1 // SPDX-License-Identifier: Apache-2.0 OR MIT 2 3 //! API to safely and fallibly initialize pinned `struct`s using in-place constructors. 4 //! 5 //! It also allows in-place initialization of big `struct`s that would otherwise produce a stack 6 //! overflow. 7 //! 8 //! Most `struct`s from the [`sync`] module need to be pinned, because they contain self-referential 9 //! `struct`s from C. [Pinning][pinning] is Rust's way of ensuring data does not move. 10 //! 11 //! # Overview 12 //! 13 //! To initialize a `struct` with an in-place constructor you will need two things: 14 //! - an in-place constructor, 15 //! - a memory location that can hold your `struct` (this can be the [stack], an [`Arc<T>`], 16 //! [`UniqueArc<T>`], [`Box<T>`] or any other smart pointer that implements [`InPlaceInit`]). 17 //! 18 //! To get an in-place constructor there are generally three options: 19 //! - directly creating an in-place constructor using the [`pin_init!`] macro, 20 //! - a custom function/macro returning an in-place constructor provided by someone else, 21 //! - using the unsafe function [`pin_init_from_closure()`] to manually create an initializer. 22 //! 23 //! Aside from pinned initialization, this API also supports in-place construction without pinning, 24 //! the macros/types/functions are generally named like the pinned variants without the `pin` 25 //! prefix. 26 //! 27 //! # Examples 28 //! 29 //! ## Using the [`pin_init!`] macro 30 //! 31 //! If you want to use [`PinInit`], then you will have to annotate your `struct` with 32 //! `#[`[`pin_data`]`]`. It is a macro that uses `#[pin]` as a marker for 33 //! [structurally pinned fields]. After doing this, you can then create an in-place constructor via 34 //! [`pin_init!`]. The syntax is almost the same as normal `struct` initializers. The difference is 35 //! that you need to write `<-` instead of `:` for fields that you want to initialize in-place. 36 //! 37 //! ```rust 38 //! # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] 39 //! use kernel::{prelude::*, sync::Mutex, new_mutex}; 40 //! # use core::pin::Pin; 41 //! #[pin_data] 42 //! struct Foo { 43 //! #[pin] 44 //! a: Mutex<usize>, 45 //! b: u32, 46 //! } 47 //! 48 //! let foo = pin_init!(Foo { 49 //! a <- new_mutex!(42, "Foo::a"), 50 //! b: 24, 51 //! }); 52 //! ``` 53 //! 54 //! `foo` now is of the type [`impl PinInit<Foo>`]. We can now use any smart pointer that we like 55 //! (or just the stack) to actually initialize a `Foo`: 56 //! 57 //! ```rust 58 //! # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] 59 //! # use kernel::{prelude::*, sync::Mutex, new_mutex}; 60 //! # use core::pin::Pin; 61 //! # #[pin_data] 62 //! # struct Foo { 63 //! # #[pin] 64 //! # a: Mutex<usize>, 65 //! # b: u32, 66 //! # } 67 //! # let foo = pin_init!(Foo { 68 //! # a <- new_mutex!(42, "Foo::a"), 69 //! # b: 24, 70 //! # }); 71 //! let foo: Result<Pin<Box<Foo>>> = Box::pin_init(foo); 72 //! ``` 73 //! 74 //! For more information see the [`pin_init!`] macro. 75 //! 76 //! ## Using a custom function/macro that returns an initializer 77 //! 78 //! Many types from the kernel supply a function/macro that returns an initializer, because the 79 //! above method only works for types where you can access the fields. 80 //! 81 //! ```rust 82 //! # use kernel::{new_mutex, sync::{Arc, Mutex}}; 83 //! let mtx: Result<Arc<Mutex<usize>>> = Arc::pin_init(new_mutex!(42, "example::mtx")); 84 //! ``` 85 //! 86 //! To declare an init macro/function you just return an [`impl PinInit<T, E>`]: 87 //! 88 //! ```rust 89 //! # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] 90 //! # use kernel::{sync::Mutex, prelude::*, new_mutex, init::PinInit, try_pin_init}; 91 //! #[pin_data] 92 //! struct DriverData { 93 //! #[pin] 94 //! status: Mutex<i32>, 95 //! buffer: Box<[u8; 1_000_000]>, 96 //! } 97 //! 98 //! impl DriverData { 99 //! fn new() -> impl PinInit<Self, Error> { 100 //! try_pin_init!(Self { 101 //! status <- new_mutex!(0, "DriverData::status"), 102 //! buffer: Box::init(kernel::init::zeroed())?, 103 //! }) 104 //! } 105 //! } 106 //! ``` 107 //! 108 //! ## Manual creation of an initializer 109 //! 110 //! Often when working with primitives the previous approaches are not sufficient. That is where 111 //! [`pin_init_from_closure()`] comes in. This `unsafe` function allows you to create a 112 //! [`impl PinInit<T, E>`] directly from a closure. Of course you have to ensure that the closure 113 //! actually does the initialization in the correct way. Here are the things to look out for 114 //! (we are calling the parameter to the closure `slot`): 115 //! - when the closure returns `Ok(())`, then it has completed the initialization successfully, so 116 //! `slot` now contains a valid bit pattern for the type `T`, 117 //! - when the closure returns `Err(e)`, then the caller may deallocate the memory at `slot`, so 118 //! you need to take care to clean up anything if your initialization fails mid-way, 119 //! - you may assume that `slot` will stay pinned even after the closure returns until `drop` of 120 //! `slot` gets called. 