
244 ///     a: Mutex<usize>,
245 ///     b: Bar,
246 /// }
247 ///
248 /// #[pin_data]
249 /// struct Bar {
250 ///     x: u32,
251 /// }
252 ///
253 /// stack_pin_init!(let foo = pin_init!(Foo {
254 ///     a <- new_mutex!(42),
255 ///     b: Bar {
256 ///         x: 64,
257 ///     },
258 /// }));
259 /// let foo: Pin<&mut Foo> = foo;
260 /// pr_info!("a: {}", &*foo.a.lock());
261 /// ```
262 ///
263 /// # Syntax
264 ///
265 /// A normal `let` binding with optional type annotation. The expression is expected to implement
266 /// [`PinInit`]/[`Init`] with the error type [`Infallible`]. If you want to use a different error
267 /// type, then use [`stack_try_pin_init!`].
268 ///
269 /// [`stack_try_pin_init!`]: crate::stack_try_pin_init!
270 #[macro_export]
271 macro_rules! stack_pin_init {
272     (let $var:ident $(: $t:ty)? = $val:expr) => {
273         let val = $val;
274         let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit());
275         let mut $var = match $crate::init::__internal::StackInit::init($var, val) {
276             Ok(res) => res,
277             Err(x) => {
278                 let x: ::core::convert::Infallible = x;
279                 match x {}
280             }
281         };
282     };
283 }
284 
285 /// Initialize and pin a type directly on the stack.
286 ///
287 /// # Examples
288 ///
289 /// ```rust,ignore
290 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
291 /// # use kernel::{init, pin_init, stack_try_pin_init, init::*, sync::Mutex, new_mutex};
292 /// # use macros::pin_data;
293 /// # use core::{alloc::AllocError, pin::Pin};
294 /// #[pin_data]
295 /// struct Foo {
296 ///     #[pin]
297 ///     a: Mutex<usize>,
298 ///     b: Box<Bar>,
299 /// }
300 ///
301 /// struct Bar {
302 ///     x: u32,
303 /// }
304 ///
305 /// stack_try_pin_init!(let foo: Result<Pin<&mut Foo>, AllocError> = pin_init!(Foo {
306 ///     a <- new_mutex!(42),
307 ///     b: Box::try_new(Bar {
308 ///         x: 64,
309 ///     })?,
310 /// }));
311 /// let foo = foo.unwrap();
312 /// pr_info!("a: {}", &*foo.a.lock());
313 /// ```
314 ///
315 /// ```rust,ignore
316 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
317 /// # use kernel::{init, pin_init, stack_try_pin_init, init::*, sync::Mutex, new_mutex};
318 /// # use macros::pin_data;
319 /// # use core::{alloc::AllocError, pin::Pin};
320 /// #[pin_data]
321 /// struct Foo {
322 ///     #[pin]
323 ///     a: Mutex<usize>,
324 ///     b: Box<Bar>,
325 /// }
326 ///
327 /// struct Bar {
328 ///     x: u32,
329 /// }
330 ///
331 /// stack_try_pin_init!(let foo: Pin<&mut Foo> =? pin_init!(Foo {
332 ///     a <- new_mutex!(42),
333 ///     b: Box::try_new(Bar {
334 ///         x: 64,
335 ///     })?,
336 /// }));
337 /// pr_info!("a: {}", &*foo.a.lock());
338 /// # Ok::<_, AllocError>(())
339 /// ```
340 ///
341 /// # Syntax
342 ///
343 /// A normal `let` binding with optional type annotation. The expression is expected to implement
344 /// [`PinInit`]/[`Init`]. This macro assigns a result to the given variable, adding a `?` after the
345 /// `=` will propagate this error.
346 #[macro_export]
347 macro_rules! stack_try_pin_init {
348     (let $var:ident $(: $t:ty)? = $val:expr) => {
349         let val = $val;
350         let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit());
351         let mut $var = $crate::init::__internal::StackInit::init($var, val);
352     };
353     (let $var:ident $(: $t:ty)? =? $val:expr) => {
354         let val = $val;
355         let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit());
356         let mut $var = $crate::init::__internal::StackInit::init($var, val)?;
357     };
358 }
359 
360 /// Construct an in-place, pinned initializer for `struct`s.
361 ///
362 /// This macro defaults the error to [`Infallible`]. If you need [`Error`], then use
363 /// [`try_pin_init!`].
364 ///
365 /// The syntax is almost identical to that of a normal `struct` initializer:
366 ///
367 /// ```rust
368 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
369 /// # use kernel::{init, pin_init, macros::pin_data, init::*};
370 /// # use core::pin::Pin;
371 /// #[pin_data]
372 /// struct Foo {
373 ///     a: usize,
374 ///     b: Bar,
375 /// }
376 ///
377 /// #[pin_data]
378 /// struct Bar {
379 ///     x: u32,
380 /// }
381 ///
382 /// # fn demo() -> impl PinInit<Foo> {
383 /// let a = 42;
384 ///
385 /// let initializer = pin_init!(Foo {
386 ///     a,
387 ///     b: Bar {
388 ///         x: 64,
389 ///     },
390 /// });
391 /// # initializer }
392 /// # Box::pin_init(demo()).unwrap();
393 /// ```
394 ///
395 /// Arbitrary Rust expressions can be used to set the value of a variable.
396 ///
397 /// The fields are initialized in the order that they appear in the initializer. So it is possible
398 /// to read already initialized fields using raw pointers.
399 ///
400 /// IMPORTANT: You are not allowed to create references to fields of the struct inside of the
401 /// initializer.
402 ///
403 /// # Init-functions
404 ///
405 /// When working with this API it is often desired to let others construct your types without
406 /// giving access to all fields. This is where you would normally write a plain function `new`
407 /// that would return a new instance of your type. With this API that is also possible.
