1 // SPDX-License-Identifier: Apache-2.0 OR MIT 2 3 //! API to safely and fallibly initialize pinned `struct`s using in-place constructors. 4 //! 5 //! It also allows in-place initialization of big `struct`s that would otherwise produce a stack 6 //! overflow. 7 //! 8 //! Most `struct`s from the [`sync`] module need to be pinned, because they contain self-referential 9 //! `struct`s from C. [Pinning][pinning] is Rust's way of ensuring data does not move. 10 //! 11 //! # Overview 12 //! 13 //! To initialize a `struct` with an in-place constructor you will need two things: 14 //! - an in-place constructor, 15 //! - a memory location that can hold your `struct` (this can be the [stack], an [`Arc<T>`], 16 //! [`UniqueArc<T>`], [`Box<T>`] or any other smart pointer that implements [`InPlaceInit`]). 17 //! 18 //! To get an in-place constructor there are generally three options: 19 //! - directly creating an in-place constructor using the [`pin_init!`] macro, 20 //! - a custom function/macro returning an in-place constructor provided by someone else, 21 //! - using the unsafe function [`pin_init_from_closure()`] to manually create an initializer. 22 //! 23 //! Aside from pinned initialization, this API also supports in-place construction without pinning, 24 //! the macros/types/functions are generally named like the pinned variants without the `pin` 25 //! prefix. 26 //! 27 //! # Examples 28 //! 29 //! ## Using the [`pin_init!`] macro 30 //! 31 //! If you want to use [`PinInit`], then you will have to annotate your `struct` with 32 //! `#[`[`pin_data`]`]`. It is a macro that uses `#[pin]` as a marker for 33 //! [structurally pinned fields]. After doing this, you can then create an in-place constructor via 34 //! [`pin_init!`]. The syntax is almost the same as normal `struct` initializers. The difference is 35 //! that you need to write `<-` instead of `:` for fields that you want to initialize in-place. 36 //! 37 //! ```rust 38 //! # #![allow(clippy::disallowed_names)] 39 //! use kernel::sync::{new_mutex, Mutex}; 40 //! # use core::pin::Pin; 41 //! #[pin_data] 42 //! struct Foo { 43 //! #[pin] 44 //! a: Mutex<usize>, 45 //! b: u32, 46 //! } 47 //! 48 //! let foo = pin_init!(Foo { 49 //! a <- new_mutex!(42, "Foo::a"), 50 //! b: 24, 51 //! }); 52 //! ``` 53 //! 54 //! `foo` now is of the type [`impl PinInit<Foo>`]. We can now use any smart pointer that we like 55 //! (or just the stack) to actually initialize a `Foo`: 56 //! 57 //! ```rust 58 //! # #![allow(clippy::disallowed_names)] 59 //! # use kernel::sync::{new_mutex, Mutex}; 60 //! # use core::pin::Pin; 61 //! # #[pin_data] 62 //! # struct Foo { 63 //! # #[pin] 64 //! # a: Mutex<usize>, 65 //! # b: u32, 66 //! # } 67 //! # let foo = pin_init!(Foo { 68 //! # a <- new_mutex!(42, "Foo::a"), 69 //! # b: 24, 70 //! # }); 71 //! let foo: Result<Pin<Box<Foo>>> = Box::pin_init(foo, GFP_KERNEL); 72 //! ``` 73 //! 74 //! For more information see the [`pin_init!`] macro. 75 //! 76 //! ## Using a custom function/macro that returns an initializer 77 //! 78 //! Many types from the kernel supply a function/macro that returns an initializer, because the 79 //! above method only works for types where you can access the fields. 80 //! 81 //! ```rust 82 //! # use kernel::sync::{new_mutex, Arc, Mutex}; 83 //! let mtx: Result<Arc<Mutex<usize>>> = 84 //! Arc::pin_init(new_mutex!(42, "example::mtx"), GFP_KERNEL); 85 //! ``` 86 //! 87 //! To declare an init macro/function you just return an [`impl PinInit<T, E>`]: 88 //! 89 //! ```rust 90 //! # #![allow(clippy::disallowed_names)] 91 //! # use kernel::{sync::Mutex, new_mutex, init::PinInit, try_pin_init}; 92 //! #[pin_data] 93 //! struct DriverData { 94 //! #[pin] 95 //! status: Mutex<i32>, 96 //! buffer: Box<[u8; 1_000_000]>, 97 //! } 98 //! 99 //! impl DriverData { 100 //! fn new() -> impl PinInit<Self, Error> { 101 //! try_pin_init!(Self { 102 //! status <- new_mutex!(0, "DriverData::status"), 103 //! buffer: Box::init(kernel::init::zeroed(), GFP_KERNEL)?, 104 //! }) 105 //! } 106 //! } 107 //! ``` 108 //! 109 //! ## Manual creation of an initializer 110 //! 111 //! Often when working with primitives the previous approaches are not sufficient. That is where 112 //! [`pin_init_from_closure()`] comes in. This `unsafe` function allows you to create a 113 //! [`impl PinInit<T, E>`] directly from a closure. Of course you have to ensure that the closure 114 //! actually does the initialization in the correct way. Here are the things to look out for 115 //! (we are calling the parameter to the closure `slot`): 116 //! - when the closure returns `Ok(())`, then it has completed the initialization successfully, so 117 //! `slot` now contains a valid bit pattern for the type `T`, 118 //! - when the closure returns `Err(e)`, then the caller may deallocate the memory at `slot`, so 119 //! you need to take care to clean up anything if your initialization fails mid-way, 120 //! - you may assume that `slot` will stay pinned even after the closure returns until `drop` of 121 //! `slot` gets called. 122 //! 123 //! ```rust 124 //! # #![allow(unreachable_pub, clippy::disallowed_names)] 125 //! use kernel::{init, types::Opaque}; 126 //! use core::{ptr::addr_of_mut, marker::PhantomPinned, pin::Pin}; 127 //! # mod bindings { 128 //! # #![allow(non_camel_case_types)] 129 //! # pub struct foo; 130 //! # pub unsafe fn init_foo(_ptr: *mut foo) {} 131 //! # pub unsafe fn destroy_foo(_ptr: *mut foo) {} 132 //! # pub unsafe fn enable_foo(_ptr: *mut foo, _flags: u32) -> i32 { 0 } 133 //! # } 134 //! # // `Error::from_errno` is `pub(crate)` in the `kernel` crate, thus provide a workaround. 135 //! # trait FromErrno { 136 //! # fn from_errno(errno: core::ffi::c_int) -> Error { 137 //! # // Dummy error that can be constructed outside the `kernel` crate. 