xref: /linux/rust/kernel/init.rs (revision b3068ac37b1c10ee4b9fb6c07a2e46021376c374)
1 // SPDX-License-Identifier: Apache-2.0 OR MIT
2 
3 //! API to safely and fallibly initialize pinned `struct`s using in-place constructors.
4 //!
5 //! It also allows in-place initialization of big `struct`s that would otherwise produce a stack
6 //! overflow.
7 //!
8 //! Most `struct`s from the [`sync`] module need to be pinned, because they contain self-referential
9 //! `struct`s from C. [Pinning][pinning] is Rust's way of ensuring data does not move.
10 //!
11 //! # Overview
12 //!
13 //! To initialize a `struct` with an in-place constructor you will need two things:
14 //! - an in-place constructor,
15 //! - a memory location that can hold your `struct` (this can be the [stack], an [`Arc<T>`],
16 //!   [`UniqueArc<T>`], [`Box<T>`] or any other smart pointer that implements [`InPlaceInit`]).
17 //!
18 //! To get an in-place constructor there are generally three options:
19 //! - directly creating an in-place constructor using the [`pin_init!`] macro,
20 //! - a custom function/macro returning an in-place constructor provided by someone else,
21 //! - using the unsafe function [`pin_init_from_closure()`] to manually create an initializer.
22 //!
23 //! Aside from pinned initialization, this API also supports in-place construction without pinning,
24 //! the macros/types/functions are generally named like the pinned variants without the `pin`
25 //! prefix.
26 //!
27 //! # Examples
28 //!
29 //! ## Using the [`pin_init!`] macro
30 //!
31 //! If you want to use [`PinInit`], then you will have to annotate your `struct` with
32 //! `#[`[`pin_data`]`]`. It is a macro that uses `#[pin]` as a marker for
33 //! [structurally pinned fields]. After doing this, you can then create an in-place constructor via
34 //! [`pin_init!`]. The syntax is almost the same as normal `struct` initializers. The difference is
35 //! that you need to write `<-` instead of `:` for fields that you want to initialize in-place.
36 //!
37 //! ```rust
38 //! # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
39 //! use kernel::{prelude::*, sync::Mutex, new_mutex};
40 //! # use core::pin::Pin;
41 //! #[pin_data]
42 //! struct Foo {
43 //!     #[pin]
44 //!     a: Mutex<usize>,
45 //!     b: u32,
46 //! }
47 //!
48 //! let foo = pin_init!(Foo {
49 //!     a <- new_mutex!(42, "Foo::a"),
50 //!     b: 24,
51 //! });
52 //! ```
53 //!
54 //! `foo` now is of the type [`impl PinInit<Foo>`]. We can now use any smart pointer that we like
55 //! (or just the stack) to actually initialize a `Foo`:
56 //!
57 //! ```rust
58 //! # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
59 //! # use kernel::{prelude::*, sync::Mutex, new_mutex};
60 //! # use core::pin::Pin;
61 //! # #[pin_data]
62 //! # struct Foo {
63 //! #     #[pin]
64 //! #     a: Mutex<usize>,
65 //! #     b: u32,
66 //! # }
67 //! # let foo = pin_init!(Foo {
68 //! #     a <- new_mutex!(42, "Foo::a"),
69 //! #     b: 24,
70 //! # });
71 //! let foo: Result<Pin<Box<Foo>>> = Box::pin_init(foo);
72 //! ```
73 //!
74 //! For more information see the [`pin_init!`] macro.
75 //!
76 //! ## Using a custom function/macro that returns an initializer
77 //!
78 //! Many types from the kernel supply a function/macro that returns an initializer, because the
79 //! above method only works for types where you can access the fields.
80 //!
81 //! ```rust
82 //! # use kernel::{new_mutex, sync::{Arc, Mutex}};
83 //! let mtx: Result<Arc<Mutex<usize>>> = Arc::pin_init(new_mutex!(42, "example::mtx"));
84 //! ```
85 //!
86 //! To declare an init macro/function you just return an [`impl PinInit<T, E>`]:
87 //!
88 //! ```rust
89 //! # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
90 //! # use kernel::{sync::Mutex, prelude::*, new_mutex, init::PinInit, try_pin_init};
91 //! #[pin_data]
92 //! struct DriverData {
93 //!     #[pin]
94 //!     status: Mutex<i32>,
95 //!     buffer: Box<[u8; 1_000_000]>,
96 //! }
97 //!
98 //! impl DriverData {
99 //!     fn new() -> impl PinInit<Self, Error> {
100 //!         try_pin_init!(Self {
101 //!             status <- new_mutex!(0, "DriverData::status"),
102 //!             buffer: Box::init(kernel::init::zeroed())?,
103 //!         })
104 //!     }
105 //! }
106 //! ```
107 //!
108 //! ## Manual creation of an initializer
109 //!
110 //! Often when working with primitives the previous approaches are not sufficient. That is where
111 //! [`pin_init_from_closure()`] comes in. This `unsafe` function allows you to create a
112 //! [`impl PinInit<T, E>`] directly from a closure. Of course you have to ensure that the closure
113 //! actually does the initialization in the correct way. Here are the things to look out for
114 //! (we are calling the parameter to the closure `slot`):
115 //! - when the closure returns `Ok(())`, then it has completed the initialization successfully, so
116 //!   `slot` now contains a valid bit pattern for the type `T`,
117 //! - when the closure returns `Err(e)`, then the caller may deallocate the memory at `slot`, so
118 //!   you need to take care to clean up anything if your initialization fails mid-way,
119 //! - you may assume that `slot` will stay pinned even after the closure returns until `drop` of
120 //!   `slot` gets called.
