1 // SPDX-License-Identifier: Apache-2.0 OR MIT 2 3 //! API to safely and fallibly initialize pinned `struct`s using in-place constructors. 4 //! 5 //! It also allows in-place initialization of big `struct`s that would otherwise produce a stack 6 //! overflow. 7 //! 8 //! Most `struct`s from the [`sync`] module need to be pinned, because they contain self-referential 9 //! `struct`s from C. [Pinning][pinning] is Rust's way of ensuring data does not move. 10 //! 11 //! # Overview 12 //! 13 //! To initialize a `struct` with an in-place constructor you will need two things: 14 //! - an in-place constructor, 15 //! - a memory location that can hold your `struct` (this can be the [stack], an [`Arc<T>`], 16 //! [`UniqueArc<T>`], [`Box<T>`] or any other smart pointer that implements [`InPlaceInit`]). 17 //! 18 //! To get an in-place constructor there are generally three options: 19 //! - directly creating an in-place constructor using the [`pin_init!`] macro, 20 //! - a custom function/macro returning an in-place constructor provided by someone else, 21 //! - using the unsafe function [`pin_init_from_closure()`] to manually create an initializer. 22 //! 23 //! Aside from pinned initialization, this API also supports in-place construction without pinning, 24 //! the macros/types/functions are generally named like the pinned variants without the `pin` 25 //! prefix. 26 //! 27 //! # Examples 28 //! 29 //! ## Using the [`pin_init!`] macro 30 //! 31 //! If you want to use [`PinInit`], then you will have to annotate your `struct` with 32 //! `#[`[`pin_data`]`]`. It is a macro that uses `#[pin]` as a marker for 33 //! [structurally pinned fields]. After doing this, you can then create an in-place constructor via 34 //! [`pin_init!`]. The syntax is almost the same as normal `struct` initializers. The difference is 35 //! that you need to write `<-` instead of `:` for fields that you want to initialize in-place. 36 //! 37 //! ```rust 38 //! # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] 39 //! use kernel::{prelude::*, sync::Mutex, new_mutex}; 40 //! # use core::pin::Pin; 41 //! #[pin_data] 42 //! struct Foo { 43 //! #[pin] 44 //! a: Mutex<usize>, 45 //! b: u32, 46 //! } 47 //! 48 //! let foo = pin_init!(Foo { 49 //! a <- new_mutex!(42, "Foo::a"), 50 //! b: 24, 51 //! }); 52 //! ``` 53 //! 54 //! `foo` now is of the type [`impl PinInit<Foo>`]. We can now use any smart pointer that we like 55 //! (or just the stack) to actually initialize a `Foo`: 56 //! 57 //! ```rust 58 //! # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] 59 //! # use kernel::{prelude::*, sync::Mutex, new_mutex}; 60 //! # use core::pin::Pin; 61 //! # #[pin_data] 62 //! # struct Foo { 63 //! # #[pin] 64 //! # a: Mutex<usize>, 65 //! # b: u32, 66 //! # } 67 //! # let foo = pin_init!(Foo { 68 //! # a <- new_mutex!(42, "Foo::a"), 69 //! # b: 24, 70 //! # }); 71 //! let foo: Result<Pin<Box<Foo>>> = Box::pin_init(foo); 72 //! ``` 73 //! 74 //! For more information see the [`pin_init!`] macro. 75 //! 76 //! ## Using a custom function/macro that returns an initializer 77 //! 78 //! Many types from the kernel supply a function/macro that returns an initializer, because the 79 //! above method only works for types where you can access the fields. 80 //! 81 //! ```rust 82 //! # use kernel::{new_mutex, sync::{Arc, Mutex}}; 83 //! let mtx: Result<Arc<Mutex<usize>>> = Arc::pin_init(new_mutex!(42, "example::mtx")); 84 //! ``` 85 //! 86 //! To declare an init macro/function you just return an [`impl PinInit<T, E>`]: 87 //! 88 //! ```rust 89 //! # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] 90 //! # use kernel::{sync::Mutex, prelude::*, new_mutex, init::PinInit, try_pin_init}; 91 //! #[pin_data] 92 //! struct DriverData { 93 //! #[pin] 94 //! status: Mutex<i32>, 95 //! buffer: Box<[u8; 1_000_000]>, 96 //! } 97 //! 98 //! impl DriverData { 99 //! fn new() -> impl PinInit<Self, Error> { 100 //! try_pin_init!(Self { 101 //! status <- new_mutex!(0, "DriverData::status"), 102 //! buffer: Box::init(kernel::init::zeroed())?, 103 //! }) 104 //! } 105 //! } 106 //! ``` 107 //! 108 //! ## Manual creation of an initializer 109 //! 110 //! Often when working with primitives the previous approaches are not sufficient. That is where 111 //! [`pin_init_from_closure()`] comes in. This `unsafe` function allows you to create a 112 //! [`impl PinInit<T, E>`] directly from a closure. Of course you have to ensure that the closure 113 //! actually does the initialization in the correct way. Here are the things to look out for 114 //! (we are calling the parameter to the closure `slot`): 115 //! - when the closure returns `Ok(())`, then it has completed the initialization successfully, so 116 //! `slot` now contains a valid bit pattern for the type `T`, 117 //! - when the closure returns `Err(e)`, then the caller may deallocate the memory at `slot`, so 118 //! you need to take care to clean up anything if your initialization fails mid-way, 119 //! - you may assume that `slot` will stay pinned even after the closure returns until `drop` of 120 //! `slot` gets called. 121 //! 