121 //! 122 //! ```rust 123 //! use kernel::{prelude::*, init}; 124 //! use core::{ptr::addr_of_mut, marker::PhantomPinned, pin::Pin}; 125 //! # mod bindings { 126 //! # pub struct foo; 127 //! # pub unsafe fn init_foo(_ptr: *mut foo) {} 128 //! # pub unsafe fn destroy_foo(_ptr: *mut foo) {} 129 //! # pub unsafe fn enable_foo(_ptr: *mut foo, _flags: u32) -> i32 { 0 } 130 //! # } 131 //! /// # Invariants 132 //! /// 133 //! /// `foo` is always initialized 134 //! #[pin_data(PinnedDrop)] 135 //! pub struct RawFoo { 136 //! #[pin] 137 //! foo: Opaque<bindings::foo>, 138 //! #[pin] 139 //! _p: PhantomPinned, 140 //! } 141 //! 142 //! impl RawFoo { 143 //! pub fn new(flags: u32) -> impl PinInit<Self, Error> { 144 //! // SAFETY: 145 //! // - when the closure returns `Ok(())`, then it has successfully initialized and 146 //! // enabled `foo`, 147 //! // - when it returns `Err(e)`, then it has cleaned up before 148 //! unsafe { 149 //! init::pin_init_from_closure(move |slot: *mut Self| { 150 //! // `slot` contains uninit memory, avoid creating a reference. 151 //! let foo = addr_of_mut!((*slot).foo); 152 //! 153 //! // Initialize the `foo` 154 //! bindings::init_foo(Opaque::raw_get(foo)); 155 //! 156 //! // Try to enable it. 157 //! let err = bindings::enable_foo(Opaque::raw_get(foo), flags); 158 //! if err != 0 { 159 //! // Enabling has failed, first clean up the foo and then return the error. 160 //! bindings::destroy_foo(Opaque::raw_get(foo)); 161 //! return Err(Error::from_kernel_errno(err)); 162 //! } 163 //! 164 //! // All fields of `RawFoo` have been initialized, since `_p` is a ZST. 165 //! Ok(()) 166 //! }) 167 //! } 168 //! } 169 //! } 170 //! 171 //! #[pinned_drop] 172 //! impl PinnedDrop for RawFoo { 173 //! fn drop(self: Pin<&mut Self>) { 174 //! // SAFETY: Since `foo` is initialized, destroying is safe. 175 //! unsafe { bindings::destroy_foo(self.foo.get()) }; 176 //! } 177 //! } 178 //! ``` 179 //! 180 //! For the special case where initializing a field is a single FFI-function call that cannot fail, 181 //! there exist the helper function [`Opaque::ffi_init`]. This function initialize a single 182 //! [`Opaque`] field by just delegating to the supplied closure. You can use these in combination 183 //! with [`pin_init!`]. 184 //! 185 //! For more information on how to use [`pin_init_from_closure()`], take a look at the uses inside 186 //! the `kernel` crate. The [`sync`] module is a good starting point. 187 //! 188 //! [`sync`]: kernel::sync 189 //! [pinning]: https://doc.rust-lang.org/std/pin/index.html 190 //! [structurally pinned fields]: 191 //! https://doc.rust-lang.org/std/pin/index.html#pinning-is-structural-for-field 192 //! [stack]: crate::stack_pin_init 193 //! [`Arc<T>`]: crate::sync::Arc 194 //! [`impl PinInit<Foo>`]: PinInit 195 //! [`impl PinInit<T, E>`]: PinInit 196 //! [`impl Init<T, E>`]: Init 197 //! [`Opaque`]: kernel::types::Opaque 198 //! [`Opaque::ffi_init`]: kernel::types::Opaque::ffi_init 199 //! [`pin_data`]: ::macros::pin_data 200 //! [`pin_init!`]: crate::pin_init! 201 202 use crate::{ 203 error::{self, Error}, 204 sync::UniqueArc, 205 }; 206 use alloc::boxed::Box; 207 use core::{ 208 alloc::AllocError, 209 convert::Infallible, 210 marker::PhantomData, 211 mem::MaybeUninit, 212 num::*, 213 pin::Pin, 214 ptr::{self, NonNull}, 215 }; 216 217 #[doc(hidden)] 218 pub mod __internal; 219 #[doc(hidden)] 220 pub mod macros; 221 222 /// Initialize and pin a type directly on the stack. 223 /// 224 /// # Examples 225 /// 226 /// ```rust 227 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] 228 /// # use kernel::{init, pin_init, stack_pin_init, init::*, sync::Mutex, new_mutex}; 229 /// # use macros::pin_data; 230 /// # use core::pin::Pin; 231 /// #[pin_data] 232 /// struct Foo { 233 /// #[pin] 234 /// a: Mutex<usize>, 235 /// b: Bar, 236 /// } 237 /// 238 /// #[pin_data] 239 /// struct Bar { 240 /// x: u32, 241 /// } 242 /// 243 /// stack_pin_init!(let foo = pin_init!(Foo { 244 /// a <- new_mutex!(42), 245 /// b: Bar { 246 /// x: 64, 247 /// }, 248 /// })); 249 /// let foo: Pin<&mut Foo> = foo; 250 /// pr_info!