408 /// However, there are a few extra things to keep in mind.
409 ///
410 /// To create an initializer function, simply declare it like this:
411 ///
412 /// ```rust
413 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
414 /// # use kernel::{init, pin_init, prelude::*, init::*};
415 /// # use core::pin::Pin;
416 /// # #[pin_data]
417 /// # struct Foo {
418 /// #     a: usize,
419 /// #     b: Bar,
420 /// # }
421 /// # #[pin_data]
422 /// # struct Bar {
423 /// #     x: u32,
424 /// # }
425 /// impl Foo {
426 ///     fn new() -> impl PinInit<Self> {
427 ///         pin_init!(Self {
428 ///             a: 42,
429 ///             b: Bar {
430 ///                 x: 64,
431 ///             },
432 ///         })
433 ///     }
434 /// }
435 /// ```
436 ///
437 /// Users of `Foo` can now create it like this:
438 ///
439 /// ```rust
440 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
441 /// # use kernel::{init, pin_init, macros::pin_data, init::*};
442 /// # use core::pin::Pin;
443 /// # #[pin_data]
444 /// # struct Foo {
445 /// #     a: usize,
446 /// #     b: Bar,
447 /// # }
448 /// # #[pin_data]
449 /// # struct Bar {
450 /// #     x: u32,
451 /// # }
452 /// # impl Foo {
453 /// #     fn new() -> impl PinInit<Self> {
454 /// #         pin_init!(Self {
455 /// #             a: 42,
456 /// #             b: Bar {
457 /// #                 x: 64,
458 /// #             },
459 /// #         })
460 /// #     }
461 /// # }
462 /// let foo = Box::pin_init(Foo::new());
463 /// ```
464 ///
465 /// They can also easily embed it into their own `struct`s:
466 ///
467 /// ```rust
468 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
469 /// # use kernel::{init, pin_init, macros::pin_data, init::*};
470 /// # use core::pin::Pin;
471 /// # #[pin_data]
472 /// # struct Foo {
473 /// #     a: usize,
474 /// #     b: Bar,
475 /// # }
476 /// # #[pin_data]
477 /// # struct Bar {
478 /// #     x: u32,
479 /// # }
480 /// # impl Foo {
481 /// #     fn new() -> impl PinInit<Self> {
482 /// #         pin_init!(Self {
483 /// #             a: 42,
484 /// #             b: Bar {
485 /// #                 x: 64,
486 /// #             },
487 /// #         })
488 /// #     }
489 /// # }
490 /// #[pin_data]
491 /// struct FooContainer {
492 ///     #[pin]
493 ///     foo1: Foo,
494 ///     #[pin]
495 ///     foo2: Foo,
496 ///     other: u32,
497 /// }
498 ///
499 /// impl FooContainer {
500 ///     fn new(other: u32) -> impl PinInit<Self> {
501 ///         pin_init!(Self {
502 ///             foo1 <- Foo::new(),
503 ///             foo2 <- Foo::new(),
504 ///             other,
505 ///         })
506 ///     }
507 /// }
508 /// ```
509 ///
510 /// Here we see that when using `pin_init!` with `PinInit`, one needs to write `<-` instead of `:`.
511 /// This signifies that the given field is initialized in-place. As with `struct` initializers, just
512 /// writing the field (in this case `other`) without `:` or `<-` means `other: other,`.
513 ///
514 /// # Syntax
515 ///
516 /// As already mentioned in the examples above, inside of `pin_init!` a `struct` initializer with
517 /// the following modifications is expected:
518 /// - Fields that you want to initialize in-place have to use `<-` instead of `:`.
519 /// - In front of the initializer you can write `&this in` to have access to a [`NonNull<Self>`]
520 ///   pointer named `this` inside of the initializer.
521 ///
522 /// For instance:
523 ///
524 /// ```rust
525 /// # use kernel::{macros::pin_data, pin_init};
526 /// # use core::{ptr::addr_of_mut, marker::PhantomPinned};
527 /// #[pin_data]
528 /// struct Buf {
529 ///     // `ptr` points into `buf`.
530 ///     ptr: *mut u8,
531 ///     buf: [u8; 64],
532 ///     #[pin]
533 ///     pin: PhantomPinned,
534 /// }
535 /// pin_init!(&this in Buf {
536 ///     buf: [0; 64],
537 ///     ptr: unsafe { addr_of_mut!((*this.as_ptr()).buf).cast() },
538 ///     pin: PhantomPinned,
539 /// });
540 /// ```
541 ///
542 /// [`try_pin_init!`]: kernel::try_pin_init
543 /// [`NonNull<Self>`]: core::ptr::NonNull
544 // For a detailed example of how this macro works, see the module documentation of the hidden
545 // module `__internal` inside of `init/__internal.rs`.
546 #[macro_export]
547 macro_rules! pin_init {
548     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
549         $($fields:tt)*
550     }) => {
551         $crate::try_pin_init!(
552             @this($($this)?),
553             @typ($t $(::<$($generics),*>)?),
554             @fields($($fields)*),
555             @error(::core::convert::Infallible),
556         )
557     };
558 }
559 
560 /// Construct an in-place, fallible pinned initializer for `struct`s.
561 ///
562 /// If the initialization can complete without error (or [`Infallible`]), then use [`pin_init!`].
563 ///
564 /// You can use the `?` operator or use `return Err(err)` inside the initializer to stop
565 /// initialization and return the error.
566 ///
567 /// IMPORTANT: if you have `unsafe` code inside of the initializer you have to ensure that when
568 /// initialization fails, the memory can be safely deallocated without any further modifications.
569 ///
570 /// This macro defaults the error to [`Error`].