122 //! ```rust 123 //! use kernel::{prelude::*, init}; 124 //! use core::{ptr::addr_of_mut, marker::PhantomPinned, pin::Pin}; 125 //! # mod bindings { 126 //! # pub struct foo; 127 //! # pub unsafe fn init_foo(_ptr: *mut foo) {} 128 //! # pub unsafe fn destroy_foo(_ptr: *mut foo) {} 129 //! # pub unsafe fn enable_foo(_ptr: *mut foo, _flags: u32) -> i32 { 0 } 130 //! # } 131 //! /// # Invariants 132 //! /// 133 //! /// `foo` is always initialized 134 //! #[pin_data(PinnedDrop)] 135 //! pub struct RawFoo { 136 //! #[pin] 137 //! foo: Opaque<bindings::foo>, 138 //! #[pin] 139 //! _p: PhantomPinned, 140 //! } 141 //! 142 //! impl RawFoo { 143 //! pub fn new(flags: u32) -> impl PinInit<Self, Error> { 144 //! // SAFETY: 145 //! // - when the closure returns `Ok(())`, then it has successfully initialized and 146 //! // enabled `foo`, 147 //! // - when it returns `Err(e)`, then it has cleaned up before 148 //! unsafe { 149 //! init::pin_init_from_closure(move |slot: *mut Self| { 150 //! // `slot` contains uninit memory, avoid creating a reference. 151 //! let foo = addr_of_mut!((*slot).foo); 152 //! 153 //! // Initialize the `foo` 154 //! bindings::init_foo(Opaque::raw_get(foo)); 155 //! 156 //! // Try to enable it. 157 //! let err = bindings::enable_foo(Opaque::raw_get(foo), flags); 158 //! if err != 0 { 159 //! // Enabling has failed, first clean up the foo and then return the error. 160 //! bindings::destroy_foo(Opaque::raw_get(foo)); 161 //! return Err(Error::from_kernel_errno(err)); 162 //! } 163 //! 164 //! // All fields of `RawFoo` have been initialized, since `_p` is a ZST. 165 //! Ok(()) 166 //! }) 167 //! } 168 //! } 169 //! } 170 //! 171 //! #[pinned_drop] 172 //! impl PinnedDrop for RawFoo { 173 //! fn drop(self: Pin<&mut Self>) { 174 //! // SAFETY: Since `foo` is initialized, destroying is safe. 175 //! unsafe { bindings::destroy_foo(self.foo.get()) }; 176 //! } 177 //! } 178 //! ``` 179 //! 180 //! For the special case where initializing a field is a single FFI-function call that cannot fail, 181 //! there exist the helper function [`Opaque::ffi_init`]. This function initialize a single 182 //! [`Opaque`] field by just delegating to the supplied closure. You can use these in combination 183 //! with [`pin_init!`]. 184 //! 185 //! For more information on how to use [`pin_init_from_closure()`], take a look at the uses inside 186 //! the `kernel` crate. The [`sync`] module is a good starting point. 187 //! 188 //! [`sync`]: kernel::sync 189 //! [pinning]: https://doc.rust-lang.org/std/pin/index.html 190 //! [structurally pinned fields]: 191 //! https://doc.rust-lang.org/std/pin/index.html#pinning-is-structural-for-field 192 //! [stack]: crate::stack_pin_init 193 //! [`Arc<T>`]: crate::sync::Arc 194 //! [`impl PinInit<Foo>`]: PinInit 195 //! [`impl PinInit<T, E>`]: PinInit 196 //! [`impl Init<T, E>`]: Init 197 //! [`Opaque`]: kernel::types::Opaque 198 //! [`Opaque::ffi_init`]: kernel::types::Opaque::ffi_init 199 //! [`pin_data`]: ::macros::pin_data 200 //! [`pin_init!`]: crate::pin_init! 201 202 use crate::{ 203 error::{self, Error}, 204 sync::UniqueArc, 205 types::ScopeGuard, 206 }; 207 use alloc::boxed::Box; 208 use core::{ 209 alloc::AllocError, 210 convert::Infallible, 211 marker::PhantomData, 212 mem::MaybeUninit, 213 num::*, 214 pin::Pin, 215 ptr::{self, NonNull}, 216 }; 217 218 #[doc(hidden)] 219 pub mod __internal; 220 #[doc(hidden)] 221 pub mod macros; 222 223 /// Initialize and pin a type directly on the stack. 224 /// 225 /// # Examples 226 /// 227 /// ```rust 228 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] 229 /// # use kernel::{init, pin_init, stack_pin_init, init::*, sync::Mutex, new_mutex}; 230 /// # use macros::pin_data; 231 /// # use core::pin::Pin; 232 /// #[pin_data] 233 /// struct Foo { 234 /// #[pin] 235 /// a: Mutex<usize>, 236 /// b: Bar, 237 /// } 238 /// 239 /// #[pin_data] 240 /// struct Bar { 241 /// x: u32, 242 /// } 243 /// 244 /// stack_pin_init!(let foo = pin_init!(Foo { 245 /// a <- new_mutex!(42), 246 /// b: Bar { 247 /// x: 64, 248 /// }, 249 /// })); 250 /// let foo: Pin<&mut Foo> = foo; 251 /// pr_info!("a: {}", &*foo.a.lock()); 252 /// ``` 253 /// 254 /// # Syntax 255 /// 256 /// A normal `let` binding with optional type annotation. The expression is expected to implement 257 /// [`PinInit`]/[`Init`] with the error type [`Infallible`]. If you want to use a different error 258 /// type, then use [`stack_try_pin_init!`]. 259 /// 260 /// [`stack_try_pin_init!`]: crate::stack_try_pin_init! 261 #[macro_export] 262 macro_rules! stack_pin_init { 263 (let $var:ident $(: $t:ty)? = $val:expr) => { 264 let val = $val; 265 let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit()); 266 let mut $var = match $crate::init::__internal::StackInit::init($var, val) { 267 Ok(res) => res, 268 Err(x) => { 269 let x: ::core::convert::Infallible = x; 270 match x {} 271 } 272 }; 273 }; 274 } 275 276 /// Initialize and pin a type directly on the stack. 277 /// 278 /// # Examples 279 /// 280 /// ```rust 281 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] 282 /// # use kernel::{init, pin_init, stack_try_pin_init, init::*, sync::Mutex, new_mutex}; 283 /// # use macros::pin_data; 284 /// # use core::{alloc::AllocError, pin::Pin}; 285 /// #[pin_data] 286 /// struct Foo { 287 /// #[pin] 288 /// a: Mutex<usize>, 289 /// b: Box<Bar>, 290 /// } 291 /// 292 /// struct Bar { 293 /// x: u32, 294 /// } 295 /// 296 /// stack_try_pin_init!