("a: {}", &*foo.a.lock()); 251 /// ``` 252 /// 253 /// # Syntax 254 /// 255 /// A normal `let` binding with optional type annotation. The expression is expected to implement 256 /// [`PinInit`]/[`Init`] with the error type [`Infallible`]. If you want to use a different error 257 /// type, then use [`stack_try_pin_init!`]. 258 /// 259 /// [`stack_try_pin_init!`]: crate::stack_try_pin_init! 260 #[macro_export] 261 macro_rules! stack_pin_init { 262 (let $var:ident $(: $t:ty)? = $val:expr) => { 263 let val = $val; 264 let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit()); 265 let mut $var = match $crate::init::__internal::StackInit::init($var, val) { 266 Ok(res) => res, 267 Err(x) => { 268 let x: ::core::convert::Infallible = x; 269 match x {} 270 } 271 }; 272 }; 273 } 274 275 /// Initialize and pin a type directly on the stack. 276 /// 277 /// # Examples 278 /// 279 /// ```rust 280 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] 281 /// # use kernel::{init, pin_init, stack_try_pin_init, init::*, sync::Mutex, new_mutex}; 282 /// # use macros::pin_data; 283 /// # use core::{alloc::AllocError, pin::Pin}; 284 /// #[pin_data] 285 /// struct Foo { 286 /// #[pin] 287 /// a: Mutex<usize>, 288 /// b: Box<Bar>, 289 /// } 290 /// 291 /// struct Bar { 292 /// x: u32, 293 /// } 294 /// 295 /// stack_try_pin_init!(let foo: Result<Pin<&mut Foo>, AllocError> = pin_init!(Foo { 296 /// a <- new_mutex!(42), 297 /// b: Box::try_new(Bar { 298 /// x: 64, 299 /// })?, 300 /// })); 301 /// let foo = foo.unwrap(); 302 /// pr_info!("a: {}", &*foo.a.lock()); 303 /// ``` 304 /// 305 /// ```rust 306 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] 307 /// # use kernel::{init, pin_init, stack_try_pin_init, init::*, sync::Mutex, new_mutex}; 308 /// # use macros::pin_data; 309 /// # use core::{alloc::AllocError, pin::Pin}; 310 /// #[pin_data] 311 /// struct Foo { 312 /// #[pin] 313 /// a: Mutex<usize>, 314 /// b: Box<Bar>, 315 /// } 316 /// 317 /// struct Bar { 318 /// x: u32, 319 /// } 320 /// 321 /// stack_try_pin_init!(let foo: Pin<&mut Foo> =? pin_init!(Foo { 322 /// a <- new_mutex!(42), 323 /// b: Box::try_new(Bar { 324 /// x: 64, 325 /// })?, 326 /// })); 327 /// pr_info!("a: {}", &*foo.a.lock()); 328 /// # Ok::<_, AllocError>(()) 329 /// ``` 330 /// 331 /// # Syntax 332 /// 333 /// A normal `let` binding with optional type annotation. The expression is expected to implement 334 /// [`PinInit`]/[`Init`]. This macro assigns a result to the given variable, adding a `?` after the 335 /// `=` will propagate this error. 336 #[macro_export] 337 macro_rules! stack_try_pin_init { 338 (let $var:ident $(: $t:ty)? = $val:expr) => { 339 let val = $val; 340 let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit()); 341 let mut $var = $crate::init::__internal::StackInit::init($var, val); 342 }; 343 (let $var:ident $(: $t:ty)? =? $val:expr) => { 344 let val = $val; 345 let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit()); 346 let mut $var = $crate::init::__internal::StackInit::init($var, val)?; 347 }; 348 } 349 350 /// Construct an in-place, pinned initializer for `struct`s. 351 /// 352 /// This macro defaults the error to [`Infallible`]. If you need [`Error`], then use 353 /// [`try_pin_init!`]. 354 /// 355 /// The syntax is almost identical to that of a normal `struct` initializer: 356 /// 357 /// ```rust 358 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] 359 /// # use kernel::{init, pin_init, macros::pin_data, init::*}; 360 /// # use core::pin::Pin; 361 /// #[pin_data] 362 /// struct Foo { 363 /// a: usize, 364 /// b: Bar, 365 /// } 366 /// 367 /// #[pin_data] 368 /// struct Bar { 369 /// x: u32, 370 /// } 371 /// 372 /// # fn demo() -> impl PinInit<Foo> { 373 /// let a = 42; 374 /// 375 /// let initializer = pin_init!(Foo { 376 /// a, 377 /// b: Bar { 378 /// x: 64, 379 /// }, 380 /// }); 381 /// # initializer } 382 /// # Box::pin_init(demo()).unwrap(); 383 /// ``` 384 /// 385 /// Arbitrary Rust expressions can be used to set the value of a variable. 386 /// 387 /// The fields are initialized in the order that they appear in the initializer. So it is possible 388 /// to read already initialized fields using raw pointers. 389 /// 390 /// IMPORTANT: You are not allowed to create references to fields of the struct inside of the 391 /// initializer. 392 /// 393 /// # Init-functions 394 /// 395 /// When working with this API it is often desired to let others construct your types without 396 /// giving access to all fields. This is where you would normally write a plain function `new` 397 /// that would return a new instance of your type. With this API that is also possible. 