571 ///
572 /// The syntax is identical to [`pin_init!`] with the following exception: you can append `? $type`
573 /// after the `struct` initializer to specify the error type you want to use.
574 ///
575 /// # Examples
576 ///
577 /// ```rust
578 /// # #![feature(new_uninit)]
579 /// use kernel::{init::{self, PinInit}, error::Error};
580 /// #[pin_data]
581 /// struct BigBuf {
582 ///     big: Box<[u8; 1024 * 1024 * 1024]>,
583 ///     small: [u8; 1024 * 1024],
584 ///     ptr: *mut u8,
585 /// }
586 ///
587 /// impl BigBuf {
588 ///     fn new() -> impl PinInit<Self, Error> {
589 ///         try_pin_init!(Self {
590 ///             big: Box::init(init::zeroed())?,
591 ///             small: [0; 1024 * 1024],
592 ///             ptr: core::ptr::null_mut(),
593 ///         }? Error)
594 ///     }
595 /// }
596 /// ```
597 // For a detailed example of how this macro works, see the module documentation of the hidden
598 // module `__internal` inside of `init/__internal.rs`.
599 #[macro_export]
600 macro_rules! try_pin_init {
601     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
602         $($fields:tt)*
603     }) => {
604         $crate::try_pin_init!(
605             @this($($this)?),
606             @typ($t $(::<$($generics),*>)? ),
607             @fields($($fields)*),
608             @error($crate::error::Error),
609         )
610     };
611     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
612         $($fields:tt)*
613     }? $err:ty) => {
614         $crate::try_pin_init!(
615             @this($($this)?),
616             @typ($t $(::<$($generics),*>)? ),
617             @fields($($fields)*),
618             @error($err),
619         )
620     };
621     (
622         @this($($this:ident)?),
623         @typ($t:ident $(::<$($generics:ty),*>)?),
624         @fields($($fields:tt)*),
625         @error($err:ty),
626     ) => {{
627         // We do not want to allow arbitrary returns, so we declare this type as the `Ok` return
628         // type and shadow it later when we insert the arbitrary user code. That way there will be
629         // no possibility of returning without `unsafe`.
630         struct __InitOk;
631         // Get the pin data from the supplied type.
632         let data = unsafe {
633             use $crate::init::__internal::HasPinData;
634             $t$(::<$($generics),*>)?::__pin_data()
635         };
636         // Ensure that `data` really is of type `PinData` and help with type inference:
637         let init = $crate::init::__internal::PinData::make_closure::<_, __InitOk, $err>(
638             data,
639             move |slot| {
640                 {
641                     // Shadow the structure so it cannot be used to return early.
642                     struct __InitOk;
643                     // Create the `this` so it can be referenced by the user inside of the
644                     // expressions creating the individual fields.
645                     $(let $this = unsafe { ::core::ptr::NonNull::new_unchecked(slot) };)?
646                     // Initialize every field.
647                     $crate::try_pin_init!(init_slot:
648                         @data(data),
649                         @slot(slot),
650                         @munch_fields($($fields)*,),
651                     );
652                     // We use unreachable code to ensure that all fields have been mentioned exactly
653                     // once, this struct initializer will still be type-checked and complain with a
654                     // very natural error message if a field is forgotten/mentioned more than once.
655                     #[allow(unreachable_code, clippy::diverging_sub_expression)]
656                     if false {
657                         $crate::try_pin_init!(make_initializer:
658                             @slot(slot),
659                             @type_name($t),
660                             @munch_fields($($fields)*,),
661                             @acc(),
662                         );
663                     }
664                     // Forget all guards, since initialization was a success.
665                     $crate::try_pin_init!(forget_guards:
666                         @munch_fields($($fields)*,),
667                     );
668                 }
669                 Ok(__InitOk)
670             }
671         );
672         let init = move |slot| -> ::core::result::Result<(), $err> {
673             init(slot).map(|__InitOk| ())
674         };
675         let init = unsafe { $crate::init::pin_init_from_closure::<_, $err>(init) };
676         init
677     }};
678     (init_slot:
679         @data($data:ident),
680         @slot($slot:ident),
681         @munch_fields($(,)?),
682     ) => {
683         // Endpoint of munching, no fields are left.
684     };
685     (init_slot:
686         @data($data:ident),
687         @slot($slot:ident),
688         // In-place initialization syntax.
689         @munch_fields($field:ident <- $val:expr, $($rest:tt)*),
690     ) => {
691         let $field = $val;
692         // Call the initializer.
693         //
694         // SAFETY: `slot` is valid, because we are inside of an initializer closure, we
695         // return when an error/panic occurs.
696         // We also use the `data` to require the correct trait (`Init` or `PinInit`) for `$field`.
697         unsafe { $data.$field(::core::ptr::addr_of_mut!((*$slot).$field), $field)? };
698         // Create the drop guard.
699         //
700         // We only give access to `&DropGuard`, so it cannot be forgotten via safe code.
701         //
702         // SAFETY: We forget the guard later when initialization has succeeded.
703         let $field = &unsafe {
704             $crate::init::__internal::DropGuard::new(::core::ptr::addr_of_mut!((*$slot).$field))
705         };
706 
707         $crate::try_pin_init!(init_slot:
708             @data($data),
709             @slot($slot),
710             @munch_fields($($rest)*),
711         );
712     };
713     (init_slot:
714         @data($data:ident),
715         @slot($slot:ident),
716         // Direct value init, this is safe for every field.
717         @munch_fields($field:ident $(: $val:expr)?, $($rest:tt)*),
718     ) => {
719         $(let $field = $val;)?
720         // Initialize the field.
721         //
722         // SAFETY: The memory at `slot` is uninitialized.