(let foo: Result<Pin<&mut Foo>, AllocError> = pin_init!(Foo { 297 /// a <- new_mutex!(42), 298 /// b: Box::try_new(Bar { 299 /// x: 64, 300 /// })?, 301 /// })); 302 /// let foo = foo.unwrap(); 303 /// pr_info!("a: {}", &*foo.a.lock()); 304 /// ``` 305 /// 306 /// ```rust 307 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] 308 /// # use kernel::{init, pin_init, stack_try_pin_init, init::*, sync::Mutex, new_mutex}; 309 /// # use macros::pin_data; 310 /// # use core::{alloc::AllocError, pin::Pin}; 311 /// #[pin_data] 312 /// struct Foo { 313 /// #[pin] 314 /// a: Mutex<usize>, 315 /// b: Box<Bar>, 316 /// } 317 /// 318 /// struct Bar { 319 /// x: u32, 320 /// } 321 /// 322 /// stack_try_pin_init!(let foo: Pin<&mut Foo> =? pin_init!(Foo { 323 /// a <- new_mutex!(42), 324 /// b: Box::try_new(Bar { 325 /// x: 64, 326 /// })?, 327 /// })); 328 /// pr_info!("a: {}", &*foo.a.lock()); 329 /// # Ok::<_, AllocError>(()) 330 /// ``` 331 /// 332 /// # Syntax 333 /// 334 /// A normal `let` binding with optional type annotation. The expression is expected to implement 335 /// [`PinInit`]/[`Init`]. This macro assigns a result to the given variable, adding a `?` after the 336 /// `=` will propagate this error. 337 #[macro_export] 338 macro_rules! stack_try_pin_init { 339 (let $var:ident $(: $t:ty)? = $val:expr) => { 340 let val = $val; 341 let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit()); 342 let mut $var = $crate::init::__internal::StackInit::init($var, val); 343 }; 344 (let $var:ident $(: $t:ty)? =? $val:expr) => { 345 let val = $val; 346 let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit()); 347 let mut $var = $crate::init::__internal::StackInit::init($var, val)?; 348 }; 349 } 350 351 /// Construct an in-place, pinned initializer for `struct`s. 352 /// 353 /// This macro defaults the error to [`Infallible`]. If you need [`Error`], then use 354 /// [`try_pin_init!`]. 355 /// 356 /// The syntax is almost identical to that of a normal `struct` initializer: 357 /// 358 /// ```rust 359 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] 360 /// # use kernel::{init, pin_init, macros::pin_data, init::*}; 361 /// # use core::pin::Pin; 362 /// #[pin_data] 363 /// struct Foo { 364 /// a: usize, 365 /// b: Bar, 366 /// } 367 /// 368 /// #[pin_data] 369 /// struct Bar { 370 /// x: u32, 371 /// } 372 /// 373 /// # fn demo() -> impl PinInit<Foo> { 374 /// let a = 42; 375 /// 376 /// let initializer = pin_init!(Foo { 377 /// a, 378 /// b: Bar { 379 /// x: 64, 380 /// }, 381 /// }); 382 /// # initializer } 383 /// # Box::pin_init(demo()).unwrap(); 384 /// ``` 385 /// 386 /// Arbitrary Rust expressions can be used to set the value of a variable. 387 /// 388 /// The fields are initialized in the order that they appear in the initializer. So it is possible 389 /// to read already initialized fields using raw pointers. 390 /// 391 /// IMPORTANT: You are not allowed to create references to fields of the struct inside of the 392 /// initializer. 393 /// 394 /// # Init-functions 395 /// 396 /// When working with this API it is often desired to let others construct your types without 397 /// giving access to all fields. This is where you would normally write a plain function `new` 398 /// that would return a new instance of your type. With this API that is also possible. 399 /// However, there are a few extra things to keep in mind. 400 /// 401 /// To create an initializer function, simply declare it like this: 402 /// 403 /// ```rust 404 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] 405 /// # use kernel::{init, pin_init, prelude::*, init::*}; 406 /// # use core::pin::Pin; 407 /// # #[pin_data] 408 /// # struct Foo { 409 /// # a: usize, 410 /// # b: Bar, 411 /// # } 412 /// # #[pin_data] 413 /// # struct Bar { 414 /// # x: u32, 415 /// # } 416 /// impl Foo { 417 /// fn new() -> impl PinInit<Self> { 418 /// pin_init!(Self { 419 /// a: 42, 420 /// b: Bar { 421 /// x: 64, 422 /// }, 423 /// }) 424 /// } 425 /// } 426 /// ``` 427 /// 428 /// Users of `Foo` can now create it like this: 429 /// 430 /// ```rust 431 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] 432 /// # use kernel::{init, pin_init, macros::pin_data, init::*}; 433 /// # use core::pin::Pin; 434 /// # #[pin_data] 435 /// # struct Foo { 436 /// # a: usize, 437 /// # b: Bar, 438 /// # } 439 /// # #[pin_data] 440 /// # struct Bar { 441 /// # x: u32, 442 /// # } 443 /// # impl Foo { 444 /// # fn new() -> impl PinInit<Self> { 445 /// # pin_init!(Self { 446 /// # a: 42, 447 /// # b: Bar { 448 /// # x: 64, 449 /// # }, 450 /// # }) 451 /// # } 452 /// # } 453 /// let foo = Box::pin_init(Foo::new()); 454 /// ``` 455 /// 456 /// They can also easily embed it into their own `struct`s: 457 /// 458 /// ```rust 459 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] 460 /// # use kernel::{init, pin_init, macros::pin_data, init::*}; 461 /// # use core::pin::Pin; 462 /// # #[pin_data] 463 /// # struct Foo { 464 /// # a: usize, 465 /// # b: Bar, 466 /// # } 467 /// # #[pin_data] 468 /// # struct Bar { 469 /// # x: u32, 470 /// # } 471 /// # impl Foo { 472 /// # fn new() -> impl PinInit<Self> { 473 /// # pin_init!