121 //!
122 //! ```rust
123 //! use kernel::{prelude::*, init};
124 //! use core::{ptr::addr_of_mut, marker::PhantomPinned, pin::Pin};
125 //! # mod bindings {
126 //! #     pub struct foo;
127 //! #     pub unsafe fn init_foo(_ptr: *mut foo) {}
128 //! #     pub unsafe fn destroy_foo(_ptr: *mut foo) {}
129 //! #     pub unsafe fn enable_foo(_ptr: *mut foo, _flags: u32) -> i32 { 0 }
130 //! # }
131 //! /// # Invariants
132 //! ///
133 //! /// `foo` is always initialized
134 //! #[pin_data(PinnedDrop)]
135 //! pub struct RawFoo {
136 //!     #[pin]
137 //!     foo: Opaque<bindings::foo>,
138 //!     #[pin]
139 //!     _p: PhantomPinned,
140 //! }
141 //!
142 //! impl RawFoo {
143 //!     pub fn new(flags: u32) -> impl PinInit<Self, Error> {
144 //!         // SAFETY:
145 //!         // - when the closure returns `Ok(())`, then it has successfully initialized and
146 //!         //   enabled `foo`,
147 //!         // - when it returns `Err(e)`, then it has cleaned up before
148 //!         unsafe {
149 //!             init::pin_init_from_closure(move |slot: *mut Self| {
150 //!                 // `slot` contains uninit memory, avoid creating a reference.
151 //!                 let foo = addr_of_mut!((*slot).foo);
152 //!
153 //!                 // Initialize the `foo`
154 //!                 bindings::init_foo(Opaque::raw_get(foo));
155 //!
156 //!                 // Try to enable it.
157 //!                 let err = bindings::enable_foo(Opaque::raw_get(foo), flags);
158 //!                 if err != 0 {
159 //!                     // Enabling has failed, first clean up the foo and then return the error.
160 //!                     bindings::destroy_foo(Opaque::raw_get(foo));
161 //!                     return Err(Error::from_kernel_errno(err));
162 //!                 }
163 //!
164 //!                 // All fields of `RawFoo` have been initialized, since `_p` is a ZST.
165 //!                 Ok(())
166 //!             })
167 //!         }
168 //!     }
169 //! }
170 //!
171 //! #[pinned_drop]
172 //! impl PinnedDrop for RawFoo {
173 //!     fn drop(self: Pin<&mut Self>) {
174 //!         // SAFETY: Since `foo` is initialized, destroying is safe.
175 //!         unsafe { bindings::destroy_foo(self.foo.get()) };
176 //!     }
177 //! }
178 //! ```
179 //!
180 //! For the special case where initializing a field is a single FFI-function call that cannot fail,
181 //! there exist the helper function [`Opaque::ffi_init`]. This function initialize a single
182 //! [`Opaque`] field by just delegating to the supplied closure. You can use these in combination
183 //! with [`pin_init!`].
184 //!
185 //! For more information on how to use [`pin_init_from_closure()`], take a look at the uses inside
186 //! the `kernel` crate. The [`sync`] module is a good starting point.
187 //!
188 //! [`sync`]: kernel::sync
189 //! [pinning]: https://doc.rust-lang.org/std/pin/index.html
190 //! [structurally pinned fields]:
191 //!     https://doc.rust-lang.org/std/pin/index.html#pinning-is-structural-for-field
192 //! [stack]: crate::stack_pin_init
193 //! [`Arc<T>`]: crate::sync::Arc
194 //! [`impl PinInit<Foo>`]: PinInit
195 //! [`impl PinInit<T, E>`]: PinInit
196 //! [`impl Init<T, E>`]: Init
197 //! [`Opaque`]: kernel::types::Opaque
198 //! [`Opaque::ffi_init`]: kernel::types::Opaque::ffi_init
199 //! [`pin_data`]: ::macros::pin_data
200 //! [`pin_init!`]: crate::pin_init!
201 
202 use crate::{
203     error::{self, Error},
204     sync::UniqueArc,
205 };
206 use alloc::boxed::Box;
207 use core::{
208     alloc::AllocError,
209     cell::Cell,
210     convert::Infallible,
211     marker::PhantomData,
212     mem::MaybeUninit,
213     num::*,
214     pin::Pin,
215     ptr::{self, NonNull},
216 };
217 
218 #[doc(hidden)]
219 pub mod __internal;
220 #[doc(hidden)]
221 pub mod macros;
222 
223 /// Initialize and pin a type directly on the stack.
224 ///
225 /// # Examples
226 ///
227 /// ```rust
228 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
229 /// # use kernel::{init, pin_init, stack_pin_init, init::*, sync::Mutex, new_mutex};
230 /// # use macros::pin_data;
231 /// # use core::pin::Pin;
232 /// #[pin_data]
233 /// struct Foo {
234 ///     #[pin]
235 ///     a: Mutex<usize>,
236 ///     b: Bar,
237 /// }
238 ///
239 /// #[pin_data]
240 /// struct Bar {
241 ///     x: u32,
242 /// }
243 ///
244 /// stack_pin_init!(let foo = pin_init!(Foo {
245 ///     a <- new_mutex!(42),
246 ///     b: Bar {
247 ///         x: 64,
248 ///     },
249 /// }));
250 /// let foo: Pin<&mut Foo> = foo;
251 /// pr_info!("a: {}", &*foo.a.lock());
252 /// ```
253 ///
254 /// # Syntax
255 ///
256 /// A normal `let` binding with optional type annotation. The expression is expected to implement
257 /// [`PinInit`]/[`Init`] with the error type [`Infallible`]. If you want to use a different error
258 /// type, then use [`stack_try_pin_init!`].