723         unsafe { ::core::ptr::write(::core::ptr::addr_of_mut!((*$slot).$field), $field) };
724         // Create the drop guard:
725         //
726         // We only give access to `&DropGuard`, so it cannot be accidentally forgotten.
727         //
728         // SAFETY: We forget the guard later when initialization has succeeded.
729         let $field = &unsafe {
730             $crate::init::__internal::DropGuard::new(::core::ptr::addr_of_mut!((*$slot).$field))
731         };
732 
733         $crate::try_pin_init!(init_slot:
734             @data($data),
735             @slot($slot),
736             @munch_fields($($rest)*),
737         );
738     };
739     (make_initializer:
740         @slot($slot:ident),
741         @type_name($t:ident),
742         @munch_fields($(,)?),
743         @acc($($acc:tt)*),
744     ) => {
745         // Endpoint, nothing more to munch, create the initializer.
746         // Since we are in the `if false` branch, this will never get executed. We abuse `slot` to
747         // get the correct type inference here:
748         unsafe {
749             ::core::ptr::write($slot, $t {
750                 $($acc)*
751             });
752         }
753     };
754     (make_initializer:
755         @slot($slot:ident),
756         @type_name($t:ident),
757         @munch_fields($field:ident <- $val:expr, $($rest:tt)*),
758         @acc($($acc:tt)*),
759     ) => {
760         $crate::try_pin_init!(make_initializer:
761             @slot($slot),
762             @type_name($t),
763             @munch_fields($($rest)*),
764             @acc($($acc)* $field: ::core::panic!(),),
765         );
766     };
767     (make_initializer:
768         @slot($slot:ident),
769         @type_name($t:ident),
770         @munch_fields($field:ident $(: $val:expr)?, $($rest:tt)*),
771         @acc($($acc:tt)*),
772     ) => {
773         $crate::try_pin_init!(make_initializer:
774             @slot($slot),
775             @type_name($t),
776             @munch_fields($($rest)*),
777             @acc($($acc)* $field: ::core::panic!(),),
778         );
779     };
780     (forget_guards:
781         @munch_fields($(,)?),
782     ) => {
783         // Munching finished.
784     };
785     (forget_guards:
786         @munch_fields($field:ident <- $val:expr, $($rest:tt)*),
787     ) => {
788         unsafe { $crate::init::__internal::DropGuard::forget($field) };
789 
790         $crate::try_pin_init!(forget_guards:
791             @munch_fields($($rest)*),
792         );
793     };
794     (forget_guards:
795         @munch_fields($field:ident $(: $val:expr)?, $($rest:tt)*),
796     ) => {
797         unsafe { $crate::init::__internal::DropGuard::forget($field) };
798 
799         $crate::try_pin_init!(forget_guards:
800             @munch_fields($($rest)*),
801         );
802     };
803 }
804 
805 /// Construct an in-place initializer for `struct`s.
806 ///
807 /// This macro defaults the error to [`Infallible`]. If you need [`Error`], then use
808 /// [`try_init!`].
809 ///
810 /// The syntax is identical to [`pin_init!`] and its safety caveats also apply:
811 /// - `unsafe` code must guarantee either full initialization or return an error and allow
812 ///   deallocation of the memory.
813 /// - the fields are initialized in the order given in the initializer.
814 /// - no references to fields are allowed to be created inside of the initializer.
815 ///
816 /// This initializer is for initializing data in-place that might later be moved. If you want to
817 /// pin-initialize, use [`pin_init!`].
818 ///
819 /// [`try_init!`]: crate::try_init!
820 // For a detailed example of how this macro works, see the module documentation of the hidden
821 // module `__internal` inside of `init/__internal.rs`.
822 #[macro_export]
823 macro_rules! init {
824     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
825         $($fields:tt)*
826     }) => {
827         $crate::try_init!(
828             @this($($this)?),
829             @typ($t $(::<$($generics),*>)?),
830             @fields($($fields)*),
831             @error(::core::convert::Infallible),
832         )
833     }
834 }
835 
836 /// Construct an in-place fallible initializer for `struct`s.
837 ///
838 /// This macro defaults the error to [`Error`]. If you need [`Infallible`], then use
839 /// [`init!`].
840 ///
841 /// The syntax is identical to [`try_pin_init!`]. If you want to specify a custom error,
842 /// append `? $type` after the `struct` initializer.
843 /// The safety caveats from [`try_pin_init!`] also apply:
844 /// - `unsafe` code must guarantee either full initialization or return an error and allow
845 ///   deallocation of the memory.
846 /// - the fields are initialized in the order given in the initializer.
847 /// - no references to fields are allowed to be created inside of the initializer.
848 ///
849 /// # Examples
850 ///
851 /// ```rust
852 /// use kernel::{init::{PinInit, zeroed}, error::Error};
853 /// struct BigBuf {
854 ///     big: Box<[u8; 1024 * 1024 * 1024]>,
855 ///     small: [u8; 1024 * 1024],
856 /// }
857 ///
858 /// impl BigBuf {
859 ///     fn new() -> impl Init<Self, Error> {
860 ///         try_init!(Self {
861 ///             big: Box::init(zeroed())?,
862 ///             small: [0; 1024 * 1024],
863 ///         }? Error)
864 ///     }
865 /// }
866 /// ```
867 // For a detailed example of how this macro works, see the module documentation of the hidden
868 // module `__internal` inside of `init/__internal.rs`.