138 //! # Error::from(core::fmt::Error) 139 //! # } 140 //! # } 141 //! # impl FromErrno for Error {} 142 //! /// # Invariants 143 //! /// 144 //! /// `foo` is always initialized 145 //! #[pin_data(PinnedDrop)] 146 //! pub struct RawFoo { 147 //! #[pin] 148 //! foo: Opaque<bindings::foo>, 149 //! #[pin] 150 //! _p: PhantomPinned, 151 //! } 152 //! 153 //! impl RawFoo { 154 //! pub fn new(flags: u32) -> impl PinInit<Self, Error> { 155 //! // SAFETY: 156 //! // - when the closure returns `Ok(())`, then it has successfully initialized and 157 //! // enabled `foo`, 158 //! // - when it returns `Err(e)`, then it has cleaned up before 159 //! unsafe { 160 //! init::pin_init_from_closure(move |slot: *mut Self| { 161 //! // `slot` contains uninit memory, avoid creating a reference. 162 //! let foo = addr_of_mut!((*slot).foo); 163 //! 164 //! // Initialize the `foo` 165 //! bindings::init_foo(Opaque::raw_get(foo)); 166 //! 167 //! // Try to enable it. 168 //! let err = bindings::enable_foo(Opaque::raw_get(foo), flags); 169 //! if err != 0 { 170 //! // Enabling has failed, first clean up the foo and then return the error. 171 //! bindings::destroy_foo(Opaque::raw_get(foo)); 172 //! return Err(Error::from_errno(err)); 173 //! } 174 //! 175 //! // All fields of `RawFoo` have been initialized, since `_p` is a ZST. 176 //! Ok(()) 177 //! }) 178 //! } 179 //! } 180 //! } 181 //! 182 //! #[pinned_drop] 183 //! impl PinnedDrop for RawFoo { 184 //! fn drop(self: Pin<&mut Self>) { 185 //! // SAFETY: Since `foo` is initialized, destroying is safe. 186 //! unsafe { bindings::destroy_foo(self.foo.get()) }; 187 //! } 188 //! } 189 //! ``` 190 //! 191 //! For the special case where initializing a field is a single FFI-function call that cannot fail, 192 //! there exist the helper function [`Opaque::ffi_init`]. This function initialize a single 193 //! [`Opaque`] field by just delegating to the supplied closure. You can use these in combination 194 //! with [`pin_init!`]. 195 //! 196 //! For more information on how to use [`pin_init_from_closure()`], take a look at the uses inside 197 //! the `kernel` crate. The [`sync`] module is a good starting point. 198 //! 199 //! [`sync`]: kernel::sync 200 //! [pinning]: https://doc.rust-lang.org/std/pin/index.html 201 //! [structurally pinned fields]: 202 //! https://doc.rust-lang.org/std/pin/index.html#pinning-is-structural-for-field 203 //! [stack]: crate::stack_pin_init 204 //! [`Arc<T>`]: crate::sync::Arc 205 //! [`impl PinInit<Foo>`]: PinInit 206 //! [`impl PinInit<T, E>`]: PinInit 207 //! [`impl Init<T, E>`]: Init 208 //! [`Opaque`]: kernel::types::Opaque 209 //! [`Opaque::ffi_init`]: kernel::types::Opaque::ffi_init 210 //! [`pin_data`]: ::macros::pin_data 211 //! [`pin_init!`]: crate::pin_init! 212 213 use crate::{ 214 alloc::{box_ext::BoxExt, AllocError, Flags}, 215 error::{self, Error}, 216 sync::UniqueArc, 217 types::{Opaque, ScopeGuard}, 218 }; 219 use alloc::boxed::Box; 220 use core::{ 221 cell::UnsafeCell, 222 convert::Infallible, 223 marker::PhantomData, 224 mem::MaybeUninit, 225 num::*, 226 pin::Pin, 227 ptr::{self, NonNull}, 228 }; 229 230 #[doc(hidden)] 231 pub mod __internal; 232 #[doc(hidden)] 233 pub mod macros; 234 235 /// Initialize and pin a type directly on the stack. 236 /// 237 /// # Examples 238 /// 239 /// ```rust 240 /// # #![allow(clippy::disallowed_names)] 241 /// # use kernel::{init, macros::pin_data, pin_init, stack_pin_init, init::*, sync::Mutex, new_mutex}; 242 /// # use core::pin::Pin; 243 /// #[pin_data] 244 /// struct Foo { 245 /// #[pin] 246 /// a: Mutex<usize>, 247 /// b: Bar, 248 /// } 249 /// 250 /// #[pin_data] 251 /// struct Bar { 252 /// x: u32, 253 /// } 254 /// 255 /// stack_pin_init!(let foo = pin_init!(Foo { 256 /// a <- new_mutex!(42), 257 /// b: Bar { 258 /// x: 64, 259 /// }, 260 /// })); 261 /// let foo: Pin<&mut Foo> = foo; 262 /// pr_info!("a: {}", &*foo.a.lock()); 263 /// ``` 264 /// 265 /// # Syntax 266 /// 267 /// A normal `let` binding with optional type annotation. The expression is expected to implement 268 /// [`PinInit`]/[`Init`] with the error type [`Infallible`]. If you want to use a different error 269 /// type, then use [`stack_try_pin_init!`]. 270 /// 271 /// [`stack_try_pin_init!`]: crate::stack_try_pin_init! 272 #[macro_export] 273 macro_rules! stack_pin_init { 274 (let $var:ident $(: $t:ty)? = $val:expr) => { 275 let val = $val; 276 let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit()); 277 let mut $var = match $crate::init::__internal::StackInit::init($var, val) { 278 Ok(res) => res, 279 Err(x) => { 280 let x: ::core::convert::Infallible = x; 281 match x {} 282 } 283 }; 284 }; 285 } 286 287 /// Initialize and pin a type directly on the stack. 288 /// 289 /// # Examples 290 /// 291 /// ```rust,ignore 292 /// # #![allow(clippy::disallowed_names)] 293 /// # use kernel::{init, pin_init, stack_try_pin_init, init::*, sync::Mutex, new_mutex}; 294 /// # use macros::pin_data; 295 /// # use core::{alloc::AllocError, pin::Pin}; 296 /// #[pin_data] 297 /// struct Foo { 298 /// #[pin] 299 /// a: Mutex<usize>, 300 /// b: Box<Bar>, 301 /// } 302 /// 303 /// struct Bar { 304 /// x: u32, 305 /// } 306 /// 307 /// stack_try_pin_init!(let foo: Result<Pin<&mut Foo>, AllocError> = pin_init!(Foo { 308 /// a <- new_mutex!(42), 309 /// b: Box::new(Bar { 310 /// x: 64, 311 /// }, GFP_KERNEL)?, 312 /// })); 313 /// let foo = foo.unwrap(); 314 /// pr_info!("a: {}", &*foo.a.lock()); 315 /// ``` 316 /// 317 /// ```rust,ignore 318 /// # #![allow(clippy::disallowed_names)] 319 /// # use kernel::{init, pin_init, stack_try_pin_init, init::*, sync::Mutex, new_mutex}; 320 /// # use macros::pin_data; 321 /// # use core::{alloc::AllocError, pin::Pin}; 322 /// #[pin_data] 323 /// struct Foo { 324 /// #[pin] 325 /// a: Mutex<usize>, 326 /// b: Box<Bar>, 327 /// } 328 /// 329 /// struct Bar { 330 /// x: u32, 331 /// } 332 /// 333 /// stack_try_pin_init!(let foo: Pin<&mut Foo> =? pin_init!(Foo { 334 /// a <- new_mutex!