398 /// However, there are a few extra things to keep in mind. 399 /// 400 /// To create an initializer function, simply declare it like this: 401 /// 402 /// ```rust 403 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] 404 /// # use kernel::{init, pin_init, prelude::*, init::*}; 405 /// # use core::pin::Pin; 406 /// # #[pin_data] 407 /// # struct Foo { 408 /// # a: usize, 409 /// # b: Bar, 410 /// # } 411 /// # #[pin_data] 412 /// # struct Bar { 413 /// # x: u32, 414 /// # } 415 /// impl Foo { 416 /// fn new() -> impl PinInit<Self> { 417 /// pin_init!(Self { 418 /// a: 42, 419 /// b: Bar { 420 /// x: 64, 421 /// }, 422 /// }) 423 /// } 424 /// } 425 /// ``` 426 /// 427 /// Users of `Foo` can now create it like this: 428 /// 429 /// ```rust 430 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] 431 /// # use kernel::{init, pin_init, macros::pin_data, init::*}; 432 /// # use core::pin::Pin; 433 /// # #[pin_data] 434 /// # struct Foo { 435 /// # a: usize, 436 /// # b: Bar, 437 /// # } 438 /// # #[pin_data] 439 /// # struct Bar { 440 /// # x: u32, 441 /// # } 442 /// # impl Foo { 443 /// # fn new() -> impl PinInit<Self> { 444 /// # pin_init!(Self { 445 /// # a: 42, 446 /// # b: Bar { 447 /// # x: 64, 448 /// # }, 449 /// # }) 450 /// # } 451 /// # } 452 /// let foo = Box::pin_init(Foo::new()); 453 /// ``` 454 /// 455 /// They can also easily embed it into their own `struct`s: 456 /// 457 /// ```rust 458 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] 459 /// # use kernel::{init, pin_init, macros::pin_data, init::*}; 460 /// # use core::pin::Pin; 461 /// # #[pin_data] 462 /// # struct Foo { 463 /// # a: usize, 464 /// # b: Bar, 465 /// # } 466 /// # #[pin_data] 467 /// # struct Bar { 468 /// # x: u32, 469 /// # } 470 /// # impl Foo { 471 /// # fn new() -> impl PinInit<Self> { 472 /// # pin_init!(Self { 473 /// # a: 42, 474 /// # b: Bar { 475 /// # x: 64, 476 /// # }, 477 /// # }) 478 /// # } 479 /// # } 480 /// #[pin_data] 481 /// struct FooContainer { 482 /// #[pin] 483 /// foo1: Foo, 484 /// #[pin] 485 /// foo2: Foo, 486 /// other: u32, 487 /// } 488 /// 489 /// impl FooContainer { 490 /// fn new(other: u32) -> impl PinInit<Self> { 491 /// pin_init!(Self { 492 /// foo1 <- Foo::new(), 493 /// foo2 <- Foo::new(), 494 /// other, 495 /// }) 496 /// } 497 /// } 498 /// ``` 499 /// 500 /// Here we see that when using `pin_init!` with `PinInit`, one needs to write `<-` instead of `:`. 501 /// This signifies that the given field is initialized in-place. As with `struct` initializers, just 502 /// writing the field (in this case `other`) without `:` or `<-` means `other: other,`. 503 /// 504 /// # Syntax 505 /// 506 /// As already mentioned in the examples above, inside of `pin_init!` a `struct` initializer with 507 /// the following modifications is expected: 508 /// - Fields that you want to initialize in-place have to use `<-` instead of `:`. 509 /// - In front of the initializer you can write `&this in` to have access to a [`NonNull<Self>`] 510 /// pointer named `this` inside of the initializer. 511 /// 512 /// For instance: 513 /// 514 /// ```rust 515 /// # use kernel::pin_init; 516 /// # use macros::pin_data; 517 /// # use core::{ptr::addr_of_mut, marker::PhantomPinned}; 518 /// #[pin_data] 519 /// struct Buf { 520 /// // `ptr` points into `buf`. 521 /// ptr: *mut u8, 522 /// buf: [u8; 64], 523 /// #[pin] 524 /// pin: PhantomPinned, 525 /// } 526 /// pin_init!(&this in Buf { 527 /// buf: [0; 64], 528 /// ptr: unsafe { addr_of_mut!((*this.as_ptr()).buf).cast() }, 529 /// pin: PhantomPinned, 530 /// }); 531 /// ``` 532 /// 533 /// [`try_pin_init!`]: kernel::try_pin_init 534 /// [`NonNull<Self>`]: core::ptr::NonNull 535 // For a detailed example of how this macro works, see the module documentation of the hidden 536 // module `__internal` inside of `init/__internal.rs`. 537 #[macro_export] 538 macro_rules! pin_init { 539 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 540 $($fields:tt)* 541 }) => { 542 $crate::__init_internal!( 543 @this($($this)?), 544 @typ($t $(::<$($generics),*>)?), 545 @fields($($fields)*), 546 @error(::core::convert::Infallible), 547 @data(PinData, use_data), 548 @has_data(HasPinData, __pin_data), 549 @construct_closure(pin_init_from_closure), 550 ) 551 }; 552 } 553 554 /// Construct an in-place, fallible pinned initializer for `struct`s. 555 /// 556 /// If the initialization can complete without error (or [`Infallible`]), then use [`pin_init!`]. 557 /// 558 /// You can use the `?` operator or use `return Err(err)` inside the initializer to stop 559 /// initialization and return the error. 560 /// 561 /// IMPORTANT: if you have `unsafe` code inside of the initializer you have to ensure that when 562 /// initialization fails, the memory can be safely deallocated without any further modifications. 563 /// 564 /// This macro defaults the error to [`Error`]. 