869 #[macro_export]
870 macro_rules! try_init {
871     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
872         $($fields:tt)*
873     }) => {
874         $crate::try_init!(
875             @this($($this)?),
876             @typ($t $(::<$($generics),*>)?),
877             @fields($($fields)*),
878             @error($crate::error::Error),
879         )
880     };
881     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
882         $($fields:tt)*
883     }? $err:ty) => {
884         $crate::try_init!(
885             @this($($this)?),
886             @typ($t $(::<$($generics),*>)?),
887             @fields($($fields)*),
888             @error($err),
889         )
890     };
891     (
892         @this($($this:ident)?),
893         @typ($t:ident $(::<$($generics:ty),*>)?),
894         @fields($($fields:tt)*),
895         @error($err:ty),
896     ) => {{
897         // We do not want to allow arbitrary returns, so we declare this type as the `Ok` return
898         // type and shadow it later when we insert the arbitrary user code. That way there will be
899         // no possibility of returning without `unsafe`.
900         struct __InitOk;
901         // Get the init data from the supplied type.
902         let data = unsafe {
903             use $crate::init::__internal::HasInitData;
904             $t$(::<$($generics),*>)?::__init_data()
905         };
906         // Ensure that `data` really is of type `InitData` and help with type inference:
907         let init = $crate::init::__internal::InitData::make_closure::<_, __InitOk, $err>(
908             data,
909             move |slot| {
910                 {
911                     // Shadow the structure so it cannot be used to return early.
912                     struct __InitOk;
913                     // Create the `this` so it can be referenced by the user inside of the
914                     // expressions creating the individual fields.
915                     $(let $this = unsafe { ::core::ptr::NonNull::new_unchecked(slot) };)?
916                     // Initialize every field.
917                     $crate::try_init!(init_slot:
918                         @slot(slot),
919                         @munch_fields($($fields)*,),
920                     );
921                     // We use unreachable code to ensure that all fields have been mentioned exactly
922                     // once, this struct initializer will still be type-checked and complain with a
923                     // very natural error message if a field is forgotten/mentioned more than once.
924                     #[allow(unreachable_code, clippy::diverging_sub_expression)]
925                     if false {
926                         $crate::try_init!(make_initializer:
927                             @slot(slot),
928                             @type_name($t),
929                             @munch_fields($($fields)*,),
930                             @acc(),
931                         );
932                     }
933                     // Forget all guards, since initialization was a success.
934                     $crate::try_init!(forget_guards:
935                         @munch_fields($($fields)*,),
936                     );
937                 }
938                 Ok(__InitOk)
939             }
940         );
941         let init = move |slot| -> ::core::result::Result<(), $err> {
942             init(slot).map(|__InitOk| ())
943         };
944         let init = unsafe { $crate::init::init_from_closure::<_, $err>(init) };
945         init
946     }};
947     (init_slot:
948         @slot($slot:ident),
949         @munch_fields( $(,)?),
950     ) => {
951         // Endpoint of munching, no fields are left.
952     };
953     (init_slot:
954         @slot($slot:ident),
955         @munch_fields($field:ident <- $val:expr, $($rest:tt)*),
956     ) => {
957         let $field = $val;
958         // Call the initializer.
959         //
960         // SAFETY: `slot` is valid, because we are inside of an initializer closure, we
961         // return when an error/panic occurs.
962         unsafe {
963             $crate::init::Init::__init($field, ::core::ptr::addr_of_mut!((*$slot).$field))?;
964         }
965         // Create the drop guard.
966         //
967         // We only give access to `&DropGuard`, so it cannot be accidentally forgotten.
968         //
969         // SAFETY: We forget the guard later when initialization has succeeded.
970         let $field = &unsafe {
971             $crate::init::__internal::DropGuard::new(::core::ptr::addr_of_mut!((*$slot).$field))
972         };
973 
974         $crate::try_init!(init_slot:
975             @slot($slot),
976             @munch_fields($($rest)*),
977         );
978     };
979     (init_slot:
980         @slot($slot:ident),
981         // Direct value init.
982         @munch_fields($field:ident $(: $val:expr)?, $($rest:tt)*),
983     ) => {
984         $(let $field = $val;)?
985         // Call the initializer.
986         //
987         // SAFETY: The memory at `slot` is uninitialized.
988         unsafe { ::core::ptr::write(::core::ptr::addr_of_mut!((*$slot).$field), $field) };
989         // Create the drop guard.
990         //
991         // We only give access to `&DropGuard`, so it cannot be accidentally forgotten.
992         //
993         // SAFETY: We forget the guard later when initialization has succeeded.
994         let $field = &unsafe {
995             $crate::init::__internal::DropGuard::new(::core::ptr::addr_of_mut!((*$slot).$field))
996         };
997 
998         $crate::try_init!(init_slot:
999             @slot($slot),
1000             @munch_fields($($rest)*),
1001         );
1002     };
1003     (make_initializer:
1004         @slot($slot:ident),
1005         @type_name($t:ident),
1006         @munch_fields( $(,)?),
1007         @acc($($acc:tt)*),
1008     ) => {
1009         // Endpoint, nothing more to munch, create the initializer.
1010         // Since we are in the `if false` branch, this will never get executed. We abuse `slot` to
1011         // get the correct type inference here:
1012         unsafe {
1013             ::core::ptr::write($slot, $t {
1014                 $($acc)*
1015             });
1016         }
1017     };
1018     (make_initializer:
1019         @slot($slot:ident),
1020         @type_name($t:ident),
1021         @munch_fields($field:ident <- $val:expr, $($rest:tt)*),
1022         @acc($($acc:tt)*),
1023     ) => {
1024         $crate::try_init!(make_initializer:
1025             @slot($slot),
1026             @type_name($t),
1027             @munch_fields($($rest)*),
1028             @acc($($acc)*$field: ::core::panic!(),),
1029         );
1030     };
1031     (make_initializer:
1032         @slot($slot:ident),
1033         @type_name($t:ident),
1034         @munch_fields($field:ident $(: $val:expr)?, $($rest:tt)*),
1035         @acc($($acc:tt)*),
1036     ) => {
1037         $crate::try_init!(make_initializer:
1038             @slot($slot),
1039             @type_name($t),
1040             @munch_fields($($rest)*),
1041             @acc($($acc)*$field: ::core::panic!(),),
1042         );
1043     };
1044     (forget_guards:
1045         @munch_fields($(,)?),
1046     ) => {
1047         // Munching finished.