(Self { 474 /// # a: 42, 475 /// # b: Bar { 476 /// # x: 64, 477 /// # }, 478 /// # }) 479 /// # } 480 /// # } 481 /// #[pin_data] 482 /// struct FooContainer { 483 /// #[pin] 484 /// foo1: Foo, 485 /// #[pin] 486 /// foo2: Foo, 487 /// other: u32, 488 /// } 489 /// 490 /// impl FooContainer { 491 /// fn new(other: u32) -> impl PinInit<Self> { 492 /// pin_init!(Self { 493 /// foo1 <- Foo::new(), 494 /// foo2 <- Foo::new(), 495 /// other, 496 /// }) 497 /// } 498 /// } 499 /// ``` 500 /// 501 /// Here we see that when using `pin_init!` with `PinInit`, one needs to write `<-` instead of `:`. 502 /// This signifies that the given field is initialized in-place. As with `struct` initializers, just 503 /// writing the field (in this case `other`) without `:` or `<-` means `other: other,`. 504 /// 505 /// # Syntax 506 /// 507 /// As already mentioned in the examples above, inside of `pin_init!` a `struct` initializer with 508 /// the following modifications is expected: 509 /// - Fields that you want to initialize in-place have to use `<-` instead of `:`. 510 /// - In front of the initializer you can write `&this in` to have access to a [`NonNull<Self>`] 511 /// pointer named `this` inside of the initializer. 512 /// - Using struct update syntax one can place `..Zeroable::zeroed()` at the very end of the 513 /// struct, this initializes every field with 0 and then runs all initializers specified in the 514 /// body. This can only be done if [`Zeroable`] is implemented for the struct. 515 /// 516 /// For instance: 517 /// 518 /// ```rust 519 /// # use kernel::pin_init; 520 /// # use macros::{Zeroable, pin_data}; 521 /// # use core::{ptr::addr_of_mut, marker::PhantomPinned}; 522 /// #[pin_data] 523 /// #[derive(Zeroable)] 524 /// struct Buf { 525 /// // `ptr` points into `buf`. 526 /// ptr: *mut u8, 527 /// buf: [u8; 64], 528 /// #[pin] 529 /// pin: PhantomPinned, 530 /// } 531 /// pin_init!(&this in Buf { 532 /// buf: [0; 64], 533 /// ptr: unsafe { addr_of_mut!((*this.as_ptr()).buf).cast() }, 534 /// pin: PhantomPinned, 535 /// }); 536 /// pin_init!(Buf { 537 /// buf: [1; 64], 538 /// ..Zeroable::zeroed() 539 /// }); 540 /// ``` 541 /// 542 /// [`try_pin_init!`]: kernel::try_pin_init 543 /// [`NonNull<Self>`]: core::ptr::NonNull 544 // For a detailed example of how this macro works, see the module documentation of the hidden 545 // module `__internal` inside of `init/__internal.rs`. 546 #[macro_export] 547 macro_rules! pin_init { 548 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 549 $($fields:tt)* 550 }) => { 551 $crate::__init_internal!( 552 @this($($this)?), 553 @typ($t $(::<$($generics),*>)?), 554 @fields($($fields)*), 555 @error(::core::convert::Infallible), 556 @data(PinData, use_data), 557 @has_data(HasPinData, __pin_data), 558 @construct_closure(pin_init_from_closure), 559 @munch_fields($($fields)*), 560 ) 561 }; 562 } 563 564 /// Construct an in-place, fallible pinned initializer for `struct`s. 565 /// 566 /// If the initialization can complete without error (or [`Infallible`]), then use [`pin_init!`]. 567 /// 568 /// You can use the `?` operator or use `return Err(err)` inside the initializer to stop 569 /// initialization and return the error. 570 /// 571 /// IMPORTANT: if you have `unsafe` code inside of the initializer you have to ensure that when 572 /// initialization fails, the memory can be safely deallocated without any further modifications. 573 /// 574 /// This macro defaults the error to [`Error`]. 575 /// 576 /// The syntax is identical to [`pin_init!`] with the following exception: you can append `? $type` 577 /// after the `struct` initializer to specify the error type you want to use. 578 /// 579 /// # Examples 580 /// 581 /// ```rust 582 /// # #![feature(new_uninit)] 583 /// use kernel::{init::{self, PinInit}, error::Error}; 584 /// #[pin_data] 585 /// struct BigBuf { 586 /// big: Box<[u8; 1024 * 1024 * 1024]>, 587 /// small: [u8; 1024 * 1024], 588 /// ptr: *mut u8, 589 /// } 590 /// 591 /// impl BigBuf { 592 /// fn new() -> impl PinInit<Self, Error> { 593 /// try_pin_init!(Self { 594 /// big: Box::init(init::zeroed())?, 595 /// small: [0; 1024 * 1024], 596 /// ptr: core::ptr::null_mut(), 597 /// }? Error) 598 /// } 599 /// } 600 /// ``` 601 // For a detailed example of how this macro works, see the module documentation of the hidden 602 // module `__internal` inside of `init/__internal.rs`. 603 #[macro_export] 604 macro_rules! try_pin_init { 605 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 606 $($fields:tt)* 607 }) => { 608 $crate::__init_internal!( 609 @this($($this)?), 610 @typ($t $(::<$($generics),*>)? ), 611 @fields($($fields)*), 612 @error($crate::error::Error), 613 @data(PinData, use_data), 614 @has_data(HasPinData, __pin_data), 615 @construct_closure(pin_init_from_closure), 616 @munch_fields($($fields)*), 617 ) 618 }; 619 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 620 $($fields:tt)* 621 }? $err:ty) => { 622 $crate::__init_internal!