1 // SPDX-License-Identifier: Apache-2.0 OR MIT 2 3 //! API to safely and fallibly initialize pinned `struct`s using in-place constructors. 4 //! 5 //! It also allows in-place initialization of big `struct`s that would otherwise produce a stack 6 //! overflow. 7 //! 8 //! Most `struct`s from the [`sync`] module need to be pinned, because they contain self-referential 9 //! `struct`s from C. [Pinning][pinning] is Rust's way of ensuring data does not move. 10 //! 11 //! # Overview 12 //! 13 //! To initialize a `struct` with an in-place constructor you will need two things: 14 //! - an in-place constructor, 15 //! - a memory location that can hold your `struct` (this can be the [stack], an [`Arc<T>`], 16 //! [`UniqueArc<T>`], [`Box<T>`] or any other smart pointer that implements [`InPlaceInit`]). 17 //! 18 //! To get an in-place constructor there are generally three options: 19 //! - directly creating an in-place constructor using the [`pin_init!`] macro, 20 //! - a custom function/macro returning an in-place constructor provided by someone else, 21 //! - using the unsafe function [`pin_init_from_closure()`] to manually create an initializer. 22 //! 23 //! Aside from pinned initialization, this API also supports in-place construction without pinning, 24 //! the macros/types/functions are generally named like the pinned variants without the `pin` 25 //! prefix. 26 //! 27 //! # Examples 28 //! 29 //! ## Using the [`pin_init!`] macro 30 //! 31 //! If you want to use [`PinInit`], then you will have to annotate your `struct` with 32 //! `#[`[`pin_data`]`]`. It is a macro that uses `#[pin]` as a marker for 33 //! [structurally pinned fields]. After doing this, you can then create an in-place constructor via 34 //! [`pin_init!`]. The syntax is almost the same as normal `struct` initializers. The difference is 35 //! that you need to write `<-` instead of `:` for fields that you want to initialize in-place. 36 //! 37 //! ```rust 38 //! # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] 39 //! use kernel::{prelude::*, sync::Mutex, new_mutex}; 40 //! # use core::pin::Pin; 41 //! #[pin_data] 42 //! struct Foo { 43 //! #[pin] 44 //! a: Mutex<usize>, 45 //! b: u32, 46 //! } 47 //! 48 //! let foo = pin_init!(Foo { 49 //! a <- new_mutex!(42, "Foo::a"), 50 //! b: 24, 51 //! }); 52 //! ``` 53 //! 54 //! `foo` now is of the type [`impl PinInit<Foo>`]. We can now use any smart pointer that we like 55 //! (or just the stack) to actually initialize a `Foo`: 56 //! 57 //! ```rust 58 //! # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] 59 //! # use kernel::{prelude::*, sync::Mutex, new_mutex}; 60 //! # use core::pin::Pin; 61 //! # #[pin_data] 62 //! # struct Foo { 63 //! # #[pin] 64 //! # a: Mutex<usize>, 65 //! # b: u32, 66 //! # } 67 //! # let foo = pin_init!(Foo { 68 //! # a <- new_mutex!(42, "Foo::a"), 69 //! # b: 24, 70 //! # }); 71 //! let foo: Result<Pin<Box<Foo>>> = Box::pin_init(foo); 72 //! ``` 73 //! 74 //! For more information see the [`pin_init!`] macro. 75 //! 76 //! ## Using a custom function/macro that returns an initializer 77 //! 78 //! Many types from the kernel supply a function/macro that returns an initializer, because the 79 //! above method only works for types where you can access the fields. 80 //! 81 //! ```rust 82 //! # use kernel::{new_mutex, sync::{Arc, Mutex}}; 83 //! let mtx: Result<Arc<Mutex<usize>>> = Arc::pin_init(new_mutex!(42, "example::mtx")); 84 //! ``` 85 //! 86 //! To declare an init macro/function you just return an [`impl PinInit<T, E>`]: 87 //! 