(42), 335 /// b: Box::new(Bar { 336 /// x: 64, 337 /// }, GFP_KERNEL)?, 338 /// })); 339 /// pr_info!("a: {}", &*foo.a.lock()); 340 /// # Ok::<_, AllocError>(()) 341 /// ``` 342 /// 343 /// # Syntax 344 /// 345 /// A normal `let` binding with optional type annotation. The expression is expected to implement 346 /// [`PinInit`]/[`Init`]. This macro assigns a result to the given variable, adding a `?` after the 347 /// `=` will propagate this error. 348 #[macro_export] 349 macro_rules! stack_try_pin_init { 350 (let $var:ident $(: $t:ty)? = $val:expr) => { 351 let val = $val; 352 let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit()); 353 let mut $var = $crate::init::__internal::StackInit::init($var, val); 354 }; 355 (let $var:ident $(: $t:ty)? =? $val:expr) => { 356 let val = $val; 357 let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit()); 358 let mut $var = $crate::init::__internal::StackInit::init($var, val)?; 359 }; 360 } 361 362 /// Construct an in-place, pinned initializer for `struct`s. 363 /// 364 /// This macro defaults the error to [`Infallible`]. If you need [`Error`], then use 365 /// [`try_pin_init!`]. 366 /// 367 /// The syntax is almost identical to that of a normal `struct` initializer: 368 /// 369 /// ```rust 370 /// # #![allow(clippy::disallowed_names)] 371 /// # use kernel::{init, pin_init, macros::pin_data, init::*}; 372 /// # use core::pin::Pin; 373 /// #[pin_data] 374 /// struct Foo { 375 /// a: usize, 376 /// b: Bar, 377 /// } 378 /// 379 /// #[pin_data] 380 /// struct Bar { 381 /// x: u32, 382 /// } 383 /// 384 /// # fn demo() -> impl PinInit<Foo> { 385 /// let a = 42; 386 /// 387 /// let initializer = pin_init!(Foo { 388 /// a, 389 /// b: Bar { 390 /// x: 64, 391 /// }, 392 /// }); 393 /// # initializer } 394 /// # Box::pin_init(demo(), GFP_KERNEL).unwrap(); 395 /// ``` 396 /// 397 /// Arbitrary Rust expressions can be used to set the value of a variable. 398 /// 399 /// The fields are initialized in the order that they appear in the initializer. So it is possible 400 /// to read already initialized fields using raw pointers. 401 /// 402 /// IMPORTANT: You are not allowed to create references to fields of the struct inside of the 403 /// initializer. 404 /// 405 /// # Init-functions 406 /// 407 /// When working with this API it is often desired to let others construct your types without 408 /// giving access to all fields. This is where you would normally write a plain function `new` 409 /// that would return a new instance of your type. With this API that is also possible. 410 /// However, there are a few extra things to keep in mind. 411 /// 412 /// To create an initializer function, simply declare it like this: 413 /// 414 /// ```rust 415 /// # #![allow(clippy::disallowed_names)] 416 /// # use kernel::{init, pin_init, init::*}; 417 /// # use core::pin::Pin; 418 /// # #[pin_data] 419 /// # struct Foo { 420 /// # a: usize, 421 /// # b: Bar, 422 /// # } 423 /// # #[pin_data] 424 /// # struct Bar { 425 /// # x: u32, 426 /// # } 427 /// impl Foo { 428 /// fn new() -> impl PinInit<Self> { 429 /// pin_init!(Self { 430 /// a: 42, 431 /// b: Bar { 432 /// x: 64, 433 /// }, 434 /// }) 435 /// } 436 /// } 437 /// ``` 438 /// 439 /// Users of `Foo` can now create it like this: 440 /// 441 /// ```rust 442 /// # #![allow(clippy::disallowed_names)] 443 /// # use kernel::{init, pin_init, macros::pin_data, init::*}; 444 /// # use core::pin::Pin; 445 /// # #[pin_data] 446 /// # struct Foo { 447 /// # a: usize, 448 /// # b: Bar, 449 /// # } 450 /// # #[pin_data] 451 /// # struct Bar { 452 /// # x: u32, 453 /// # } 454 /// # impl Foo { 455 /// # fn new() -> impl PinInit<Self> { 456 /// # pin_init!(Self { 457 /// # a: 42, 458 /// # b: Bar { 459 /// # x: 64, 460 /// # }, 461 /// # }) 462 /// # } 463 /// # } 464 /// let foo = Box::pin_init(Foo::new(), GFP_KERNEL); 465 /// ``` 466 /// 467 /// They can also easily embed it into their own `struct`s: 468 /// 469 /// ```rust 470 /// # #![allow(clippy::disallowed_names)] 471 /// # use kernel::{init, pin_init, macros::pin_data, init::*}; 472 /// # use core::pin::Pin; 473 /// # #[pin_data] 474 /// # struct Foo { 475 /// # a: usize, 476 /// # b: Bar, 477 /// # } 478 /// # #[pin_data] 479 /// # struct Bar { 480 /// # x: u32, 481 /// # } 482 /// # impl Foo { 483 /// # fn new() -> impl PinInit<Self> { 484 /// # pin_init!(Self { 485 /// # a: 42, 486 /// # b: Bar { 487 /// # x: 64, 488 /// # }, 489 /// # }) 490 /// # } 491 /// # } 492 /// #[pin_data] 493 /// struct FooContainer { 494 /// #[pin] 495 /// foo1: Foo, 496 /// #[pin] 497 /// foo2: Foo, 498 /// other: u32, 499 /// } 500 /// 501 /// impl FooContainer { 502 /// fn new(other: u32) -> impl PinInit<Self> { 503 /// pin_init!(Self { 504 /// foo1 <- Foo::new(), 505 /// foo2 <- Foo::new(), 506 /// other, 507 /// }) 508 /// } 509 /// } 510 /// ``` 511 /// 512 /// Here we see that when using `pin_init!` with `PinInit`, one needs to write `<-` instead of `:`. 513 /// This signifies that the given field is initialized in-place. As with `struct` initializers, just 514 /// writing the field (in this case `other`) without `:` or `<-` means `other: other,`. 515 /// 516 /// # Syntax 517 /// 518 /// As already mentioned in the examples above, inside of `pin_init!` a `struct` initializer with 519 /// the following modifications is expected: 520 /// - Fields that you want to initialize in-place have to use `<-` instead of `:`. 521 /// - In front of the initializer you can write `&this in` to have access to a [`NonNull<Self>`] 522 /// pointer named `this` inside of the initializer. 523 /// - Using struct update syntax one can place `..Zeroable::zeroed()` at the very end of the 524 /// struct, this initializes every field with 0 and then runs all initializers specified in the 525 /// body. This can only be done if [`Zeroable`] is implemented for the struct. 