( 623 @this($($this)?), 624 @typ($t $(::<$($generics),*>)? ), 625 @fields($($fields)*), 626 @error($err), 627 @data(PinData, use_data), 628 @has_data(HasPinData, __pin_data), 629 @construct_closure(pin_init_from_closure), 630 @munch_fields($($fields)*), 631 ) 632 }; 633 } 634 635 /// Construct an in-place initializer for `struct`s. 636 /// 637 /// This macro defaults the error to [`Infallible`]. If you need [`Error`], then use 638 /// [`try_init!`]. 639 /// 640 /// The syntax is identical to [`pin_init!`] and its safety caveats also apply: 641 /// - `unsafe` code must guarantee either full initialization or return an error and allow 642 /// deallocation of the memory. 643 /// - the fields are initialized in the order given in the initializer. 644 /// - no references to fields are allowed to be created inside of the initializer. 645 /// 646 /// This initializer is for initializing data in-place that might later be moved. If you want to 647 /// pin-initialize, use [`pin_init!`]. 648 /// 649 /// [`try_init!`]: crate::try_init! 650 // For a detailed example of how this macro works, see the module documentation of the hidden 651 // module `__internal` inside of `init/__internal.rs`. 652 #[macro_export] 653 macro_rules! init { 654 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 655 $($fields:tt)* 656 }) => { 657 $crate::__init_internal!( 658 @this($($this)?), 659 @typ($t $(::<$($generics),*>)?), 660 @fields($($fields)*), 661 @error(::core::convert::Infallible), 662 @data(InitData, /*no use_data*/), 663 @has_data(HasInitData, __init_data), 664 @construct_closure(init_from_closure), 665 @munch_fields($($fields)*), 666 ) 667 } 668 } 669 670 /// Construct an in-place fallible initializer for `struct`s. 671 /// 672 /// This macro defaults the error to [`Error`]. If you need [`Infallible`], then use 673 /// [`init!`]. 674 /// 675 /// The syntax is identical to [`try_pin_init!`]. If you want to specify a custom error, 676 /// append `? $type` after the `struct` initializer. 677 /// The safety caveats from [`try_pin_init!`] also apply: 678 /// - `unsafe` code must guarantee either full initialization or return an error and allow 679 /// deallocation of the memory. 680 /// - the fields are initialized in the order given in the initializer. 681 /// - no references to fields are allowed to be created inside of the initializer. 682 /// 683 /// # Examples 684 /// 685 /// ```rust 686 /// use kernel::{init::PinInit, error::Error, InPlaceInit}; 687 /// struct BigBuf { 688 /// big: Box<[u8; 1024 * 1024 * 1024]>, 689 /// small: [u8; 1024 * 1024], 690 /// } 691 /// 692 /// impl BigBuf { 693 /// fn new() -> impl Init<Self, Error> { 694 /// try_init!(Self { 695 /// big: Box::init(zeroed())?, 696 /// small: [0; 1024 * 1024], 697 /// }? Error) 698 /// } 699 /// } 700 /// ``` 701 // For a detailed example of how this macro works, see the module documentation of the hidden 702 // module `__internal` inside of `init/__internal.rs`. 703 #[macro_export] 704 macro_rules! try_init { 705 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 706 $($fields:tt)* 707 }) => { 708 $crate::__init_internal!( 709 @this($($this)?), 710 @typ($t $(::<$($generics),*>)?), 711 @fields($($fields)*), 712 @error($crate::error::Error), 713 @data(InitData, /*no use_data*/), 714 @has_data(HasInitData, __init_data), 715 @construct_closure(init_from_closure), 716 @munch_fields($($fields)*), 717 ) 718 }; 719 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 720 $($fields:tt)* 721 }? $err:ty) => { 722 $crate::__init_internal!( 723 @this($($this)?), 724 @typ($t $(::<$($generics),*>)?), 725 @fields($($fields)*), 726 @error($err), 727 @data(InitData, /*no use_data*/), 728 @has_data(HasInitData, __init_data), 729 @construct_closure(init_from_closure), 730 @munch_fields($($fields)*), 731 ) 732 }; 733 } 734 735 /// A pin-initializer for the type `T`. 736 /// 737 /// To use this initializer, you will need a suitable memory location that can hold a `T`. This can 738 /// be [`Box<T>`], [`Arc<T>`], [`UniqueArc<T>`] or even the stack (see [`stack_pin_init!`]). Use the 739 /// [`InPlaceInit::pin_init`] function of a smart pointer like [`Arc<T>`] on this. 740 /// 741 /// Also see the [module description](self). 742 /// 743 /// # Safety 744 /// 745 /// When implementing this type you will need to take great care. Also there are probably very few 746 /// cases where a manual implementation is necessary. Use [`pin_init_from_closure`] where possible. 747 /// 748 /// The [`PinInit::__pinned_init`] function 749 /// - returns `Ok(())` if it initialized every field of `slot`, 750 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 751 /// - `slot` can be deallocated without UB occurring, 752 /// - `slot` does not need to be dropped, 753 /// - `slot` is not partially initialized. 754 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 755 /// 756 /// [`Arc<T>`]: crate::sync::Arc 757 /// [`Arc::pin_init`]: crate::sync::Arc::pin_init 758 #[must_use = "An initializer must be used in order to create its value."] 759 pub unsafe trait PinInit<T: ?Sized, E = Infallible>: Sized { 760 /// Initializes `slot`. 761 /// 762 /// # Safety 763 /// 764 /// - `slot` is a valid pointer to uninitialized memory. 