259 ///
260 /// [`stack_try_pin_init!`]: crate::stack_try_pin_init!
261 #[macro_export]
262 macro_rules! stack_pin_init {
263     (let $var:ident $(: $t:ty)? = $val:expr) => {
264         let val = $val;
265         let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit());
266         let mut $var = match $crate::init::__internal::StackInit::init($var, val) {
267             Ok(res) => res,
268             Err(x) => {
269                 let x: ::core::convert::Infallible = x;
270                 match x {}
271             }
272         };
273     };
274 }
275 
276 /// Initialize and pin a type directly on the stack.
277 ///
278 /// # Examples
279 ///
280 /// ```rust
281 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
282 /// # use kernel::{init, pin_init, stack_try_pin_init, init::*, sync::Mutex, new_mutex};
283 /// # use macros::pin_data;
284 /// # use core::{alloc::AllocError, pin::Pin};
285 /// #[pin_data]
286 /// struct Foo {
287 ///     #[pin]
288 ///     a: Mutex<usize>,
289 ///     b: Box<Bar>,
290 /// }
291 ///
292 /// struct Bar {
293 ///     x: u32,
294 /// }
295 ///
296 /// stack_try_pin_init!(let foo: Result<Pin<&mut Foo>, AllocError> = pin_init!(Foo {
297 ///     a <- new_mutex!(42),
298 ///     b: Box::try_new(Bar {
299 ///         x: 64,
300 ///     })?,
301 /// }));
302 /// let foo = foo.unwrap();
303 /// pr_info!("a: {}", &*foo.a.lock());
304 /// ```
305 ///
306 /// ```rust
307 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
308 /// # use kernel::{init, pin_init, stack_try_pin_init, init::*, sync::Mutex, new_mutex};
309 /// # use macros::pin_data;
310 /// # use core::{alloc::AllocError, pin::Pin};
311 /// #[pin_data]
312 /// struct Foo {
313 ///     #[pin]
314 ///     a: Mutex<usize>,
315 ///     b: Box<Bar>,
316 /// }
317 ///
318 /// struct Bar {
319 ///     x: u32,
320 /// }
321 ///
322 /// stack_try_pin_init!(let foo: Pin<&mut Foo> =? pin_init!(Foo {
323 ///     a <- new_mutex!(42),
324 ///     b: Box::try_new(Bar {
325 ///         x: 64,
326 ///     })?,
327 /// }));
328 /// pr_info!("a: {}", &*foo.a.lock());
329 /// # Ok::<_, AllocError>(())
330 /// ```
331 ///
332 /// # Syntax
333 ///
334 /// A normal `let` binding with optional type annotation. The expression is expected to implement
335 /// [`PinInit`]/[`Init`]. This macro assigns a result to the given variable, adding a `?` after the
336 /// `=` will propagate this error.
337 #[macro_export]
338 macro_rules! stack_try_pin_init {
339     (let $var:ident $(: $t:ty)? = $val:expr) => {
340         let val = $val;
341         let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit());
342         let mut $var = $crate::init::__internal::StackInit::init($var, val);
343     };
344     (let $var:ident $(: $t:ty)? =? $val:expr) => {
345         let val = $val;
346         let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit());
347         let mut $var = $crate::init::__internal::StackInit::init($var, val)?;
348     };
349 }
350 
351 /// Construct an in-place, pinned initializer for `struct`s.
352 ///
353 /// This macro defaults the error to [`Infallible`]. If you need [`Error`], then use
354 /// [`try_pin_init!`].
355 ///
356 /// The syntax is almost identical to that of a normal `struct` initializer:
357 ///
358 /// ```rust
359 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
360 /// # use kernel::{init, pin_init, macros::pin_data, init::*};
361 /// # use core::pin::Pin;
362 /// #[pin_data]
363 /// struct Foo {
364 ///     a: usize,
365 ///     b: Bar,
366 /// }
367 ///
368 /// #[pin_data]
369 /// struct Bar {
370 ///     x: u32,
371 /// }
372 ///
373 /// # fn demo() -> impl PinInit<Foo> {
374 /// let a = 42;
375 ///
376 /// let initializer = pin_init!(Foo {
377 ///     a,
378 ///     b: Bar {
379 ///         x: 64,
380 ///     },
381 /// });
382 /// # initializer }
383 /// # Box::pin_init(demo()).unwrap();
384 /// ```
385 ///
386 /// Arbitrary Rust expressions can be used to set the value of a variable.
387 ///
388 /// The fields are initialized in the order that they appear in the initializer. So it is possible
389 /// to read already initialized fields using raw pointers.
390 ///
391 /// IMPORTANT: You are not allowed to create references to fields of the struct inside of the
392 /// initializer.