526 /// 527 /// For instance: 528 /// 529 /// ```rust 530 /// # use kernel::{macros::{Zeroable, pin_data}, pin_init}; 531 /// # use core::{ptr::addr_of_mut, marker::PhantomPinned}; 532 /// #[pin_data] 533 /// #[derive(Zeroable)] 534 /// struct Buf { 535 /// // `ptr` points into `buf`. 536 /// ptr: *mut u8, 537 /// buf: [u8; 64], 538 /// #[pin] 539 /// pin: PhantomPinned, 540 /// } 541 /// pin_init!(&this in Buf { 542 /// buf: [0; 64], 543 /// ptr: unsafe { addr_of_mut!((*this.as_ptr()).buf).cast() }, 544 /// pin: PhantomPinned, 545 /// }); 546 /// pin_init!(Buf { 547 /// buf: [1; 64], 548 /// ..Zeroable::zeroed() 549 /// }); 550 /// ``` 551 /// 552 /// [`try_pin_init!`]: kernel::try_pin_init 553 /// [`NonNull<Self>`]: core::ptr::NonNull 554 // For a detailed example of how this macro works, see the module documentation of the hidden 555 // module `__internal` inside of `init/__internal.rs`. 556 #[macro_export] 557 macro_rules! pin_init { 558 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 559 $($fields:tt)* 560 }) => { 561 $crate::__init_internal!( 562 @this($($this)?), 563 @typ($t $(::<$($generics),*>)?), 564 @fields($($fields)*), 565 @error(::core::convert::Infallible), 566 @data(PinData, use_data), 567 @has_data(HasPinData, __pin_data), 568 @construct_closure(pin_init_from_closure), 569 @munch_fields($($fields)*), 570 ) 571 }; 572 } 573 574 /// Construct an in-place, fallible pinned initializer for `struct`s. 575 /// 576 /// If the initialization can complete without error (or [`Infallible`]), then use [`pin_init!`]. 577 /// 578 /// You can use the `?` operator or use `return Err(err)` inside the initializer to stop 579 /// initialization and return the error. 580 /// 581 /// IMPORTANT: if you have `unsafe` code inside of the initializer you have to ensure that when 582 /// initialization fails, the memory can be safely deallocated without any further modifications. 583 /// 584 /// This macro defaults the error to [`Error`]. 585 /// 586 /// The syntax is identical to [`pin_init!`] with the following exception: you can append `? $type` 587 /// after the `struct` initializer to specify the error type you want to use. 588 /// 589 /// # Examples 590 /// 591 /// ```rust 592 /// # #![feature(new_uninit)] 593 /// use kernel::{init::{self, PinInit}, error::Error}; 594 /// #[pin_data] 595 /// struct BigBuf { 596 /// big: Box<[u8; 1024 * 1024 * 1024]>, 597 /// small: [u8; 1024 * 1024], 598 /// ptr: *mut u8, 599 /// } 600 /// 601 /// impl BigBuf { 602 /// fn new() -> impl PinInit<Self, Error> { 603 /// try_pin_init!(Self { 604 /// big: Box::init(init::zeroed(), GFP_KERNEL)?, 605 /// small: [0; 1024 * 1024], 606 /// ptr: core::ptr::null_mut(), 607 /// }? Error) 608 /// } 609 /// } 610 /// ``` 611 // For a detailed example of how this macro works, see the module documentation of the hidden 612 // module `__internal` inside of `init/__internal.rs`. 613 #[macro_export] 614 macro_rules! try_pin_init { 615 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 616 $($fields:tt)* 617 }) => { 618 $crate::__init_internal!( 619 @this($($this)?), 620 @typ($t $(::<$($generics),*>)? ), 621 @fields($($fields)*), 622 @error($crate::error::Error), 623 @data(PinData, use_data), 624 @has_data(HasPinData, __pin_data), 625 @construct_closure(pin_init_from_closure), 626 @munch_fields($($fields)*), 627 ) 628 }; 629 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 630 $($fields:tt)* 631 }? $err:ty) => { 632 $crate::__init_internal!( 633 @this($($this)?), 634 @typ($t $(::<$($generics),*>)? ), 635 @fields($($fields)*), 636 @error($err), 637 @data(PinData, use_data), 638 @has_data(HasPinData, __pin_data), 639 @construct_closure(pin_init_from_closure), 640 @munch_fields($($fields)*), 641 ) 642 }; 643 } 644 645 /// Construct an in-place initializer for `struct`s. 646 /// 647 /// This macro defaults the error to [`Infallible`]. If you need [`Error`], then use 648 /// [`try_init!`]. 649 /// 650 /// The syntax is identical to [`pin_init!`] and its safety caveats also apply: 651 /// - `unsafe` code must guarantee either full initialization or return an error and allow 652 /// deallocation of the memory. 653 /// - the fields are initialized in the order given in the initializer. 654 /// - no references to fields are allowed to be created inside of the initializer. 655 /// 656 /// This initializer is for initializing data in-place that might later be moved. If you want to 657 /// pin-initialize, use [`pin_init!`]. 658 /// 659 /// [`try_init!`]: crate::try_init! 660 // For a detailed example of how this macro works, see the module documentation of the hidden 661 // module `__internal` inside of `init/__internal.rs`. 662 #[macro_export] 663 macro_rules! init { 664 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 665 $($fields:tt)* 666 }) => { 667 $crate::__init_internal!( 668 @this($($this)?), 669 @typ($t $(::<$($generics),*>)?), 670 @fields($($fields)*), 671 @error(::core::convert::Infallible), 672 @data(InitData, /*no use_data*/), 673 @has_data(HasInitData, __init_data), 674 @construct_closure(init_from_closure), 675 @munch_fields($($fields)*), 676 ) 677 } 678 } 679 680 /// Construct an in-place fallible initializer for `struct`s. 681 /// 682 /// This macro defaults the error to [`Error`]. If you need [`Infallible`], then use 683 /// [`init!`]. 684 /// 685 /// The syntax is identical to [`try_pin_init!`]. If you want to specify a custom error, 686 /// append `? $type` after the `struct` initializer. 687 /// The safety caveats from [`try_pin_init!`] also apply: 688 /// - `unsafe` code must guarantee either full initialization or return an error and allow 689 /// deallocation of the memory. 690 /// - the fields are initialized in the order given in the initializer. 691 /// - no references to fields are allowed to be created inside of the initializer. 