765 /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to 766 /// deallocate. 767 /// - `slot` will not move until it is dropped, i.e. it will be pinned. 768 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E>; 769 } 770 771 /// An initializer for `T`. 772 /// 773 /// To use this initializer, you will need a suitable memory location that can hold a `T`. This can 774 /// be [`Box<T>`], [`Arc<T>`], [`UniqueArc<T>`] or even the stack (see [`stack_pin_init!`]). Use the 775 /// [`InPlaceInit::init`] function of a smart pointer like [`Arc<T>`] on this. Because 776 /// [`PinInit<T, E>`] is a super trait, you can use every function that takes it as well. 777 /// 778 /// Also see the [module description](self). 779 /// 780 /// # Safety 781 /// 782 /// When implementing this type you will need to take great care. Also there are probably very few 783 /// cases where a manual implementation is necessary. Use [`init_from_closure`] where possible. 784 /// 785 /// The [`Init::__init`] function 786 /// - returns `Ok(())` if it initialized every field of `slot`, 787 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 788 /// - `slot` can be deallocated without UB occurring, 789 /// - `slot` does not need to be dropped, 790 /// - `slot` is not partially initialized. 791 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 792 /// 793 /// The `__pinned_init` function from the supertrait [`PinInit`] needs to execute the exact same 794 /// code as `__init`. 795 /// 796 /// Contrary to its supertype [`PinInit<T, E>`] the caller is allowed to 797 /// move the pointee after initialization. 798 /// 799 /// [`Arc<T>`]: crate::sync::Arc 800 #[must_use = "An initializer must be used in order to create its value."] 801 pub unsafe trait Init<T: ?Sized, E = Infallible>: Sized { 802 /// Initializes `slot`. 803 /// 804 /// # Safety 805 /// 806 /// - `slot` is a valid pointer to uninitialized memory. 807 /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to 808 /// deallocate. 809 unsafe fn __init(self, slot: *mut T) -> Result<(), E>; 810 } 811 812 // SAFETY: Every in-place initializer can also be used as a pin-initializer. 813 unsafe impl<T: ?Sized, E, I> PinInit<T, E> for I 814 where 815 I: Init<T, E>, 816 { 817 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> { 818 // SAFETY: `__init` meets the same requirements as `__pinned_init`, except that it does not 819 // require `slot` to not move after init. 820 unsafe { self.__init(slot) } 821 } 822 } 823 824 /// Creates a new [`PinInit<T, E>`] from the given closure. 825 /// 826 /// # Safety 827 /// 828 /// The closure: 829 /// - returns `Ok(())` if it initialized every field of `slot`, 830 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 831 /// - `slot` can be deallocated without UB occurring, 832 /// - `slot` does not need to be dropped, 833 /// - `slot` is not partially initialized. 834 /// - may assume that the `slot` does not move if `T: !Unpin`, 835 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 836 #[inline] 837 pub const unsafe fn pin_init_from_closure<T: ?Sized, E>( 838 f: impl FnOnce(*mut T) -> Result<(), E>, 839 ) -> impl PinInit<T, E> { 840 __internal::InitClosure(f, PhantomData) 841 } 842 843 /// Creates a new [`Init<T, E>`] from the given closure. 844 /// 845 /// # Safety 846 /// 847 /// The closure: 848 /// - returns `Ok(())` if it initialized every field of `slot`, 849 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 850 /// - `slot` can be deallocated without UB occurring, 851 /// - `slot` does not need to be dropped, 852 /// - `slot` is not partially initialized. 853 /// - the `slot` may move after initialization. 854 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 855 #[inline] 856 pub const unsafe fn init_from_closure<T: ?Sized, E>( 857 f: impl FnOnce(*mut T) -> Result<(), E>, 858 ) -> impl Init<T, E> { 859 __internal::InitClosure(f, PhantomData) 860 } 861 862 /// An initializer that leaves the memory uninitialized. 863 /// 864 /// The initializer is a no-op. The `slot` memory is not changed. 865 #[inline] 866 pub fn uninit<T, E>() -> impl Init<MaybeUninit<T>, E> { 867 // SAFETY: The memory is allowed to be uninitialized. 868 unsafe { init_from_closure(|_| Ok(())) } 869 } 870 871 /// Initializes an array by initializing each element via the provided initializer. 872 /// 873 /// # Examples 874 /// 875 /// ```rust 876 /// use kernel::{error::Error, init::init_array_from_fn}; 877 /// let array: Box<[usize; 1_000]>= Box::init::<Error>(init_array_from_fn(|i| i)).unwrap(); 878 /// assert_eq!(array.len(), 1_000); 879 /// ``` 880 pub fn init_array_from_fn<I, const N: usize, T, E>( 881 mut make_init: impl FnMut(usize) -> I, 882 ) -> impl Init<[T; N], E> 883 where 884 I: Init<T, E>, 885 { 886 let init = move |slot: *mut [T; N]| { 887 let slot = slot.cast::<T>(); 888 // Counts the number of initialized elements and when dropped drops that many elements from 889 // `slot`. 890 let mut init_count = ScopeGuard::new_with_data(0, |i| { 891 // We now free every element that has been initialized before: 892 // SAFETY: The loop initialized exactly the values from 0..i and since we 893 // return `Err` below, the caller will consider the memory at `slot` as 894 // uninitialized. 