565 /// 566 /// The syntax is identical to [`pin_init!`] with the following exception: you can append `? $type` 567 /// after the `struct` initializer to specify the error type you want to use. 568 /// 569 /// # Examples 570 /// 571 /// ```rust 572 /// # #![feature(new_uninit)] 573 /// use kernel::{init::{self, PinInit}, error::Error}; 574 /// #[pin_data] 575 /// struct BigBuf { 576 /// big: Box<[u8; 1024 * 1024 * 1024]>, 577 /// small: [u8; 1024 * 1024], 578 /// ptr: *mut u8, 579 /// } 580 /// 581 /// impl BigBuf { 582 /// fn new() -> impl PinInit<Self, Error> { 583 /// try_pin_init!(Self { 584 /// big: Box::init(init::zeroed())?, 585 /// small: [0; 1024 * 1024], 586 /// ptr: core::ptr::null_mut(), 587 /// }? Error) 588 /// } 589 /// } 590 /// ``` 591 // For a detailed example of how this macro works, see the module documentation of the hidden 592 // module `__internal` inside of `init/__internal.rs`. 593 #[macro_export] 594 macro_rules! try_pin_init { 595 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 596 $($fields:tt)* 597 }) => { 598 $crate::__init_internal!( 599 @this($($this)?), 600 @typ($t $(::<$($generics),*>)? ), 601 @fields($($fields)*), 602 @error($crate::error::Error), 603 @data(PinData, use_data), 604 @has_data(HasPinData, __pin_data), 605 @construct_closure(pin_init_from_closure), 606 ) 607 }; 608 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 609 $($fields:tt)* 610 }? $err:ty) => { 611 $crate::__init_internal!( 612 @this($($this)?), 613 @typ($t $(::<$($generics),*>)? ), 614 @fields($($fields)*), 615 @error($err), 616 @data(PinData, use_data), 617 @has_data(HasPinData, __pin_data), 618 @construct_closure(pin_init_from_closure), 619 ) 620 }; 621 } 622 623 /// Construct an in-place initializer for `struct`s. 624 /// 625 /// This macro defaults the error to [`Infallible`]. If you need [`Error`], then use 626 /// [`try_init!`]. 627 /// 628 /// The syntax is identical to [`pin_init!`] and its safety caveats also apply: 629 /// - `unsafe` code must guarantee either full initialization or return an error and allow 630 /// deallocation of the memory. 631 /// - the fields are initialized in the order given in the initializer. 632 /// - no references to fields are allowed to be created inside of the initializer. 633 /// 634 /// This initializer is for initializing data in-place that might later be moved. If you want to 635 /// pin-initialize, use [`pin_init!`]. 636 /// 637 /// [`try_init!`]: crate::try_init! 638 // For a detailed example of how this macro works, see the module documentation of the hidden 639 // module `__internal` inside of `init/__internal.rs`. 640 #[macro_export] 641 macro_rules! init { 642 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 643 $($fields:tt)* 644 }) => { 645 $crate::__init_internal!( 646 @this($($this)?), 647 @typ($t $(::<$($generics),*>)?), 648 @fields($($fields)*), 649 @error(::core::convert::Infallible), 650 @data(InitData, /*no use_data*/), 651 @has_data(HasInitData, __init_data), 652 @construct_closure(init_from_closure), 653 ) 654 } 655 } 656 657 /// Construct an in-place fallible initializer for `struct`s. 658 /// 659 /// This macro defaults the error to [`Error`]. If you need [`Infallible`], then use 660 /// [`init!`]. 661 /// 662 /// The syntax is identical to [`try_pin_init!`]. If you want to specify a custom error, 663 /// append `? $type` after the `struct` initializer. 664 /// The safety caveats from [`try_pin_init!`] also apply: 665 /// - `unsafe` code must guarantee either full initialization or return an error and allow 666 /// deallocation of the memory. 667 /// - the fields are initialized in the order given in the initializer. 668 /// - no references to fields are allowed to be created inside of the initializer. 669 /// 670 /// # Examples 671 /// 672 /// ```rust 673 /// use kernel::{init::PinInit, error::Error, InPlaceInit}; 674 /// struct BigBuf { 675 /// big: Box<[u8; 1024 * 1024 * 1024]>, 676 /// small: [u8; 1024 * 1024], 677 /// } 678 /// 679 /// impl BigBuf { 680 /// fn new() -> impl Init<Self, Error> { 681 /// try_init!(Self { 682 /// big: Box::init(zeroed())?, 683 /// small: [0; 1024 * 1024], 684 /// }? Error) 685 /// } 686 /// } 687 /// ``` 688 // For a detailed example of how this macro works, see the module documentation of the hidden 689 // module `__internal` inside of `init/__internal.rs`. 690 #[macro_export] 691 macro_rules! try_init { 692 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 693 $($fields:tt)* 694 }) => { 695 $crate::__init_internal!