692 /// 693 /// # Examples 694 /// 695 /// ```rust 696 /// use kernel::{init::{PinInit, zeroed}, error::Error}; 697 /// struct BigBuf { 698 /// big: Box<[u8; 1024 * 1024 * 1024]>, 699 /// small: [u8; 1024 * 1024], 700 /// } 701 /// 702 /// impl BigBuf { 703 /// fn new() -> impl Init<Self, Error> { 704 /// try_init!(Self { 705 /// big: Box::init(zeroed(), GFP_KERNEL)?, 706 /// small: [0; 1024 * 1024], 707 /// }? Error) 708 /// } 709 /// } 710 /// ``` 711 // For a detailed example of how this macro works, see the module documentation of the hidden 712 // module `__internal` inside of `init/__internal.rs`. 713 #[macro_export] 714 macro_rules! try_init { 715 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 716 $($fields:tt)* 717 }) => { 718 $crate::__init_internal!( 719 @this($($this)?), 720 @typ($t $(::<$($generics),*>)?), 721 @fields($($fields)*), 722 @error($crate::error::Error), 723 @data(InitData, /*no use_data*/), 724 @has_data(HasInitData, __init_data), 725 @construct_closure(init_from_closure), 726 @munch_fields($($fields)*), 727 ) 728 }; 729 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 730 $($fields:tt)* 731 }? $err:ty) => { 732 $crate::__init_internal!( 733 @this($($this)?), 734 @typ($t $(::<$($generics),*>)?), 735 @fields($($fields)*), 736 @error($err), 737 @data(InitData, /*no use_data*/), 738 @has_data(HasInitData, __init_data), 739 @construct_closure(init_from_closure), 740 @munch_fields($($fields)*), 741 ) 742 }; 743 } 744 745 /// A pin-initializer for the type `T`. 746 /// 747 /// To use this initializer, you will need a suitable memory location that can hold a `T`. This can 748 /// be [`Box<T>`], [`Arc<T>`], [`UniqueArc<T>`] or even the stack (see [`stack_pin_init!`]). Use the 749 /// [`InPlaceInit::pin_init`] function of a smart pointer like [`Arc<T>`] on this. 750 /// 751 /// Also see the [module description](self). 752 /// 753 /// # Safety 754 /// 755 /// When implementing this trait you will need to take great care. Also there are probably very few 756 /// cases where a manual implementation is necessary. Use [`pin_init_from_closure`] where possible. 757 /// 758 /// The [`PinInit::__pinned_init`] function: 759 /// - returns `Ok(())` if it initialized every field of `slot`, 760 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 761 /// - `slot` can be deallocated without UB occurring, 762 /// - `slot` does not need to be dropped, 763 /// - `slot` is not partially initialized. 764 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 765 /// 766 /// [`Arc<T>`]: crate::sync::Arc 767 /// [`Arc::pin_init`]: crate::sync::Arc::pin_init 768 #[must_use = "An initializer must be used in order to create its value."] 769 pub unsafe trait PinInit<T: ?Sized, E = Infallible>: Sized { 770 /// Initializes `slot`. 771 /// 772 /// # Safety 773 /// 774 /// - `slot` is a valid pointer to uninitialized memory. 775 /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to 776 /// deallocate. 777 /// - `slot` will not move until it is dropped, i.e. it will be pinned. 778 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E>; 779 780 /// First initializes the value using `self` then calls the function `f` with the initialized 781 /// value. 782 /// 783 /// If `f` returns an error the value is dropped and the initializer will forward the error. 784 /// 785 /// # Examples 786 /// 787 /// ```rust 788 /// # #![allow(clippy::disallowed_names)] 789 /// use kernel::{types::Opaque, init::pin_init_from_closure}; 790 /// #[repr(C)] 791 /// struct RawFoo([u8; 16]); 792 /// extern { 793 /// fn init_foo(_: *mut RawFoo); 794 /// } 795 /// 796 /// #[pin_data] 797 /// struct Foo { 798 /// #[pin] 799 /// raw: Opaque<RawFoo>, 800 /// } 801 /// 802 /// impl Foo { 803 /// fn setup(self: Pin<&mut Self>) { 804 /// pr_info!("Setting up foo"); 805 /// } 806 /// } 807 /// 808 /// let foo = pin_init!(Foo { 809 /// raw <- unsafe { 810 /// Opaque::ffi_init(|s| { 811 /// init_foo(s); 812 /// }) 813 /// }, 814 /// }).pin_chain(|foo| { 815 /// foo.setup(); 816 /// Ok(()) 817 /// }); 818 /// ``` 819 fn pin_chain<F>(self, f: F) -> ChainPinInit<Self, F, T, E> 820 where 821 F: FnOnce(Pin<&mut T>) -> Result<(), E>, 822 { 823 ChainPinInit(self, f, PhantomData) 824 } 825 } 826 827 /// An initializer returned by [`PinInit::pin_chain`]. 828 pub struct ChainPinInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, Box<T>)>); 829 830 // SAFETY: The `__pinned_init` function is implemented such that it 831 // - returns `Ok(())` on successful initialization, 832 // - returns `Err(err)` on error and in this case `slot` will be dropped. 833 // - considers `slot` pinned. 834 unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainPinInit<I, F, T, E> 835 where 836 I: PinInit<T, E>, 837 F: FnOnce(Pin<&mut T>) -> Result<(), E>, 838 { 839 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> { 840 // SAFETY: All requirements fulfilled since this function is `__pinned_init`. 841 unsafe { self.0.__pinned_init(slot)? }; 842 // SAFETY: The above call initialized `slot` and we still have unique access. 843 let val = unsafe { &mut *slot }; 844 // SAFETY: `slot` is considered pinned. 845 let val = unsafe { Pin::new_unchecked(val) }; 846 (self.1)(val).map_err(|e| { 847 // SAFETY: `slot` was initialized above. 848 unsafe { core::ptr::drop_in_place(slot) }; 849 e 850 }) 851 } 852 } 853 854 /// An initializer for `T`. 855 /// 856 /// To use this initializer, you will need a suitable memory location that can hold a `T`. This can 857 /// be [`Box<T>`], [`Arc<T>`], [`UniqueArc<T>`] or even the stack (see [`stack_pin_init!`]). Use the 858 /// [`InPlaceInit::init`] function of a smart pointer like [`Arc<T>`] on this. Because 859 /// [`PinInit<T, E>`] is a super trait, you can use every function that takes it as well. 860 /// 861 /// Also see the [module description](self). 862 /// 863 /// # Safety 864 /// 865 /// When implementing this trait you will need to take great care. Also there are probably very few 866 /// cases where a manual implementation is necessary. Use [`init_from_closure`] where possible. 