393 ///
394 /// # Init-functions
395 ///
396 /// When working with this API it is often desired to let others construct your types without
397 /// giving access to all fields. This is where you would normally write a plain function `new`
398 /// that would return a new instance of your type. With this API that is also possible.
399 /// However, there are a few extra things to keep in mind.
400 ///
401 /// To create an initializer function, simply declare it like this:
402 ///
403 /// ```rust
404 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
405 /// # use kernel::{init, pin_init, prelude::*, init::*};
406 /// # use core::pin::Pin;
407 /// # #[pin_data]
408 /// # struct Foo {
409 /// #     a: usize,
410 /// #     b: Bar,
411 /// # }
412 /// # #[pin_data]
413 /// # struct Bar {
414 /// #     x: u32,
415 /// # }
416 /// impl Foo {
417 ///     fn new() -> impl PinInit<Self> {
418 ///         pin_init!(Self {
419 ///             a: 42,
420 ///             b: Bar {
421 ///                 x: 64,
422 ///             },
423 ///         })
424 ///     }
425 /// }
426 /// ```
427 ///
428 /// Users of `Foo` can now create it like this:
429 ///
430 /// ```rust
431 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
432 /// # use kernel::{init, pin_init, macros::pin_data, init::*};
433 /// # use core::pin::Pin;
434 /// # #[pin_data]
435 /// # struct Foo {
436 /// #     a: usize,
437 /// #     b: Bar,
438 /// # }
439 /// # #[pin_data]
440 /// # struct Bar {
441 /// #     x: u32,
442 /// # }
443 /// # impl Foo {
444 /// #     fn new() -> impl PinInit<Self> {
445 /// #         pin_init!(Self {
446 /// #             a: 42,
447 /// #             b: Bar {
448 /// #                 x: 64,
449 /// #             },
450 /// #         })
451 /// #     }
452 /// # }
453 /// let foo = Box::pin_init(Foo::new());
454 /// ```
455 ///
456 /// They can also easily embed it into their own `struct`s:
457 ///
458 /// ```rust
459 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
460 /// # use kernel::{init, pin_init, macros::pin_data, init::*};
461 /// # use core::pin::Pin;
462 /// # #[pin_data]
463 /// # struct Foo {
464 /// #     a: usize,
465 /// #     b: Bar,
466 /// # }
467 /// # #[pin_data]
468 /// # struct Bar {
469 /// #     x: u32,
470 /// # }
471 /// # impl Foo {
472 /// #     fn new() -> impl PinInit<Self> {
473 /// #         pin_init!(Self {
474 /// #             a: 42,
475 /// #             b: Bar {
476 /// #                 x: 64,
477 /// #             },
478 /// #         })
479 /// #     }
480 /// # }
481 /// #[pin_data]
482 /// struct FooContainer {
483 ///     #[pin]
484 ///     foo1: Foo,
485 ///     #[pin]
486 ///     foo2: Foo,
487 ///     other: u32,
488 /// }
489 ///
490 /// impl FooContainer {
491 ///     fn new(other: u32) -> impl PinInit<Self> {
492 ///         pin_init!(Self {
493 ///             foo1 <- Foo::new(),
494 ///             foo2 <- Foo::new(),
495 ///             other,
496 ///         })
497 ///     }
498 /// }
499 /// ```
500 ///
501 /// Here we see that when using `pin_init!` with `PinInit`, one needs to write `<-` instead of `:`.
502 /// This signifies that the given field is initialized in-place. As with `struct` initializers, just
503 /// writing the field (in this case `other`) without `:` or `<-` means `other: other,`.
504 ///
505 /// # Syntax
506 ///
507 /// As already mentioned in the examples above, inside of `pin_init!` a `struct` initializer with
508 /// the following modifications is expected:
509 /// - Fields that you want to initialize in-place have to use `<-` instead of `:`.
510 /// - In front of the initializer you can write `&this in` to have access to a [`NonNull<Self>`]
511 ///   pointer named `this` inside of the initializer.
512 ///
513 /// For instance:
514 ///
515 /// ```rust
516 /// # use kernel::pin_init;
517 /// # use macros::pin_data;
518 /// # use core::{ptr::addr_of_mut, marker::PhantomPinned};
519 /// #[pin_data]
520 /// struct Buf {
521 ///     // `ptr` points into `buf`.
522 ///     ptr: *mut u8,
523 ///     buf: [u8; 64],
524 ///     #[pin]
525 ///     pin: PhantomPinned,
526 /// }
527 /// pin_init!(&this in Buf {
528 ///     buf: [0; 64],
529 ///     ptr: unsafe { addr_of_mut!((*this.as_ptr()).buf).cast() },
530 ///     pin: PhantomPinned,
531 /// });
532 /// ```
533 ///
534 /// [`try_pin_init!`]: kernel::try_pin_init
535 /// [`NonNull<Self>`]: core::ptr::NonNull
536 // For a detailed example of how this macro works, see the module documentation of the hidden
537 // module `__internal` inside of `init/__internal.rs`.
538 #[macro_export]
539 macro_rules! pin_init {
540     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
541         $($fields:tt)*
542     }) => {
543         $crate::__init_internal!(
544             @this($($this)?),
545             @typ($t $(::<$($generics),*>)?),
546             @fields($($fields)*),
547             @error(::core::convert::Infallible),
548             @data(PinData, use_data),
549             @has_data(HasPinData, __pin_data),
550             @construct_closure(pin_init_from_closure),
551         )
552     };
553 }
554 
555 /// Construct an in-place, fallible pinned initializer for `struct`s.