88 //! ```rust 89 //! # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] 90 //! # use kernel::{sync::Mutex, prelude::*, new_mutex, init::PinInit, try_pin_init}; 91 //! #[pin_data] 92 //! struct DriverData { 93 //! #[pin] 94 //! status: Mutex<i32>, 95 //! buffer: Box<[u8; 1_000_000]>, 96 //! } 97 //! 98 //! impl DriverData { 99 //! fn new() -> impl PinInit<Self, Error> { 100 //! try_pin_init!(Self { 101 //! status <- new_mutex!(0, "DriverData::status"), 102 //! buffer: Box::init(kernel::init::zeroed())?, 103 //! }) 104 //! } 105 //! } 106 //! ``` 107 //! 108 //! ## Manual creation of an initializer 109 //! 110 //! Often when working with primitives the previous approaches are not sufficient. That is where 111 //! [`pin_init_from_closure()`] comes in. This `unsafe` function allows you to create a 112 //! [`impl PinInit<T, E>`] directly from a closure. Of course you have to ensure that the closure 113 //! actually does the initialization in the correct way. Here are the things to look out for 114 //! (we are calling the parameter to the closure `slot`): 115 //! - when the closure returns `Ok(())`, then it has completed the initialization successfully, so 116 //! `slot` now contains a valid bit pattern for the type `T`, 117 //! - when the closure returns `Err(e)`, then the caller may deallocate the memory at `slot`, so 118 //! you need to take care to clean up anything if your initialization fails mid-way, 119 //! - you may assume that `slot` will stay pinned even after the closure returns until `drop` of 120 //! `slot` gets called. 121 //! 122 //! ```rust 123 //! use kernel::{prelude::*, init}; 124 //! use core::{ptr::addr_of_mut, marker::PhantomPinned, pin::Pin}; 125 //! # mod bindings { 126 //! # pub struct foo; 127 //! # pub unsafe fn init_foo(_ptr: *mut foo) {} 128 //! # pub unsafe fn destroy_foo(_ptr: *mut foo) {} 129 //! # pub unsafe fn enable_foo(_ptr: *mut foo, _flags: u32) -> i32 { 0 } 130 //! # } 131 //! /// # Invariants 132 //! /// 133 //! /// `foo` is always initialized 134 //! #[pin_data(PinnedDrop)] 135 //! pub struct RawFoo { 136 //! #[pin] 137 //! foo: Opaque<bindings::foo>, 138 //! #[pin] 139 //! _p: PhantomPinned, 140 //! } 141 //! 142 //! impl RawFoo { 143 //! pub fn new(flags: u32) -> impl PinInit<Self, Error> { 144 //! // SAFETY: 145 //! // - when the closure returns `Ok(())`, then it has successfully initialized and 146 //! // enabled `foo`, 147 //! // - when it returns `Err(e)`, then it has cleaned up before 148 //! unsafe { 149 //! init::pin_init_from_closure(move |slot: *mut Self| { 150 //! // `slot` contains uninit memory, avoid creating a reference. 151 //! let foo = addr_of_mut!((*slot).foo); 152 //! 153 //! // Initialize the `foo` 154 //! bindings::init_foo(Opaque::raw_get(foo)); 155 //! 156 //! // Try to enable it. 157 //! let err = bindings::enable_foo(Opaque::raw_get(foo), flags); 158 //! if err != 0 { 159 //! // Enabling has failed, first clean up the foo and then return the error. 160 //! bindings::destroy_foo(Opaque::raw_get(foo)); 161 //! return Err(Error::from_kernel_errno(err)); 162 //! } 163 //! 164 //! // All fields of `RawFoo` have been initialized, since `_p` is a ZST. 165 //! Ok(()) 166 //! }) 167 //! } 168 //! } 169 //! } 170 //! 171 //! #[pinned_drop] 172 //! impl PinnedDrop for RawFoo { 173 //! fn drop(self: Pin<&mut Self>) { 174 //! // SAFETY: Since `foo` is initialized, destroying is safe. 175 //! unsafe { bindings::destroy_foo(self.foo.get()) }; 176 //! } 177 //! } 178 //! ``` 179 //! 180 //! For the special case where initializing a field is a single FFI-function call that cannot fail, 181 //! there exist the helper function [`Opaque::ffi_init`]. This function initialize a single 182 //! [`Opaque`] field by just delegating to the supplied closure. You can use these in combination 183 //! with [`pin_init!