1048     };
1049     (forget_guards:
1050         @munch_fields($field:ident <- $val:expr, $($rest:tt)*),
1051     ) => {
1052         unsafe { $crate::init::__internal::DropGuard::forget($field) };
1053 
1054         $crate::try_init!(forget_guards:
1055             @munch_fields($($rest)*),
1056         );
1057     };
1058     (forget_guards:
1059         @munch_fields($field:ident $(: $val:expr)?, $($rest:tt)*),
1060     ) => {
1061         unsafe { $crate::init::__internal::DropGuard::forget($field) };
1062 
1063         $crate::try_init!(forget_guards:
1064             @munch_fields($($rest)*),
1065         );
1066     };
1067 }
1068 
1069 /// A pin-initializer for the type `T`.
1070 ///
1071 /// To use this initializer, you will need a suitable memory location that can hold a `T`. This can
1072 /// be [`Box<T>`], [`Arc<T>`], [`UniqueArc<T>`] or even the stack (see [`stack_pin_init!`]). Use the
1073 /// [`InPlaceInit::pin_init`] function of a smart pointer like [`Arc<T>`] on this.
1074 ///
1075 /// Also see the [module description](self).
1076 ///
1077 /// # Safety
1078 ///
1079 /// When implementing this type you will need to take great care. Also there are probably very few
1080 /// cases where a manual implementation is necessary. Use [`pin_init_from_closure`] where possible.
1081 ///
1082 /// The [`PinInit::__pinned_init`] function
1083 /// - returns `Ok(())` if it initialized every field of `slot`,
1084 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
1085 ///     - `slot` can be deallocated without UB occurring,
1086 ///     - `slot` does not need to be dropped,
1087 ///     - `slot` is not partially initialized.
1088 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
1089 ///
1090 /// [`Arc<T>`]: crate::sync::Arc
1091 /// [`Arc::pin_init`]: crate::sync::Arc::pin_init
1092 #[must_use = "An initializer must be used in order to create its value."]
1093 pub unsafe trait PinInit<T: ?Sized, E = Infallible>: Sized {
1094     /// Initializes `slot`.
1095     ///
1096     /// # Safety
1097     ///
1098     /// - `slot` is a valid pointer to uninitialized memory.
1099     /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to
1100     ///   deallocate.
1101     /// - `slot` will not move until it is dropped, i.e. it will be pinned.
1102     unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E>;
1103 }
1104 
1105 /// An initializer for `T`.
1106 ///
1107 /// To use this initializer, you will need a suitable memory location that can hold a `T`. This can
1108 /// be [`Box<T>`], [`Arc<T>`], [`UniqueArc<T>`] or even the stack (see [`stack_pin_init!`]). Use the
1109 /// [`InPlaceInit::init`] function of a smart pointer like [`Arc<T>`] on this. Because
1110 /// [`PinInit<T, E>`] is a super trait, you can use every function that takes it as well.
1111 ///
1112 /// Also see the [module description](self).
1113 ///
1114 /// # Safety
1115 ///
1116 /// When implementing this type you will need to take great care. Also there are probably very few
1117 /// cases where a manual implementation is necessary. Use [`init_from_closure`] where possible.
1118 ///
1119 /// The [`Init::__init`] function
1120 /// - returns `Ok(())` if it initialized every field of `slot`,
1121 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
1122 ///     - `slot` can be deallocated without UB occurring,
1123 ///     - `slot` does not need to be dropped,
1124 ///     - `slot` is not partially initialized.
1125 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
1126 ///
1127 /// The `__pinned_init` function from the supertrait [`PinInit`] needs to execute the exact same
1128 /// code as `__init`.
1129 ///
1130 /// Contrary to its supertype [`PinInit<T, E>`] the caller is allowed to
1131 /// move the pointee after initialization.
1132 ///
1133 /// [`Arc<T>`]: crate::sync::Arc
1134 #[must_use = "An initializer must be used in order to create its value."]
1135 pub unsafe trait Init<T: ?Sized, E = Infallible>: Sized {
1136     /// Initializes `slot`.
1137     ///
1138     /// # Safety
1139     ///
1140     /// - `slot` is a valid pointer to uninitialized memory.
1141     /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to
1142     ///   deallocate.
1143     unsafe fn __init(self, slot: *mut T) -> Result<(), E>;
1144 }
1145 
1146 // SAFETY: Every in-place initializer can also be used as a pin-initializer.
1147 unsafe impl<T: ?Sized, E, I> PinInit<T, E> for I
1148 where
1149     I: Init<T, E>,
1150 {
1151     unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
1152         // SAFETY: `__init` meets the same requirements as `__pinned_init`, except that it does not
1153         // require `slot` to not move after init.
1154         unsafe { self.__init(slot) }
1155     }
1156 }
1157 
1158 /// Creates a new [`PinInit<T, E>`] from the given closure.
1159 ///
1160 /// # Safety
1161 ///
1162 /// The closure:
1163 /// - returns `Ok(())` if it initialized every field of `slot`,
1164 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
1165 ///     - `slot` can be deallocated without UB occurring,
1166 ///     - `slot` does not need to be dropped,
1167 ///     - `slot` is not partially initialized.