556 ///
557 /// If the initialization can complete without error (or [`Infallible`]), then use [`pin_init!`].
558 ///
559 /// You can use the `?` operator or use `return Err(err)` inside the initializer to stop
560 /// initialization and return the error.
561 ///
562 /// IMPORTANT: if you have `unsafe` code inside of the initializer you have to ensure that when
563 /// initialization fails, the memory can be safely deallocated without any further modifications.
564 ///
565 /// This macro defaults the error to [`Error`].
566 ///
567 /// The syntax is identical to [`pin_init!`] with the following exception: you can append `? $type`
568 /// after the `struct` initializer to specify the error type you want to use.
569 ///
570 /// # Examples
571 ///
572 /// ```rust
573 /// # #![feature(new_uninit)]
574 /// use kernel::{init::{self, PinInit}, error::Error};
575 /// #[pin_data]
576 /// struct BigBuf {
577 ///     big: Box<[u8; 1024 * 1024 * 1024]>,
578 ///     small: [u8; 1024 * 1024],
579 ///     ptr: *mut u8,
580 /// }
581 ///
582 /// impl BigBuf {
583 ///     fn new() -> impl PinInit<Self, Error> {
584 ///         try_pin_init!(Self {
585 ///             big: Box::init(init::zeroed())?,
586 ///             small: [0; 1024 * 1024],
587 ///             ptr: core::ptr::null_mut(),
588 ///         }? Error)
589 ///     }
590 /// }
591 /// ```
592 // For a detailed example of how this macro works, see the module documentation of the hidden
593 // module `__internal` inside of `init/__internal.rs`.
594 #[macro_export]
595 macro_rules! try_pin_init {
596     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
597         $($fields:tt)*
598     }) => {
599         $crate::__init_internal!(
600             @this($($this)?),
601             @typ($t $(::<$($generics),*>)? ),
602             @fields($($fields)*),
603             @error($crate::error::Error),
604             @data(PinData, use_data),
605             @has_data(HasPinData, __pin_data),
606             @construct_closure(pin_init_from_closure),
607         )
608     };
609     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
610         $($fields:tt)*
611     }? $err:ty) => {
612         $crate::__init_internal!(
613             @this($($this)?),
614             @typ($t $(::<$($generics),*>)? ),
615             @fields($($fields)*),
616             @error($err),
617             @data(PinData, use_data),
618             @has_data(HasPinData, __pin_data),
619             @construct_closure(pin_init_from_closure),
620         )
621     };
622 }
623 
624 /// Construct an in-place initializer for `struct`s.
625 ///
626 /// This macro defaults the error to [`Infallible`]. If you need [`Error`], then use
627 /// [`try_init!`].
628 ///
629 /// The syntax is identical to [`pin_init!`] and its safety caveats also apply:
630 /// - `unsafe` code must guarantee either full initialization or return an error and allow
631 ///   deallocation of the memory.
632 /// - the fields are initialized in the order given in the initializer.
633 /// - no references to fields are allowed to be created inside of the initializer.
634 ///
635 /// This initializer is for initializing data in-place that might later be moved. If you want to
636 /// pin-initialize, use [`pin_init!`].
637 ///
638 /// [`try_init!`]: crate::try_init!
639 // For a detailed example of how this macro works, see the module documentation of the hidden
640 // module `__internal` inside of `init/__internal.rs`.
641 #[macro_export]
642 macro_rules! init {
643     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
644         $($fields:tt)*
645     }) => {
646         $crate::__init_internal!(
647             @this($($this)?),
648             @typ($t $(::<$($generics),*>)?),
649             @fields($($fields)*),
650             @error(::core::convert::Infallible),
651             @data(InitData, /*no use_data*/),
652             @has_data(HasInitData, __init_data),
653             @construct_closure(init_from_closure),
654         )
655     }
656 }
657 
658 /// Construct an in-place fallible initializer for `struct`s.
659 ///
660 /// This macro defaults the error to [`Error`]. If you need [`Infallible`], then use
661 /// [`init!`].
662 ///
663 /// The syntax is identical to [`try_pin_init!`]. If you want to specify a custom error,
664 /// append `? $type` after the `struct` initializer.
665 /// The safety caveats from [`try_pin_init!`] also apply:
666 /// - `unsafe` code must guarantee either full initialization or return an error and allow
667 ///   deallocation of the memory.
668 /// - the fields are initialized in the order given in the initializer.
669 /// - no references to fields are allowed to be created inside of the initializer.
670 ///
671 /// # Examples
672 ///
673 /// ```rust
674 /// use kernel::{init::PinInit, error::Error, InPlaceInit};
675 /// struct BigBuf {
676 ///     big: Box<[u8; 1024 * 1024 * 1024]>,
677 ///     small: [u8; 1024 * 1024],
678 /// }
679 ///
680 /// impl BigBuf {
681 ///     fn new() -> impl Init<Self, Error> {
682 ///         try_init!(Self {
683 ///             big: Box::init(zeroed())?,
684 ///             small: [0; 1024 * 1024],
685 ///         }? Error)
686 ///     }
687 /// }
688 /// ```
689 // For a detailed example of how this macro works, see the module documentation of the hidden
690 // module `__internal` inside of `init/__internal.rs`.