867 /// 868 /// The [`Init::__init`] function: 869 /// - returns `Ok(())` if it initialized every field of `slot`, 870 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 871 /// - `slot` can be deallocated without UB occurring, 872 /// - `slot` does not need to be dropped, 873 /// - `slot` is not partially initialized. 874 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 875 /// 876 /// The `__pinned_init` function from the supertrait [`PinInit`] needs to execute the exact same 877 /// code as `__init`. 878 /// 879 /// Contrary to its supertype [`PinInit<T, E>`] the caller is allowed to 880 /// move the pointee after initialization. 881 /// 882 /// [`Arc<T>`]: crate::sync::Arc 883 #[must_use = "An initializer must be used in order to create its value."] 884 pub unsafe trait Init<T: ?Sized, E = Infallible>: PinInit<T, E> { 885 /// Initializes `slot`. 886 /// 887 /// # Safety 888 /// 889 /// - `slot` is a valid pointer to uninitialized memory. 890 /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to 891 /// deallocate. 892 unsafe fn __init(self, slot: *mut T) -> Result<(), E>; 893 894 /// First initializes the value using `self` then calls the function `f` with the initialized 895 /// value. 896 /// 897 /// If `f` returns an error the value is dropped and the initializer will forward the error. 898 /// 899 /// # Examples 900 /// 901 /// ```rust 902 /// # #![allow(clippy::disallowed_names)] 903 /// use kernel::{types::Opaque, init::{self, init_from_closure}}; 904 /// struct Foo { 905 /// buf: [u8; 1_000_000], 906 /// } 907 /// 908 /// impl Foo { 909 /// fn setup(&mut self) { 910 /// pr_info!("Setting up foo"); 911 /// } 912 /// } 913 /// 914 /// let foo = init!(Foo { 915 /// buf <- init::zeroed() 916 /// }).chain(|foo| { 917 /// foo.setup(); 918 /// Ok(()) 919 /// }); 920 /// ``` 921 fn chain<F>(self, f: F) -> ChainInit<Self, F, T, E> 922 where 923 F: FnOnce(&mut T) -> Result<(), E>, 924 { 925 ChainInit(self, f, PhantomData) 926 } 927 } 928 929 /// An initializer returned by [`Init::chain`]. 930 pub struct ChainInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, Box<T>)>); 931 932 // SAFETY: The `__init` function is implemented such that it 933 // - returns `Ok(())` on successful initialization, 934 // - returns `Err(err)` on error and in this case `slot` will be dropped. 935 unsafe impl<T: ?Sized, E, I, F> Init<T, E> for ChainInit<I, F, T, E> 936 where 937 I: Init<T, E>, 938 F: FnOnce(&mut T) -> Result<(), E>, 939 { 940 unsafe fn __init(self, slot: *mut T) -> Result<(), E> { 941 // SAFETY: All requirements fulfilled since this function is `__init`. 942 unsafe { self.0.__pinned_init(slot)? }; 943 // SAFETY: The above call initialized `slot` and we still have unique access. 944 (self.1)(unsafe { &mut *slot }).map_err(|e| { 945 // SAFETY: `slot` was initialized above. 946 unsafe { core::ptr::drop_in_place(slot) }; 947 e 948 }) 949 } 950 } 951 952 // SAFETY: `__pinned_init` behaves exactly the same as `__init`. 953 unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainInit<I, F, T, E> 954 where 955 I: Init<T, E>, 956 F: FnOnce(&mut T) -> Result<(), E>, 957 { 958 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> { 959 // SAFETY: `__init` has less strict requirements compared to `__pinned_init`. 960 unsafe { self.__init(slot) } 961 } 962 } 963 964 /// Creates a new [`PinInit<T, E>`] from the given closure. 965 /// 966 /// # Safety 967 /// 968 /// The closure: 969 /// - returns `Ok(())` if it initialized every field of `slot`, 970 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 971 /// - `slot` can be deallocated without UB occurring, 972 /// - `slot` does not need to be dropped, 973 /// - `slot` is not partially initialized. 974 /// - may assume that the `slot` does not move if `T: !Unpin`, 975 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 976 #[inline] 977 pub const unsafe fn pin_init_from_closure<T: ?Sized, E>( 978 f: impl FnOnce(*mut T) -> Result<(), E>, 979 ) -> impl PinInit<T, E> { 980 __internal::InitClosure(f, PhantomData) 981 } 982 983 /// Creates a new [`Init<T, E>`] from the given closure. 984 /// 985 /// # Safety 986 /// 987 /// The closure: 988 /// - returns `Ok(())` if it initialized every field of `slot`, 989 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 990 /// - `slot` can be deallocated without UB occurring, 991 /// - `slot` does not need to be dropped, 992 /// - `slot` is not partially initialized. 993 /// - the `slot` may move after initialization. 994 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 995 #[inline] 996 pub const unsafe fn init_from_closure<T: ?Sized, E>( 997 f: impl FnOnce(*mut T) -> Result<(), E>, 998 ) -> impl Init<T, E> { 999 __internal::InitClosure(f, PhantomData) 1000 } 1001 1002 /// An initializer that leaves the memory uninitialized. 1003 /// 1004 /// The initializer is a no-op. The `slot` memory is not changed. 1005 #[inline] 1006 pub fn uninit<T, E>() -> impl Init<MaybeUninit<T>, E> { 1007 // SAFETY: The memory is allowed to be uninitialized. 1008 unsafe { init_from_closure(|_| Ok(())) } 1009 } 1010 1011 /// Initializes an array by initializing each element via the provided initializer. 1012 /// 1013 /// # Examples 1014 /// 1015 /// ```rust 1016 /// use kernel::{error::Error, init::init_array_from_fn}; 1017 /// let array: Box<[usize; 1_000]> = Box::init::<Error>(init_array_from_fn(|i| i), GFP_KERNEL).unwrap(); 1018 /// assert_eq!(array.len(), 1_000); 1019 /// ``` 1020 pub fn init_array_from_fn<I, const N: usize, T, E>( 1021 mut make_init: impl FnMut(usize) -> I, 1022 ) -> impl Init<[T; N], E> 1023 where 1024 I: Init<T, E>, 1025 { 1026 let init = move |slot: *mut [T; N]| { 1027 let slot = slot.cast::<T>(); 1028 // Counts the number of initialized elements and when dropped drops that many elements from 1029 // `slot`. 