1168 /// - may assume that the `slot` does not move if `T: !Unpin`,
1169 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
1170 #[inline]
1171 pub const unsafe fn pin_init_from_closure<T: ?Sized, E>(
1172     f: impl FnOnce(*mut T) -> Result<(), E>,
1173 ) -> impl PinInit<T, E> {
1174     __internal::InitClosure(f, PhantomData)
1175 }
1176 
1177 /// Creates a new [`Init<T, E>`] from the given closure.
1178 ///
1179 /// # Safety
1180 ///
1181 /// The closure:
1182 /// - returns `Ok(())` if it initialized every field of `slot`,
1183 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
1184 ///     - `slot` can be deallocated without UB occurring,
1185 ///     - `slot` does not need to be dropped,
1186 ///     - `slot` is not partially initialized.
1187 /// - the `slot` may move after initialization.
1188 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
1189 #[inline]
1190 pub const unsafe fn init_from_closure<T: ?Sized, E>(
1191     f: impl FnOnce(*mut T) -> Result<(), E>,
1192 ) -> impl Init<T, E> {
1193     __internal::InitClosure(f, PhantomData)
1194 }
1195 
1196 /// An initializer that leaves the memory uninitialized.
1197 ///
1198 /// The initializer is a no-op. The `slot` memory is not changed.
1199 #[inline]
1200 pub fn uninit<T, E>() -> impl Init<MaybeUninit<T>, E> {
1201     // SAFETY: The memory is allowed to be uninitialized.
1202     unsafe { init_from_closure(|_| Ok(())) }
1203 }
1204 
1205 // SAFETY: Every type can be initialized by-value.
1206 unsafe impl<T, E> Init<T, E> for T {
1207     unsafe fn __init(self, slot: *mut T) -> Result<(), E> {
1208         unsafe { slot.write(self) };
1209         Ok(())
1210     }
1211 }
1212 
1213 /// Smart pointer that can initialize memory in-place.
1214 pub trait InPlaceInit<T>: Sized {
1215     /// Use the given pin-initializer to pin-initialize a `T` inside of a new smart pointer of this
1216     /// type.
1217     ///
1218     /// If `T: !Unpin` it will not be able to move afterwards.
1219     fn try_pin_init<E>(init: impl PinInit<T, E>) -> Result<Pin<Self>, E>
1220     where
1221         E: From<AllocError>;
1222 
1223     /// Use the given pin-initializer to pin-initialize a `T` inside of a new smart pointer of this
1224     /// type.
1225     ///
1226     /// If `T: !Unpin` it will not be able to move afterwards.
1227     fn pin_init<E>(init: impl PinInit<T, E>) -> error::Result<Pin<Self>>
1228     where
1229         Error: From<E>,
1230     {
1231         // SAFETY: We delegate to `init` and only change the error type.
1232         let init = unsafe {
1233             pin_init_from_closure(|slot| init.__pinned_init(slot).map_err(|e| Error::from(e)))
1234         };
1235         Self::try_pin_init(init)
1236     }
1237 
1238     /// Use the given initializer to in-place initialize a `T`.
1239     fn try_init<E>(init: impl Init<T, E>) -> Result<Self, E>
1240     where
1241         E: From<AllocError>;
1242 
1243     /// Use the given initializer to in-place initialize a `T`.
1244     fn init<E>(init: impl Init<T, E>) -> error::Result<Self>
1245     where
1246         Error: From<E>,
1247     {
1248         // SAFETY: We delegate to `init` and only change the error type.
1249         let init = unsafe {
1250             init_from_closure(|slot| init.__pinned_init(slot).map_err(|e| Error::from(e)))
1251         };
1252         Self::try_init(init)
1253     }
1254 }
1255 
1256 impl<T> InPlaceInit<T> for Box<T> {
1257     #[inline]
1258     fn try_pin_init<E>(init: impl PinInit<T, E>) -> Result<Pin<Self>, E>
1259     where
1260         E: From<AllocError>,
1261     {
1262         let mut this = Box::try_new_uninit()?;
1263         let slot = this.as_mut_ptr();
1264         // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
1265         // slot is valid and will not be moved, because we pin it later.
1266         unsafe { init.__pinned_init(slot)? };
1267         // SAFETY: All fields have been initialized.
1268         Ok(unsafe { this.assume_init() }.into())
1269     }
1270 
1271     #[inline]
1272     fn try_init<E>(init: impl Init<T, E>) -> Result<Self, E>
1273     where
1274         E: From<AllocError>,
1275     {
1276         let mut this = Box::try_new_uninit()?;
1277         let slot = this.as_mut_ptr();
1278         // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
1279         // slot is valid.
1280         unsafe { init.__init(slot)? };
1281         // SAFETY: All fields have been initialized.
1282         Ok(unsafe { this.assume_init() })
1283     }
1284 }
1285 
1286 impl<T> InPlaceInit<T> for UniqueArc<T> {
1287     #[inline]
1288     fn try_pin_init<E>(init: impl PinInit<T, E>) -> Result<Pin<Self>, E>
1289     where
1290         E: From<AllocError>,
1291     {
1292         let mut this = UniqueArc::try_new_uninit()?;
1293         let slot = this.as_mut_ptr();
1294         // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
1295         // slot is valid and will not be moved, because we pin it later.
1296         unsafe { init.__pinned_init(slot)? };
1297         // SAFETY: All fields have been initialized.
1298         Ok(unsafe { this.assume_init() }.into())
1299     }
1300 
1301     #[inline]
1302     fn try_init<E>(init: impl Init<T, E>) -> Result<Self, E>
1303     where
1304         E: From<AllocError>,
1305     {
1306         let mut this = UniqueArc::try_new_uninit()?;
1307         let slot = this.as_mut_ptr();
1308         // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
1309         // slot is valid.
1310         unsafe { init.__init(slot)? };
1311         // SAFETY: All fields have been initialized.