691 #[macro_export]
692 macro_rules! try_init {
693     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
694         $($fields:tt)*
695     }) => {
696         $crate::__init_internal!(
697             @this($($this)?),
698             @typ($t $(::<$($generics),*>)?),
699             @fields($($fields)*),
700             @error($crate::error::Error),
701             @data(InitData, /*no use_data*/),
702             @has_data(HasInitData, __init_data),
703             @construct_closure(init_from_closure),
704         )
705     };
706     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
707         $($fields:tt)*
708     }? $err:ty) => {
709         $crate::__init_internal!(
710             @this($($this)?),
711             @typ($t $(::<$($generics),*>)?),
712             @fields($($fields)*),
713             @error($err),
714             @data(InitData, /*no use_data*/),
715             @has_data(HasInitData, __init_data),
716             @construct_closure(init_from_closure),
717         )
718     };
719 }
720 
721 /// A pin-initializer for the type `T`.
722 ///
723 /// To use this initializer, you will need a suitable memory location that can hold a `T`. This can
724 /// be [`Box<T>`], [`Arc<T>`], [`UniqueArc<T>`] or even the stack (see [`stack_pin_init!`]). Use the
725 /// [`InPlaceInit::pin_init`] function of a smart pointer like [`Arc<T>`] on this.
726 ///
727 /// Also see the [module description](self).
728 ///
729 /// # Safety
730 ///
731 /// When implementing this type you will need to take great care. Also there are probably very few
732 /// cases where a manual implementation is necessary. Use [`pin_init_from_closure`] where possible.
733 ///
734 /// The [`PinInit::__pinned_init`] function
735 /// - returns `Ok(())` if it initialized every field of `slot`,
736 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
737 ///     - `slot` can be deallocated without UB occurring,
738 ///     - `slot` does not need to be dropped,
739 ///     - `slot` is not partially initialized.
740 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
741 ///
742 /// [`Arc<T>`]: crate::sync::Arc
743 /// [`Arc::pin_init`]: crate::sync::Arc::pin_init
744 #[must_use = "An initializer must be used in order to create its value."]
745 pub unsafe trait PinInit<T: ?Sized, E = Infallible>: Sized {
746     /// Initializes `slot`.
747     ///
748     /// # Safety
749     ///
750     /// - `slot` is a valid pointer to uninitialized memory.
751     /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to
752     ///   deallocate.
753     /// - `slot` will not move until it is dropped, i.e. it will be pinned.
754     unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E>;
755 }
756 
757 /// An initializer for `T`.
758 ///
759 /// To use this initializer, you will need a suitable memory location that can hold a `T`. This can
760 /// be [`Box<T>`], [`Arc<T>`], [`UniqueArc<T>`] or even the stack (see [`stack_pin_init!`]). Use the
761 /// [`InPlaceInit::init`] function of a smart pointer like [`Arc<T>`] on this. Because
762 /// [`PinInit<T, E>`] is a super trait, you can use every function that takes it as well.
763 ///
764 /// Also see the [module description](self).
765 ///
766 /// # Safety
767 ///
768 /// When implementing this type you will need to take great care. Also there are probably very few
769 /// cases where a manual implementation is necessary. Use [`init_from_closure`] where possible.
770 ///
771 /// The [`Init::__init`] function
772 /// - returns `Ok(())` if it initialized every field of `slot`,
773 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
774 ///     - `slot` can be deallocated without UB occurring,
775 ///     - `slot` does not need to be dropped,
776 ///     - `slot` is not partially initialized.
777 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
778 ///
779 /// The `__pinned_init` function from the supertrait [`PinInit`] needs to execute the exact same
780 /// code as `__init`.
781 ///
782 /// Contrary to its supertype [`PinInit<T, E>`] the caller is allowed to
783 /// move the pointee after initialization.
784 ///
785 /// [`Arc<T>`]: crate::sync::Arc
786 #[must_use = "An initializer must be used in order to create its value."]
787 pub unsafe trait Init<T: ?Sized, E = Infallible>: Sized {
788     /// Initializes `slot`.
789     ///
790     /// # Safety
791     ///
792     /// - `slot` is a valid pointer to uninitialized memory.
793     /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to
794     ///   deallocate.
795     unsafe fn __init(self, slot: *mut T) -> Result<(), E>;
796 }
797 
798 // SAFETY: Every in-place initializer can also be used as a pin-initializer.
799 unsafe impl<T: ?Sized, E, I> PinInit<T, E> for I
800 where
801     I: Init<T, E>,
802 {
803     unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
804         // SAFETY: `__init` meets the same requirements as `__pinned_init`, except that it does not
805         // require `slot` to not move after init.
806         unsafe { self.__init(slot) }
807     }
808 }
809 
810 /// Creates a new [`PinInit<T, E>`] from the given closure.
811 ///
812 /// # Safety
813 ///
814 /// The closure:
815 /// - returns `Ok(())` if it initialized every field of `slot`,
816 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
817 ///     - `slot` can be deallocated without UB occurring,
818 ///     - `slot` does not need to be dropped,
819 ///     - `slot` is not partially initialized.
820 /// - may assume that the `slot` does not move if `T: !Unpin`,
821 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
822 #[inline]
823 pub const unsafe fn pin_init_from_closure<T: ?Sized, E>(
824     f: impl FnOnce(*mut T) -> Result<(), E>,
825 ) -> impl PinInit<T, E> {
826     __internal::InitClosure(f, PhantomData)
827 }
828 
829 /// Creates a new [`Init<T, E>`] from the given closure.