1030 let mut init_count = ScopeGuard::new_with_data(0, |i| { 1031 // We now free every element that has been initialized before. 1032 // SAFETY: The loop initialized exactly the values from 0..i and since we 1033 // return `Err` below, the caller will consider the memory at `slot` as 1034 // uninitialized. 1035 unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) }; 1036 }); 1037 for i in 0..N { 1038 let init = make_init(i); 1039 // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`. 1040 let ptr = unsafe { slot.add(i) }; 1041 // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init` 1042 // requirements. 1043 unsafe { init.__init(ptr) }?; 1044 *init_count += 1; 1045 } 1046 init_count.dismiss(); 1047 Ok(()) 1048 }; 1049 // SAFETY: The initializer above initializes every element of the array. On failure it drops 1050 // any initialized elements and returns `Err`. 1051 unsafe { init_from_closure(init) } 1052 } 1053 1054 /// Initializes an array by initializing each element via the provided initializer. 1055 /// 1056 /// # Examples 1057 /// 1058 /// ```rust 1059 /// use kernel::{sync::{Arc, Mutex}, init::pin_init_array_from_fn, new_mutex}; 1060 /// let array: Arc<[Mutex<usize>; 1_000]> = 1061 /// Arc::pin_init(pin_init_array_from_fn(|i| new_mutex!(i)), GFP_KERNEL).unwrap(); 1062 /// assert_eq!(array.len(), 1_000); 1063 /// ``` 1064 pub fn pin_init_array_from_fn<I, const N: usize, T, E>( 1065 mut make_init: impl FnMut(usize) -> I, 1066 ) -> impl PinInit<[T; N], E> 1067 where 1068 I: PinInit<T, E>, 1069 { 1070 let init = move |slot: *mut [T; N]| { 1071 let slot = slot.cast::<T>(); 1072 // Counts the number of initialized elements and when dropped drops that many elements from 1073 // `slot`. 1074 let mut init_count = ScopeGuard::new_with_data(0, |i| { 1075 // We now free every element that has been initialized before. 1076 // SAFETY: The loop initialized exactly the values from 0..i and since we 1077 // return `Err` below, the caller will consider the memory at `slot` as 1078 // uninitialized. 1079 unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) }; 1080 }); 1081 for i in 0..N { 1082 let init = make_init(i); 1083 // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`. 1084 let ptr = unsafe { slot.add(i) }; 1085 // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init` 1086 // requirements. 1087 unsafe { init.__pinned_init(ptr) }?; 1088 *init_count += 1; 1089 } 1090 init_count.dismiss(); 1091 Ok(()) 1092 }; 1093 // SAFETY: The initializer above initializes every element of the array. On failure it drops 1094 // any initialized elements and returns `Err`. 1095 unsafe { pin_init_from_closure(init) } 1096 } 1097 1098 // SAFETY: Every type can be initialized by-value. 1099 unsafe impl<T, E> Init<T, E> for T { 1100 unsafe fn __init(self, slot: *mut T) -> Result<(), E> { 1101 unsafe { slot.write(self) }; 1102 Ok(()) 1103 } 1104 } 1105 1106 // SAFETY: Every type can be initialized by-value. `__pinned_init` calls `__init`. 1107 unsafe impl<T, E> PinInit<T, E> for T { 1108 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> { 1109 unsafe { self.__init(slot) } 1110 } 1111 } 1112 1113 /// Smart pointer that can initialize memory in-place. 1114 pub trait InPlaceInit<T>: Sized { 1115 /// Use the given pin-initializer to pin-initialize a `T` inside of a new smart pointer of this 1116 /// type. 1117 /// 1118 /// If `T: !Unpin` it will not be able to move afterwards. 1119 fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Pin<Self>, E> 1120 where 1121 E: From<AllocError>; 1122 1123 /// Use the given pin-initializer to pin-initialize a `T` inside of a new smart pointer of this 1124 /// type. 1125 /// 1126 /// If `T: !Unpin` it will not be able to move afterwards. 1127 fn pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> error::Result<Pin<Self>> 1128 where 1129 Error: From<E>, 1130 { 1131 // SAFETY: We delegate to `init` and only change the error type. 1132 let init = unsafe { 1133 pin_init_from_closure(|slot| init.__pinned_init(slot).map_err(|e| Error::from(e))) 1134 }; 1135 Self::try_pin_init(init, flags) 1136 } 1137 1138 /// Use the given initializer to in-place initialize a `T`. 1139 fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E> 1140 where 1141 E: From<AllocError>; 1142 1143 /// Use the given initializer to in-place initialize a `T`. 1144 fn init<E>(init: impl Init<T, E>, flags: Flags) -> error::Result<Self> 1145 where 1146 Error: From<E>, 1147 { 1148 // SAFETY: We delegate to `init` and only change the error type. 1149 let init = unsafe { 1150 init_from_closure(|slot| init.__pinned_init(slot).map_err(|e| Error::from(e))) 1151 }; 1152 Self::try_init(init, flags) 1153 } 1154 } 1155 1156 impl<T> InPlaceInit<T> for Box<T> { 1157 #[inline] 1158 fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Pin<Self>, E> 1159 where 1160 E: From<AllocError>, 1161 { 1162 let mut this = <Box<_> as BoxExt<_>>::new_uninit(flags)?; 1163 let slot = this.as_mut_ptr(); 1164 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 1165 // slot is valid and will not be moved, because we pin it later. 1166 unsafe { init.__pinned_init(slot)? }; 1167 // SAFETY: All fields have been initialized. 1168 Ok(unsafe { this.assume_init() }.into()) 1169 } 1170 1171 #[inline] 1172 fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E> 1173 where 1174 E: From<AllocError>, 1175 { 1176 let mut this = <Box<_> as BoxExt<_>>::new_uninit(flags)?; 1177 let slot = this.as_mut_ptr(); 1178 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 1179 // slot is valid. 1180 unsafe { init.__init(slot)? }; 1181 // SAFETY: All fields have been initialized. 1182 Ok(unsafe { this.assume_init() }) 1183 } 1184 } 1185 1186 impl<T> InPlaceInit<T> for UniqueArc<T> { 1187 #[inline] 1188 fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Pin<Self>, E> 1189 where 1190 E: From<AllocError>, 1191 { 1192 let mut this = UniqueArc::new_uninit(flags)?; 1193 let slot = this.as_mut_ptr(); 1194 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 1195 // slot is valid and will not be moved, because we pin it later. 