( 696 @this($($this)?), 697 @typ($t $(::<$($generics),*>)?), 698 @fields($($fields)*), 699 @error($crate::error::Error), 700 @data(InitData, /*no use_data*/), 701 @has_data(HasInitData, __init_data), 702 @construct_closure(init_from_closure), 703 ) 704 }; 705 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 706 $($fields:tt)* 707 }? $err:ty) => { 708 $crate::__init_internal!( 709 @this($($this)?), 710 @typ($t $(::<$($generics),*>)?), 711 @fields($($fields)*), 712 @error($err), 713 @data(InitData, /*no use_data*/), 714 @has_data(HasInitData, __init_data), 715 @construct_closure(init_from_closure), 716 ) 717 }; 718 } 719 720 /// A pin-initializer for the type `T`. 721 /// 722 /// To use this initializer, you will need a suitable memory location that can hold a `T`. This can 723 /// be [`Box<T>`], [`Arc<T>`], [`UniqueArc<T>`] or even the stack (see [`stack_pin_init!`]). Use the 724 /// [`InPlaceInit::pin_init`] function of a smart pointer like [`Arc<T>`] on this. 725 /// 726 /// Also see the [module description](self). 727 /// 728 /// # Safety 729 /// 730 /// When implementing this type you will need to take great care. Also there are probably very few 731 /// cases where a manual implementation is necessary. Use [`pin_init_from_closure`] where possible. 732 /// 733 /// The [`PinInit::__pinned_init`] function 734 /// - returns `Ok(())` if it initialized every field of `slot`, 735 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 736 /// - `slot` can be deallocated without UB occurring, 737 /// - `slot` does not need to be dropped, 738 /// - `slot` is not partially initialized. 739 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 740 /// 741 /// [`Arc<T>`]: crate::sync::Arc 742 /// [`Arc::pin_init`]: crate::sync::Arc::pin_init 743 #[must_use = "An initializer must be used in order to create its value."] 744 pub unsafe trait PinInit<T: ?Sized, E = Infallible>: Sized { 745 /// Initializes `slot`. 746 /// 747 /// # Safety 748 /// 749 /// - `slot` is a valid pointer to uninitialized memory. 750 /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to 751 /// deallocate. 752 /// - `slot` will not move until it is dropped, i.e. it will be pinned. 753 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E>; 754 } 755 756 /// An initializer for `T`. 757 /// 758 /// To use this initializer, you will need a suitable memory location that can hold a `T`. This can 759 /// be [`Box<T>`], [`Arc<T>`], [`UniqueArc<T>`] or even the stack (see [`stack_pin_init!`]). Use the 760 /// [`InPlaceInit::init`] function of a smart pointer like [`Arc<T>`] on this. Because 761 /// [`PinInit<T, E>`] is a super trait, you can use every function that takes it as well. 762 /// 763 /// Also see the [module description](self). 764 /// 765 /// # Safety 766 /// 767 /// When implementing this type you will need to take great care. Also there are probably very few 768 /// cases where a manual implementation is necessary. Use [`init_from_closure`] where possible. 769 /// 770 /// The [`Init::__init`] function 771 /// - returns `Ok(())` if it initialized every field of `slot`, 772 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 773 /// - `slot` can be deallocated without UB occurring, 774 /// - `slot` does not need to be dropped, 775 /// - `slot` is not partially initialized. 776 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 777 /// 778 /// The `__pinned_init` function from the supertrait [`PinInit`] needs to execute the exact same 779 /// code as `__init`. 780 /// 781 /// Contrary to its supertype [`PinInit<T, E>`] the caller is allowed to 782 /// move the pointee after initialization. 783 /// 784 /// [`Arc<T>`]: crate::sync::Arc 785 #[must_use = "An initializer must be used in order to create its value."] 786 pub unsafe trait Init<T: ?Sized, E = Infallible>: Sized { 787 /// Initializes `slot`. 788 /// 789 /// # Safety 790 /// 791 /// - `slot` is a valid pointer to uninitialized memory. 792 /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to 793 /// deallocate. 794 unsafe fn __init(self, slot: *mut T) -> Result<(), E>; 795 } 796 797 // SAFETY: Every in-place initializer can also be used as a pin-initializer. 798 unsafe impl<T: ?Sized, E, I> PinInit<T, E> for I 799 where 800 I: Init<T, E>, 801 { 802 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> { 803 // SAFETY: `__init` meets the same requirements as `__pinned_init`, except that it does not 804 // require `slot` to not move after init. 805 unsafe { self.__init(slot) } 806 } 807 } 808 809 /// Creates a new [`PinInit<T, E>`] from the given closure. 810 /// 811 /// # Safety 812 /// 813 /// The closure: 814 /// - returns `Ok(())` if it initialized every field of `slot`, 815 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 816 /// - `slot` can be deallocated without UB occurring, 817 /// - `slot` does not need to be dropped, 818 /// - `slot` is not partially initialized. 