895 unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) }; 896 }); 897 for i in 0..N { 898 let init = make_init(i); 899 // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`. 900 let ptr = unsafe { slot.add(i) }; 901 // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init` 902 // requirements. 903 unsafe { init.__init(ptr) }?; 904 *init_count += 1; 905 } 906 init_count.dismiss(); 907 Ok(()) 908 }; 909 // SAFETY: The initializer above initializes every element of the array. On failure it drops 910 // any initialized elements and returns `Err`. 911 unsafe { init_from_closure(init) } 912 } 913 914 /// Initializes an array by initializing each element via the provided initializer. 915 /// 916 /// # Examples 917 /// 918 /// ```rust 919 /// use kernel::{sync::{Arc, Mutex}, init::pin_init_array_from_fn, new_mutex}; 920 /// let array: Arc<[Mutex<usize>; 1_000]>= 921 /// Arc::pin_init(pin_init_array_from_fn(|i| new_mutex!(i))).unwrap(); 922 /// assert_eq!(array.len(), 1_000); 923 /// ``` 924 pub fn pin_init_array_from_fn<I, const N: usize, T, E>( 925 mut make_init: impl FnMut(usize) -> I, 926 ) -> impl PinInit<[T; N], E> 927 where 928 I: PinInit<T, E>, 929 { 930 let init = move |slot: *mut [T; N]| { 931 let slot = slot.cast::<T>(); 932 // Counts the number of initialized elements and when dropped drops that many elements from 933 // `slot`. 934 let mut init_count = ScopeGuard::new_with_data(0, |i| { 935 // We now free every element that has been initialized before: 936 // SAFETY: The loop initialized exactly the values from 0..i and since we 937 // return `Err` below, the caller will consider the memory at `slot` as 938 // uninitialized. 939 unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) }; 940 }); 941 for i in 0..N { 942 let init = make_init(i); 943 // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`. 944 let ptr = unsafe { slot.add(i) }; 945 // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init` 946 // requirements. 947 unsafe { init.__pinned_init(ptr) }?; 948 *init_count += 1; 949 } 950 init_count.dismiss(); 951 Ok(()) 952 }; 953 // SAFETY: The initializer above initializes every element of the array. On failure it drops 954 // any initialized elements and returns `Err`. 955 unsafe { pin_init_from_closure(init) } 956 } 957 958 // SAFETY: Every type can be initialized by-value. 959 unsafe impl<T, E> Init<T, E> for T { 960 unsafe fn __init(self, slot: *mut T) -> Result<(), E> { 961 unsafe { slot.write(self) }; 962 Ok(()) 963 } 964 } 965 966 /// Smart pointer that can initialize memory in-place. 967 pub trait InPlaceInit<T>: Sized { 968 /// Use the given pin-initializer to pin-initialize a `T` inside of a new smart pointer of this 969 /// type. 970 /// 971 /// If `T: !Unpin` it will not be able to move afterwards. 972 fn try_pin_init<E>(init: impl PinInit<T, E>) -> Result<Pin<Self>, E> 973 where 974 E: From<AllocError>; 975 976 /// Use the given pin-initializer to pin-initialize a `T` inside of a new smart pointer of this 977 /// type. 978 /// 979 /// If `T: !Unpin` it will not be able to move afterwards. 980 fn pin_init<E>(init: impl PinInit<T, E>) -> error::Result<Pin<Self>> 981 where 982 Error: From<E>, 983 { 984 // SAFETY: We delegate to `init` and only change the error type. 985 let init = unsafe { 986 pin_init_from_closure(|slot| init.__pinned_init(slot).map_err(|e| Error::from(e))) 987 }; 988 Self::try_pin_init(init) 989 } 990 991 /// Use the given initializer to in-place initialize a `T`. 992 fn try_init<E>(init: impl Init<T, E>) -> Result<Self, E> 993 where 994 E: From<AllocError>; 995 996 /// Use the given initializer to in-place initialize a `T`. 997 fn init<E>(init: impl Init<T, E>) -> error::Result<Self> 998 where 999 Error: From<E>, 1000 { 1001 // SAFETY: We delegate to `init` and only change the error type. 1002 let init = unsafe { 1003 init_from_closure(|slot| init.__pinned_init(slot).map_err(|e| Error::from(e))) 1004 }; 1005 Self::try_init(init) 1006 } 1007 } 1008 1009 impl<T> InPlaceInit<T> for Box<T> { 1010 #[inline] 1011 fn try_pin_init<E>(init: impl PinInit<T, E>) -> Result<Pin<Self>, E> 1012 where 1013 E: From<AllocError>, 1014 { 1015 let mut this = Box::try_new_uninit()?; 1016 let slot = this.as_mut_ptr(); 1017 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 1018 // slot is valid and will not be moved, because we pin it later. 1019 unsafe { init.__pinned_init(slot)? }; 1020 // SAFETY: All fields have been initialized. 1021 Ok(unsafe { this.assume_init() }.into()) 1022 } 1023 1024 #[inline] 1025 fn try_init<E>(init: impl Init<T, E>) -> Result<Self, E> 1026 where 1027 E: From<AllocError>, 1028 { 1029 let mut this = Box::try_new_uninit()?; 1030 let slot = this.as_mut_ptr(); 1031 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 1032 // slot is valid. 1033 unsafe { init.__init(slot)? }; 1034 // SAFETY: All fields have been initialized. 1035 Ok(unsafe { this.assume_init() }) 1036 } 1037 } 1038 1039 impl<T> InPlaceInit<T> for UniqueArc<T> { 1040 #[inline] 1041 fn try_pin_init<E>(init: impl PinInit<T, E>) -> Result<Pin<Self>, E> 1042 where 1043 E: From<AllocError>, 1044 { 1045 let mut this = UniqueArc::try_new_uninit()?; 1046 let slot = this.as_mut_ptr(); 1047 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 1048 // slot is valid and will not be moved, because we pin it later. 