830 ///
831 /// # Safety
832 ///
833 /// The closure:
834 /// - returns `Ok(())` if it initialized every field of `slot`,
835 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
836 ///     - `slot` can be deallocated without UB occurring,
837 ///     - `slot` does not need to be dropped,
838 ///     - `slot` is not partially initialized.
839 /// - the `slot` may move after initialization.
840 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
841 #[inline]
842 pub const unsafe fn init_from_closure<T: ?Sized, E>(
843     f: impl FnOnce(*mut T) -> Result<(), E>,
844 ) -> impl Init<T, E> {
845     __internal::InitClosure(f, PhantomData)
846 }
847 
848 /// An initializer that leaves the memory uninitialized.
849 ///
850 /// The initializer is a no-op. The `slot` memory is not changed.
851 #[inline]
852 pub fn uninit<T, E>() -> impl Init<MaybeUninit<T>, E> {
853     // SAFETY: The memory is allowed to be uninitialized.
854     unsafe { init_from_closure(|_| Ok(())) }
855 }
856 
857 // SAFETY: Every type can be initialized by-value.
858 unsafe impl<T, E> Init<T, E> for T {
859     unsafe fn __init(self, slot: *mut T) -> Result<(), E> {
860         unsafe { slot.write(self) };
861         Ok(())
862     }
863 }
864 
865 /// Smart pointer that can initialize memory in-place.
866 pub trait InPlaceInit<T>: Sized {
867     /// Use the given pin-initializer to pin-initialize a `T` inside of a new smart pointer of this
868     /// type.
869     ///
870     /// If `T: !Unpin` it will not be able to move afterwards.
871     fn try_pin_init<E>(init: impl PinInit<T, E>) -> Result<Pin<Self>, E>
872     where
873         E: From<AllocError>;
874 
875     /// Use the given pin-initializer to pin-initialize a `T` inside of a new smart pointer of this
876     /// type.
877     ///
878     /// If `T: !Unpin` it will not be able to move afterwards.
879     fn pin_init<E>(init: impl PinInit<T, E>) -> error::Result<Pin<Self>>
880     where
881         Error: From<E>,
882     {
883         // SAFETY: We delegate to `init` and only change the error type.
884         let init = unsafe {
885             pin_init_from_closure(|slot| init.__pinned_init(slot).map_err(|e| Error::from(e)))
886         };
887         Self::try_pin_init(init)
888     }
889 
890     /// Use the given initializer to in-place initialize a `T`.
891     fn try_init<E>(init: impl Init<T, E>) -> Result<Self, E>
892     where
893         E: From<AllocError>;
894 
895     /// Use the given initializer to in-place initialize a `T`.
896     fn init<E>(init: impl Init<T, E>) -> error::Result<Self>
897     where
898         Error: From<E>,
899     {
900         // SAFETY: We delegate to `init` and only change the error type.
901         let init = unsafe {
902             init_from_closure(|slot| init.__pinned_init(slot).map_err(|e| Error::from(e)))
903         };
904         Self::try_init(init)
905     }
906 }
907 
908 impl<T> InPlaceInit<T> for Box<T> {
909     #[inline]
910     fn try_pin_init<E>(init: impl PinInit<T, E>) -> Result<Pin<Self>, E>
911     where
912         E: From<AllocError>,
913     {
914         let mut this = Box::try_new_uninit()?;
915         let slot = this.as_mut_ptr();
916         // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
917         // slot is valid and will not be moved, because we pin it later.
918         unsafe { init.__pinned_init(slot)? };
919         // SAFETY: All fields have been initialized.
920         Ok(unsafe { this.assume_init() }.into())
921     }
922 
923     #[inline]
924     fn try_init<E>(init: impl Init<T, E>) -> Result<Self, E>
925     where
926         E: From<AllocError>,
927     {
928         let mut this = Box::try_new_uninit()?;
929         let slot = this.as_mut_ptr();
930         // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
931         // slot is valid.
932         unsafe { init.__init(slot)? };
933         // SAFETY: All fields have been initialized.
934         Ok(unsafe { this.assume_init() })
935     }
936 }
937 
938 impl<T> InPlaceInit<T> for UniqueArc<T> {
939     #[inline]
940     fn try_pin_init<E>(init: impl PinInit<T, E>) -> Result<Pin<Self>, E>
941     where
942         E: From<AllocError>,
943     {
944         let mut this = UniqueArc::try_new_uninit()?;
945         let slot = this.as_mut_ptr();
946         // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
947         // slot is valid and will not be moved, because we pin it later.
948         unsafe { init.__pinned_init(slot)? };
949         // SAFETY: All fields have been initialized.
950         Ok(unsafe { this.assume_init() }.into())
951     }
952 
953     #[inline]
954     fn try_init<E>(init: impl Init<T, E>) -> Result<Self, E>
955     where
956         E: From<AllocError>,
957     {
958         let mut this = UniqueArc::try_new_uninit()?;
959         let slot = this.as_mut_ptr();
960         // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
961         // slot is valid.
962         unsafe { init.__init(slot)? };
963         // SAFETY: All fields have been initialized.
964         Ok(unsafe { this.assume_init() })
965     }
966 }
967 
968 /// Trait facilitating pinned destruction.