819 /// - may assume that the `slot` does not move if `T: !Unpin`, 820 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 821 #[inline] 822 pub const unsafe fn pin_init_from_closure<T: ?Sized, E>( 823 f: impl FnOnce(*mut T) -> Result<(), E>, 824 ) -> impl PinInit<T, E> { 825 __internal::InitClosure(f, PhantomData) 826 } 827 828 /// Creates a new [`Init<T, E>`] from the given closure. 829 /// 830 /// # Safety 831 /// 832 /// The closure: 833 /// - returns `Ok(())` if it initialized every field of `slot`, 834 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 835 /// - `slot` can be deallocated without UB occurring, 836 /// - `slot` does not need to be dropped, 837 /// - `slot` is not partially initialized. 838 /// - the `slot` may move after initialization. 839 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 840 #[inline] 841 pub const unsafe fn init_from_closure<T: ?Sized, E>( 842 f: impl FnOnce(*mut T) -> Result<(), E>, 843 ) -> impl Init<T, E> { 844 __internal::InitClosure(f, PhantomData) 845 } 846 847 /// An initializer that leaves the memory uninitialized. 848 /// 849 /// The initializer is a no-op. The `slot` memory is not changed. 850 #[inline] 851 pub fn uninit<T, E>() -> impl Init<MaybeUninit<T>, E> { 852 // SAFETY: The memory is allowed to be uninitialized. 853 unsafe { init_from_closure(|_| Ok(())) } 854 } 855 856 // SAFETY: Every type can be initialized by-value. 857 unsafe impl<T, E> Init<T, E> for T { 858 unsafe fn __init(self, slot: *mut T) -> Result<(), E> { 859 unsafe { slot.write(self) }; 860 Ok(()) 861 } 862 } 863 864 /// Smart pointer that can initialize memory in-place. 865 pub trait InPlaceInit<T>: Sized { 866 /// Use the given pin-initializer to pin-initialize a `T` inside of a new smart pointer of this 867 /// type. 868 /// 869 /// If `T: !Unpin` it will not be able to move afterwards. 870 fn try_pin_init<E>(init: impl PinInit<T, E>) -> Result<Pin<Self>, E> 871 where 872 E: From<AllocError>; 873 874 /// Use the given pin-initializer to pin-initialize a `T` inside of a new smart pointer of this 875 /// type. 876 /// 877 /// If `T: !Unpin` it will not be able to move afterwards. 878 fn pin_init<E>(init: impl PinInit<T, E>) -> error::Result<Pin<Self>> 879 where 880 Error: From<E>, 881 { 882 // SAFETY: We delegate to `init` and only change the error type. 883 let init = unsafe { 884 pin_init_from_closure(|slot| init.__pinned_init(slot).map_err(|e| Error::from(e))) 885 }; 886 Self::try_pin_init(init) 887 } 888 889 /// Use the given initializer to in-place initialize a `T`. 890 fn try_init<E>(init: impl Init<T, E>) -> Result<Self, E> 891 where 892 E: From<AllocError>; 893 894 /// Use the given initializer to in-place initialize a `T`. 895 fn init<E>(init: impl Init<T, E>) -> error::Result<Self> 896 where 897 Error: From<E>, 898 { 899 // SAFETY: We delegate to `init` and only change the error type. 900 let init = unsafe { 901 init_from_closure(|slot| init.__pinned_init(slot).map_err(|e| Error::from(e))) 902 }; 903 Self::try_init(init) 904 } 905 } 906 907 impl<T> InPlaceInit<T> for Box<T> { 908 #[inline] 909 fn try_pin_init<E>(init: impl PinInit<T, E>) -> Result<Pin<Self>, E> 910 where 911 E: From<AllocError>, 912 { 913 let mut this = Box::try_new_uninit()?; 914 let slot = this.as_mut_ptr(); 915 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 916 // slot is valid and will not be moved, because we pin it later. 917 unsafe { init.__pinned_init(slot)? }; 918 // SAFETY: All fields have been initialized. 919 Ok(unsafe { this.assume_init() }.into()) 920 } 921 922 #[inline] 923 fn try_init<E>(init: impl Init<T, E>) -> Result<Self, E> 924 where 925 E: From<AllocError>, 926 { 927 let mut this = Box::try_new_uninit()?; 928 let slot = this.as_mut_ptr(); 929 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 930 // slot is valid. 931 unsafe { init.__init(slot)? }; 932 // SAFETY: All fields have been initialized. 933 Ok(unsafe { this.assume_init() }) 934 } 935 } 936 937 impl<T> InPlaceInit<T> for UniqueArc<T> { 938 #[inline] 939 fn try_pin_init<E>(init: impl PinInit<T, E>) -> Result<Pin<Self>, E> 940 where 941 E: From<AllocError>, 942 { 943 let mut this = UniqueArc::try_new_uninit()?; 944 let slot = this.as_mut_ptr(); 945 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 946 // slot is valid and will not be moved, because we pin it later. 947 unsafe { init.__pinned_init(slot)? }; 948 // SAFETY: All fields have been initialized. 949 Ok(unsafe { this.assume_init() }.into()) 950 } 951 952 #[inline] 953 fn try_init<E>(init: impl Init<T, E>) -> Result<Self, E> 954 where 955 E: From<AllocError>, 956 { 957 let mut this = UniqueArc::try_new_uninit()?; 958 let slot = this.as_mut_ptr(); 959 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 960 // slot is valid. 