1196 unsafe { init.__pinned_init(slot)? }; 1197 // SAFETY: All fields have been initialized. 1198 Ok(unsafe { this.assume_init() }.into()) 1199 } 1200 1201 #[inline] 1202 fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E> 1203 where 1204 E: From<AllocError>, 1205 { 1206 let mut this = UniqueArc::new_uninit(flags)?; 1207 let slot = this.as_mut_ptr(); 1208 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 1209 // slot is valid. 1210 unsafe { init.__init(slot)? }; 1211 // SAFETY: All fields have been initialized. 1212 Ok(unsafe { this.assume_init() }) 1213 } 1214 } 1215 1216 /// Trait facilitating pinned destruction. 1217 /// 1218 /// Use [`pinned_drop`] to implement this trait safely: 1219 /// 1220 /// ```rust 1221 /// # use kernel::sync::Mutex; 1222 /// use kernel::macros::pinned_drop; 1223 /// use core::pin::Pin; 1224 /// #[pin_data(PinnedDrop)] 1225 /// struct Foo { 1226 /// #[pin] 1227 /// mtx: Mutex<usize>, 1228 /// } 1229 /// 1230 /// #[pinned_drop] 1231 /// impl PinnedDrop for Foo { 1232 /// fn drop(self: Pin<&mut Self>) { 1233 /// pr_info!("Foo is being dropped!"); 1234 /// } 1235 /// } 1236 /// ``` 1237 /// 1238 /// # Safety 1239 /// 1240 /// This trait must be implemented via the [`pinned_drop`] proc-macro attribute on the impl. 1241 /// 1242 /// [`pinned_drop`]: kernel::macros::pinned_drop 1243 pub unsafe trait PinnedDrop: __internal::HasPinData { 1244 /// Executes the pinned destructor of this type. 1245 /// 1246 /// While this function is marked safe, it is actually unsafe to call it manually. For this 1247 /// reason it takes an additional parameter. This type can only be constructed by `unsafe` code 1248 /// and thus prevents this function from being called where it should not. 1249 /// 1250 /// This extra parameter will be generated by the `#[pinned_drop]` proc-macro attribute 1251 /// automatically. 1252 fn drop(self: Pin<&mut Self>, only_call_from_drop: __internal::OnlyCallFromDrop); 1253 } 1254 1255 /// Marker trait for types that can be initialized by writing just zeroes. 1256 /// 1257 /// # Safety 1258 /// 1259 /// The bit pattern consisting of only zeroes is a valid bit pattern for this type. In other words, 1260 /// this is not UB: 1261 /// 1262 /// ```rust,ignore 1263 /// let val: Self = unsafe { core::mem::zeroed() }; 1264 /// ``` 1265 pub unsafe trait Zeroable {} 1266 1267 /// Create a new zeroed T. 1268 /// 1269 /// The returned initializer will write `0x00` to every byte of the given `slot`. 1270 #[inline] 1271 pub fn zeroed<T: Zeroable>() -> impl Init<T> { 1272 // SAFETY: Because `T: Zeroable`, all bytes zero is a valid bit pattern for `T` 1273 // and because we write all zeroes, the memory is initialized. 1274 unsafe { 1275 init_from_closure(|slot: *mut T| { 1276 slot.write_bytes(0, 1); 1277 Ok(()) 1278 }) 1279 } 1280 } 1281 1282 macro_rules! impl_zeroable { 1283 ($($({$($generics:tt)*})? $t:ty, )*) => { 1284 $(unsafe impl$($($generics)*)? Zeroable for $t {})* 1285 }; 1286 } 1287 1288 impl_zeroable! { 1289 // SAFETY: All primitives that are allowed to be zero. 1290 bool, 1291 char, 1292 u8, u16, u32, u64, u128, usize, 1293 i8, i16, i32, i64, i128, isize, 1294 f32, f64, 1295 1296 // Note: do not add uninhabited types (such as `!` or `core::convert::Infallible`) to this list; 1297 // creating an instance of an uninhabited type is immediate undefined behavior. For more on 1298 // uninhabited/empty types, consult The Rustonomicon: 1299 // <https://doc.rust-lang.org/stable/nomicon/exotic-sizes.html#empty-types>. The Rust Reference 1300 // also has information on undefined behavior: 1301 // <https://doc.rust-lang.org/stable/reference/behavior-considered-undefined.html>. 1302 // 1303 // SAFETY: These are inhabited ZSTs; there is nothing to zero and a valid value exists. 1304 {<T: ?Sized>} PhantomData<T>, core::marker::PhantomPinned, (), 1305 1306 // SAFETY: Type is allowed to take any value, including all zeros. 1307 {<T>} MaybeUninit<T>, 1308 // SAFETY: Type is allowed to take any value, including all zeros. 1309 {<T>} Opaque<T>, 1310 1311 // SAFETY: `T: Zeroable` and `UnsafeCell` is `repr(transparent)`. 1312 {<T: ?Sized + Zeroable>} UnsafeCell<T>, 1313 1314 // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee). 1315 Option<NonZeroU8>, Option<NonZeroU16>, Option<NonZeroU32>, Option<NonZeroU64>, 1316 Option<NonZeroU128>, Option<NonZeroUsize>, 1317 Option<NonZeroI8>, Option<NonZeroI16>, Option<NonZeroI32>, Option<NonZeroI64>, 1318 Option<NonZeroI128>, Option<NonZeroIsize>, 1319 1320 // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee). 1321 // 1322 // In this case we are allowed to use `T: ?Sized`, since all zeros is the `None` variant. 1323 {<T: ?Sized>} Option<NonNull<T>>, 1324 {<T: ?Sized>} Option<Box<T>>, 1325 1326 // SAFETY: `null` pointer is valid. 1327 // 1328 // We cannot use `T: ?Sized`, since the VTABLE pointer part of fat pointers is not allowed to be 1329 // null. 1330 // 1331 // When `Pointee` gets stabilized, we could use 1332 // `T: ?Sized where <T as Pointee>::Metadata: Zeroable` 1333 {<T>} *mut T, {<T>} *const T, 1334 1335 // SAFETY: `null` pointer is valid and the metadata part of these fat pointers is allowed to be 1336 // zero. 1337 {<T>} *mut [T], {<T>} *const [T], *mut str, *const str, 1338 1339 // SAFETY: `T` is `Zeroable`. 1340 {<const N: usize, T: Zeroable>} [T; N], {<T: Zeroable>} Wrapping<T>, 1341 } 1342 1343 macro_rules! impl_tuple_zeroable { 1344 ($(,)?) => {}; 1345 ($first:ident, $($t:ident),* $(,)?) => { 1346 // SAFETY: All elements are zeroable and padding can be zero. 1347 unsafe impl<$first: Zeroable, $($t: Zeroable),*> Zeroable for ($first, $($t),*) {} 1348 impl_tuple_zeroable!($($t),* ,); 1349 } 1350 } 1351 1352 impl_tuple_zeroable!(A, B, C, D, E, F, G, H, I, J); 1353