1049 unsafe { init.__pinned_init(slot)? }; 1050 // SAFETY: All fields have been initialized. 1051 Ok(unsafe { this.assume_init() }.into()) 1052 } 1053 1054 #[inline] 1055 fn try_init<E>(init: impl Init<T, E>) -> Result<Self, E> 1056 where 1057 E: From<AllocError>, 1058 { 1059 let mut this = UniqueArc::try_new_uninit()?; 1060 let slot = this.as_mut_ptr(); 1061 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 1062 // slot is valid. 1063 unsafe { init.__init(slot)? }; 1064 // SAFETY: All fields have been initialized. 1065 Ok(unsafe { this.assume_init() }) 1066 } 1067 } 1068 1069 /// Trait facilitating pinned destruction. 1070 /// 1071 /// Use [`pinned_drop`] to implement this trait safely: 1072 /// 1073 /// ```rust 1074 /// # use kernel::sync::Mutex; 1075 /// use kernel::macros::pinned_drop; 1076 /// use core::pin::Pin; 1077 /// #[pin_data(PinnedDrop)] 1078 /// struct Foo { 1079 /// #[pin] 1080 /// mtx: Mutex<usize>, 1081 /// } 1082 /// 1083 /// #[pinned_drop] 1084 /// impl PinnedDrop for Foo { 1085 /// fn drop(self: Pin<&mut Self>) { 1086 /// pr_info!("Foo is being dropped!"); 1087 /// } 1088 /// } 1089 /// ``` 1090 /// 1091 /// # Safety 1092 /// 1093 /// This trait must be implemented via the [`pinned_drop`] proc-macro attribute on the impl. 1094 /// 1095 /// [`pinned_drop`]: kernel::macros::pinned_drop 1096 pub unsafe trait PinnedDrop: __internal::HasPinData { 1097 /// Executes the pinned destructor of this type. 1098 /// 1099 /// While this function is marked safe, it is actually unsafe to call it manually. For this 1100 /// reason it takes an additional parameter. This type can only be constructed by `unsafe` code 1101 /// and thus prevents this function from being called where it should not. 1102 /// 1103 /// This extra parameter will be generated by the `#[pinned_drop]` proc-macro attribute 1104 /// automatically. 1105 fn drop(self: Pin<&mut Self>, only_call_from_drop: __internal::OnlyCallFromDrop); 1106 } 1107 1108 /// Marker trait for types that can be initialized by writing just zeroes. 1109 /// 1110 /// # Safety 1111 /// 1112 /// The bit pattern consisting of only zeroes is a valid bit pattern for this type. In other words, 1113 /// this is not UB: 1114 /// 1115 /// ```rust,ignore 1116 /// let val: Self = unsafe { core::mem::zeroed() }; 1117 /// ``` 1118 pub unsafe trait Zeroable {} 1119 1120 /// Create a new zeroed T. 1121 /// 1122 /// The returned initializer will write `0x00` to every byte of the given `slot`. 1123 #[inline] 1124 pub fn zeroed<T: Zeroable>() -> impl Init<T> { 1125 // SAFETY: Because `T: Zeroable`, all bytes zero is a valid bit pattern for `T` 1126 // and because we write all zeroes, the memory is initialized. 1127 unsafe { 1128 init_from_closure(|slot: *mut T| { 1129 slot.write_bytes(0, 1); 1130 Ok(()) 1131 }) 1132 } 1133 } 1134 1135 macro_rules! impl_zeroable { 1136 ($($({$($generics:tt)*})? $t:ty, )*) => { 1137 $(unsafe impl$($($generics)*)? Zeroable for $t {})* 1138 }; 1139 } 1140 1141 impl_zeroable! { 1142 // SAFETY: All primitives that are allowed to be zero. 1143 bool, 1144 char, 1145 u8, u16, u32, u64, u128, usize, 1146 i8, i16, i32, i64, i128, isize, 1147 f32, f64, 1148 1149 // SAFETY: These are ZSTs, there is nothing to zero. 1150 {<T: ?Sized>} PhantomData<T>, core::marker::PhantomPinned, Infallible, (), 1151 1152 // SAFETY: Type is allowed to take any value, including all zeros. 1153 {<T>} MaybeUninit<T>, 1154 1155 // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee). 1156 Option<NonZeroU8>, Option<NonZeroU16>, Option<NonZeroU32>, Option<NonZeroU64>, 1157 Option<NonZeroU128>, Option<NonZeroUsize>, 1158 Option<NonZeroI8>, Option<NonZeroI16>, Option<NonZeroI32>, Option<NonZeroI64>, 1159 Option<NonZeroI128>, Option<NonZeroIsize>, 1160 1161 // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee). 1162 // 1163 // In this case we are allowed to use `T: ?Sized`, since all zeros is the `None` variant. 1164 {<T: ?Sized>} Option<NonNull<T>>, 1165 {<T: ?Sized>} Option<Box<T>>, 1166 1167 // SAFETY: `null` pointer is valid. 1168 // 1169 // We cannot use `T: ?Sized`, since the VTABLE pointer part of fat pointers is not allowed to be 1170 // null. 1171 // 1172 // When `Pointee` gets stabilized, we could use 1173 // `T: ?Sized where <T as Pointee>::Metadata: Zeroable` 1174 {<T>} *mut T, {<T>} *const T, 1175 1176 // SAFETY: `null` pointer is valid and the metadata part of these fat pointers is allowed to be 1177 // zero. 1178 {<T>} *mut [T], {<T>} *const [T], *mut str, *const str, 1179 1180 // SAFETY: `T` is `Zeroable`. 1181 {<const N: usize, T: Zeroable>} [T; N], {<T: Zeroable>} Wrapping<T>, 1182 } 1183 1184 macro_rules! impl_tuple_zeroable { 1185 ($(,)?) => {}; 1186 ($first:ident, $($t:ident),* $(,)?) => { 1187 // SAFETY: All elements are zeroable and padding can be zero. 1188 unsafe impl<$first: Zeroable, $($t: Zeroable),*> Zeroable for ($first, $($t),*) {} 1189 impl_tuple_zeroable!($($t),* ,); 1190 } 1191 } 1192 1193 impl_tuple_zeroable!(A, B, C, D, E, F, G, H, I, J); 1194