961 unsafe { init.__init(slot)? }; 962 // SAFETY: All fields have been initialized. 963 Ok(unsafe { this.assume_init() }) 964 } 965 } 966 967 /// Trait facilitating pinned destruction. 968 /// 969 /// Use [`pinned_drop`] to implement this trait safely: 970 /// 971 /// ```rust 972 /// # use kernel::sync::Mutex; 973 /// use kernel::macros::pinned_drop; 974 /// use core::pin::Pin; 975 /// #[pin_data(PinnedDrop)] 976 /// struct Foo { 977 /// #[pin] 978 /// mtx: Mutex<usize>, 979 /// } 980 /// 981 /// #[pinned_drop] 982 /// impl PinnedDrop for Foo { 983 /// fn drop(self: Pin<&mut Self>) { 984 /// pr_info!("Foo is being dropped!"); 985 /// } 986 /// } 987 /// ``` 988 /// 989 /// # Safety 990 /// 991 /// This trait must be implemented via the [`pinned_drop`] proc-macro attribute on the impl. 992 /// 993 /// [`pinned_drop`]: kernel::macros::pinned_drop 994 pub unsafe trait PinnedDrop: __internal::HasPinData { 995 /// Executes the pinned destructor of this type. 996 /// 997 /// While this function is marked safe, it is actually unsafe to call it manually. For this 998 /// reason it takes an additional parameter. This type can only be constructed by `unsafe` code 999 /// and thus prevents this function from being called where it should not. 1000 /// 1001 /// This extra parameter will be generated by the `#[pinned_drop]` proc-macro attribute 1002 /// automatically. 1003 fn drop(self: Pin<&mut Self>, only_call_from_drop: __internal::OnlyCallFromDrop); 1004 } 1005 1006 /// Marker trait for types that can be initialized by writing just zeroes. 1007 /// 1008 /// # Safety 1009 /// 1010 /// The bit pattern consisting of only zeroes is a valid bit pattern for this type. In other words, 1011 /// this is not UB: 1012 /// 1013 /// ```rust,ignore 1014 /// let val: Self = unsafe { core::mem::zeroed() }; 1015 /// ``` 1016 pub unsafe trait Zeroable {} 1017 1018 /// Create a new zeroed T. 1019 /// 1020 /// The returned initializer will write `0x00` to every byte of the given `slot`. 1021 #[inline] 1022 pub fn zeroed<T: Zeroable>() -> impl Init<T> { 1023 // SAFETY: Because `T: Zeroable`, all bytes zero is a valid bit pattern for `T` 1024 // and because we write all zeroes, the memory is initialized. 1025 unsafe { 1026 init_from_closure(|slot: *mut T| { 1027 slot.write_bytes(0, 1); 1028 Ok(()) 1029 }) 1030 } 1031 } 1032 1033 macro_rules! impl_zeroable { 1034 ($($({$($generics:tt)*})? $t:ty, )*) => { 1035 $(unsafe impl$($($generics)*)? Zeroable for $t {})* 1036 }; 1037 } 1038 1039 impl_zeroable! { 1040 // SAFETY: All primitives that are allowed to be zero. 1041 bool, 1042 char, 1043 u8, u16, u32, u64, u128, usize, 1044 i8, i16, i32, i64, i128, isize, 1045 f32, f64, 1046 1047 // SAFETY: These are ZSTs, there is nothing to zero. 1048 {<T: ?Sized>} PhantomData<T>, core::marker::PhantomPinned, Infallible, (), 1049 1050 // SAFETY: Type is allowed to take any value, including all zeros. 1051 {<T>} MaybeUninit<T>, 1052 1053 // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee). 1054 Option<NonZeroU8>, Option<NonZeroU16>, Option<NonZeroU32>, Option<NonZeroU64>, 1055 Option<NonZeroU128>, Option<NonZeroUsize>, 1056 Option<NonZeroI8>, Option<NonZeroI16>, Option<NonZeroI32>, Option<NonZeroI64>, 1057 Option<NonZeroI128>, Option<NonZeroIsize>, 1058 1059 // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee). 1060 // 1061 // In this case we are allowed to use `T: ?Sized`, since all zeros is the `None` variant. 1062 {<T: ?Sized>} Option<NonNull<T>>, 1063 {<T: ?Sized>} Option<Box<T>>, 1064 1065 // SAFETY: `null` pointer is valid. 1066 // 1067 // We cannot use `T: ?Sized`, since the VTABLE pointer part of fat pointers is not allowed to be 1068 // null. 1069 // 1070 // When `Pointee` gets stabilized, we could use 1071 // `T: ?Sized where <T as Pointee>::Metadata: Zeroable` 1072 {<T>} *mut T, {<T>} *const T, 1073 1074 // SAFETY: `null` pointer is valid and the metadata part of these fat pointers is allowed to be 1075 // zero. 1076 {<T>} *mut [T], {<T>} *const [T], *mut str, *const str, 1077 1078 // SAFETY: `T` is `Zeroable`. 1079 {<const N: usize, T: Zeroable>} [T; N], {<T: Zeroable>} Wrapping<T>, 1080 } 1081 1082 macro_rules! impl_tuple_zeroable { 1083 ($(,)?) => {}; 1084 ($first:ident, $($t:ident),* $(,)?) => { 1085 // SAFETY: All elements are zeroable and padding can be zero. 1086 unsafe impl<$first: Zeroable, $($t: Zeroable),*> Zeroable for ($first, $($t),*) {} 1087 impl_tuple_zeroable!($($t),* ,); 1088 } 1089 } 1090 1091 impl_tuple_zeroable!(A, B, C, D, E, F, G, H, I, J); 1092