969 ///
970 /// Use [`pinned_drop`] to implement this trait safely:
971 ///
972 /// ```rust
973 /// # use kernel::sync::Mutex;
974 /// use kernel::macros::pinned_drop;
975 /// use core::pin::Pin;
976 /// #[pin_data(PinnedDrop)]
977 /// struct Foo {
978 ///     #[pin]
979 ///     mtx: Mutex<usize>,
980 /// }
981 ///
982 /// #[pinned_drop]
983 /// impl PinnedDrop for Foo {
984 ///     fn drop(self: Pin<&mut Self>) {
985 ///         pr_info!("Foo is being dropped!");
986 ///     }
987 /// }
988 /// ```
989 ///
990 /// # Safety
991 ///
992 /// This trait must be implemented via the [`pinned_drop`] proc-macro attribute on the impl.
993 ///
994 /// [`pinned_drop`]: kernel::macros::pinned_drop
995 pub unsafe trait PinnedDrop: __internal::HasPinData {
996     /// Executes the pinned destructor of this type.
997     ///
998     /// While this function is marked safe, it is actually unsafe to call it manually. For this
999     /// reason it takes an additional parameter. This type can only be constructed by `unsafe` code
1000     /// and thus prevents this function from being called where it should not.
1001     ///
1002     /// This extra parameter will be generated by the `#[pinned_drop]` proc-macro attribute
1003     /// automatically.
1004     fn drop(self: Pin<&mut Self>, only_call_from_drop: __internal::OnlyCallFromDrop);
1005 }
1006 
1007 /// Marker trait for types that can be initialized by writing just zeroes.
1008 ///
1009 /// # Safety
1010 ///
1011 /// The bit pattern consisting of only zeroes is a valid bit pattern for this type. In other words,
1012 /// this is not UB:
1013 ///
1014 /// ```rust,ignore
1015 /// let val: Self = unsafe { core::mem::zeroed() };
1016 /// ```
1017 pub unsafe trait Zeroable {}
1018 
1019 /// Create a new zeroed T.
1020 ///
1021 /// The returned initializer will write `0x00` to every byte of the given `slot`.
1022 #[inline]
1023 pub fn zeroed<T: Zeroable>() -> impl Init<T> {
1024     // SAFETY: Because `T: Zeroable`, all bytes zero is a valid bit pattern for `T`
1025     // and because we write all zeroes, the memory is initialized.
1026     unsafe {
1027         init_from_closure(|slot: *mut T| {
1028             slot.write_bytes(0, 1);
1029             Ok(())
1030         })
1031     }
1032 }
1033 
1034 macro_rules! impl_zeroable {
1035     ($($({$($generics:tt)*})? $t:ty, )*) => {
1036         $(unsafe impl$($($generics)*)? Zeroable for $t {})*
1037     };
1038 }
1039 
1040 impl_zeroable! {
1041     // SAFETY: All primitives that are allowed to be zero.
1042     bool,
1043     char,
1044     u8, u16, u32, u64, u128, usize,
1045     i8, i16, i32, i64, i128, isize,
1046     f32, f64,
1047 
1048     // SAFETY: These are ZSTs, there is nothing to zero.
1049     {<T: ?Sized>} PhantomData<T>, core::marker::PhantomPinned, Infallible, (),
1050 
1051     // SAFETY: Type is allowed to take any value, including all zeros.
1052     {<T>} MaybeUninit<T>,
1053 
1054     // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee).
1055     Option<NonZeroU8>, Option<NonZeroU16>, Option<NonZeroU32>, Option<NonZeroU64>,
1056     Option<NonZeroU128>, Option<NonZeroUsize>,
1057     Option<NonZeroI8>, Option<NonZeroI16>, Option<NonZeroI32>, Option<NonZeroI64>,
1058     Option<NonZeroI128>, Option<NonZeroIsize>,
1059 
1060     // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee).
1061     //
1062     // In this case we are allowed to use `T: ?Sized`, since all zeros is the `None` variant.
1063     {<T: ?Sized>} Option<NonNull<T>>,
1064     {<T: ?Sized>} Option<Box<T>>,
1065 
1066     // SAFETY: `null` pointer is valid.
1067     //
1068     // We cannot use `T: ?Sized`, since the VTABLE pointer part of fat pointers is not allowed to be
1069     // null.
1070     //
1071     // When `Pointee` gets stabilized, we could use
1072     // `T: ?Sized where <T as Pointee>::Metadata: Zeroable`
1073     {<T>} *mut T, {<T>} *const T,
1074 
1075     // SAFETY: `null` pointer is valid and the metadata part of these fat pointers is allowed to be
1076     // zero.
1077     {<T>} *mut [T], {<T>} *const [T], *mut str, *const str,
1078 
1079     // SAFETY: `T` is `Zeroable`.
1080     {<const N: usize, T: Zeroable>} [T; N], {<T: Zeroable>} Wrapping<T>,
1081 }
1082 
1083 macro_rules! impl_tuple_zeroable {
1084     ($(,)?) => {};
1085     ($first:ident, $($t:ident),* $(,)?) => {
1086         // SAFETY: All elements are zeroable and padding can be zero.
1087         unsafe impl<$first: Zeroable, $($t: Zeroable),*> Zeroable for ($first, $($t),*) {}
1088         impl_tuple_zeroable!($($t),* ,);
1089     }
1090 }
1091 
1092 impl_tuple_zeroable!(A, B, C, D, E, F, G, H, I, J);
1093