1312         Ok(unsafe { this.assume_init() })
1313     }
1314 }
1315 
1316 /// Trait facilitating pinned destruction.
1317 ///
1318 /// Use [`pinned_drop`] to implement this trait safely:
1319 ///
1320 /// ```rust
1321 /// # use kernel::sync::Mutex;
1322 /// use kernel::macros::pinned_drop;
1323 /// use core::pin::Pin;
1324 /// #[pin_data(PinnedDrop)]
1325 /// struct Foo {
1326 ///     #[pin]
1327 ///     mtx: Mutex<usize>,
1328 /// }
1329 ///
1330 /// #[pinned_drop]
1331 /// impl PinnedDrop for Foo {
1332 ///     fn drop(self: Pin<&mut Self>) {
1333 ///         pr_info!("Foo is being dropped!");
1334 ///     }
1335 /// }
1336 /// ```
1337 ///
1338 /// # Safety
1339 ///
1340 /// This trait must be implemented via the [`pinned_drop`] proc-macro attribute on the impl.
1341 ///
1342 /// [`pinned_drop`]: kernel::macros::pinned_drop
1343 pub unsafe trait PinnedDrop: __internal::HasPinData {
1344     /// Executes the pinned destructor of this type.
1345     ///
1346     /// While this function is marked safe, it is actually unsafe to call it manually. For this
1347     /// reason it takes an additional parameter. This type can only be constructed by `unsafe` code
1348     /// and thus prevents this function from being called where it should not.
1349     ///
1350     /// This extra parameter will be generated by the `#[pinned_drop]` proc-macro attribute
1351     /// automatically.
1352     fn drop(self: Pin<&mut Self>, only_call_from_drop: __internal::OnlyCallFromDrop);
1353 }
1354 
1355 /// Marker trait for types that can be initialized by writing just zeroes.
1356 ///
1357 /// # Safety
1358 ///
1359 /// The bit pattern consisting of only zeroes is a valid bit pattern for this type. In other words,
1360 /// this is not UB:
1361 ///
1362 /// ```rust,ignore
1363 /// let val: Self = unsafe { core::mem::zeroed() };
1364 /// ```
1365 pub unsafe trait Zeroable {}
1366 
1367 /// Create a new zeroed T.
1368 ///
1369 /// The returned initializer will write `0x00` to every byte of the given `slot`.
1370 #[inline]
1371 pub fn zeroed<T: Zeroable>() -> impl Init<T> {
1372     // SAFETY: Because `T: Zeroable`, all bytes zero is a valid bit pattern for `T`
1373     // and because we write all zeroes, the memory is initialized.
1374     unsafe {
1375         init_from_closure(|slot: *mut T| {
1376             slot.write_bytes(0, 1);
1377             Ok(())
1378         })
1379     }
1380 }
1381 
1382 macro_rules! impl_zeroable {
1383     ($($({$($generics:tt)*})? $t:ty, )*) => {
1384         $(unsafe impl$($($generics)*)? Zeroable for $t {})*
1385     };
1386 }
1387 
1388 impl_zeroable! {
1389     // SAFETY: All primitives that are allowed to be zero.
1390     bool,
1391     char,
1392     u8, u16, u32, u64, u128, usize,
1393     i8, i16, i32, i64, i128, isize,
1394     f32, f64,
1395 
1396     // SAFETY: These are ZSTs, there is nothing to zero.
1397     {<T: ?Sized>} PhantomData<T>, core::marker::PhantomPinned, Infallible, (),
1398 
1399     // SAFETY: Type is allowed to take any value, including all zeros.
1400     {<T>} MaybeUninit<T>,
1401 
1402     // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee).
1403     Option<NonZeroU8>, Option<NonZeroU16>, Option<NonZeroU32>, Option<NonZeroU64>,
1404     Option<NonZeroU128>, Option<NonZeroUsize>,
1405     Option<NonZeroI8>, Option<NonZeroI16>, Option<NonZeroI32>, Option<NonZeroI64>,
1406     Option<NonZeroI128>, Option<NonZeroIsize>,
1407 
1408     // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee).
1409     //
1410     // In this case we are allowed to use `T: ?Sized`, since all zeros is the `None` variant.
1411     {<T: ?Sized>} Option<NonNull<T>>,
1412     {<T: ?Sized>} Option<Box<T>>,
1413 
1414     // SAFETY: `null` pointer is valid.
1415     //
1416     // We cannot use `T: ?Sized`, since the VTABLE pointer part of fat pointers is not allowed to be
1417     // null.
1418     //
1419     // When `Pointee` gets stabilized, we could use
1420     // `T: ?Sized where <T as Pointee>::Metadata: Zeroable`
1421     {<T>} *mut T, {<T>} *const T,
1422 
1423     // SAFETY: `null` pointer is valid and the metadata part of these fat pointers is allowed to be
1424     // zero.
1425     {<T>} *mut [T], {<T>} *const [T], *mut str, *const str,
1426 
1427     // SAFETY: `T` is `Zeroable`.
1428     {<const N: usize, T: Zeroable>} [T; N], {<T: Zeroable>} Wrapping<T>,
1429 }
1430 
1431 macro_rules! impl_tuple_zeroable {
1432     ($(,)?) => {};
1433     ($first:ident, $($t:ident),* $(,)?) => {
1434         // SAFETY: All elements are zeroable and padding can be zero.
1435         unsafe impl<$first: Zeroable, $($t: Zeroable),*> Zeroable for ($first, $($t),*) {}
1436         impl_tuple_zeroable!($($t),* ,);
1437     }
1438 }
1439 
1440 impl_tuple_zeroable!(A, B, C, D, E, F, G, H, I, J);
1441