`]. 184 //! 185 //! For more information on how to use [`pin_init_from_closure()`], take a look at the uses inside 186 //! the `kernel` crate. The [`sync`] module is a good starting point. 187 //! 188 //! [`sync`]: kernel::sync 189 //! [pinning]: https://doc.rust-lang.org/std/pin/index.html 190 //! [structurally pinned fields]: 191 //! https://doc.rust-lang.org/std/pin/index.html#pinning-is-structural-for-field 192 //! [stack]: crate::stack_pin_init 193 //! [`Arc<T>`]: crate::sync::Arc 194 //! [`impl PinInit<Foo>`]: PinInit 195 //! [`impl PinInit<T, E>`]: PinInit 196 //! [`impl Init<T, E>`]: Init 197 //! [`Opaque`]: kernel::types::Opaque 198 //! [`Opaque::ffi_init`]: kernel::types::Opaque::ffi_init 199 //! [`pin_data`]: ::macros::pin_data 200 //! [`pin_init!`]: crate::pin_init! 201 202 use crate::{ 203 error::{self, Error}, 204 sync::UniqueArc, 205 }; 206 use alloc::boxed::Box; 207 use core::{ 208 alloc::AllocError, 209 convert::Infallible, 210 marker::PhantomData, 211 mem::MaybeUninit, 212 num::*, 213 pin::Pin, 214 ptr::{self, NonNull}, 215 }; 216 217 #[doc(hidden)] 218 pub mod __internal; 219 #[doc(hidden)] 220 pub mod macros; 221 222 /// Initialize and pin a type directly on the stack. 223 /// 224 /// # Examples 225 /// 226 /// ```rust 227 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] 228 /// # use kernel::{init, pin_init, stack_pin_init, init::*, sync::Mutex, new_mutex}; 229 /// # use macros::pin_data; 230 /// # use core::pin::Pin; 231 /// #[pin_data] 232 /// struct Foo { 233 /// #[pin] 234 /// a: Mutex<usize>, 235 /// b: Bar, 236 /// } 237 /// 238 /// #[pin_data] 239 /// struct Bar { 240 /// x: u32, 241 /// } 242 /// 243 /// stack_pin_init!(let foo = pin_init!(Foo { 244 /// a <- new_mutex!(42), 245 /// b: Bar { 246 /// x: 64, 247 /// }, 248 /// })); 249 /// let foo: Pin<&mut Foo> = foo; 250 /// pr_info!("a: {}", &*foo.a.lock()); 251 /// ``` 252 /// 253 /// # Syntax 254 /// 255 /// A normal `let` binding with optional type annotation. The expression is expected to implement 256 /// [`PinInit`]/[`Init`] with the error type [`Infallible`]. If you want to use a different error 257 /// type, then use [`stack_try_pin_init!`]. 258 /// 259 /// [`stack_try_pin_init!`]: crate::stack_try_pin_init! 260 #[macro_export] 261 macro_rules! stack_pin_init { 262 (let $var:ident $(: $t:ty)? = $val:expr) => { 263 let val = $val; 264 let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit()); 265 let mut $var = match $crate::init::__internal::StackInit::init($var, val) { 266 Ok(res) => res, 267 Err(x) => { 268 let x: ::core::convert::Infallible = x; 269 match x {} 270 } 271 }; 272 }; 273 } 274 275 /// Initialize and pin a type directly on the stack. 276 /// 277 /// # Examples 278 /// 279 /// ```rust 280 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] 281 /// # use kernel::{init, pin_init, stack_try_pin_init, init::*, sync::Mutex, new_mutex}; 282 /// # use macros::pin_data; 283 /// # use core::{alloc::AllocError, pin::Pin}; 284 /// #[pin_data] 285 /// struct Foo { 286 /// #[pin] 287 /// a: Mutex<usize>, 288 /// b: Box<Bar>, 289 /// } 290 /// 291 /// struct Bar { 292 /// x: u32, 293 /// } 294 /// 295 /// stack_try_pin_init!(let foo: Result<Pin<&mut Foo>, AllocError> = pin_init!(Foo { 296 /// a <- new_mutex!(42), 297 /// b: Box::try_new(Bar { 298 /// x: 64, 299 /// })?, 300 /// })); 301 /// let foo = foo.unwrap(); 302 /// pr_info!("a: {}", &*foo.a.lock()); 303 /// ``` 304 /// 305 /// ```rust 306 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] 307 /// # use kernel::{init, pin_init, stack_try_pin_init, init::*, sync::Mutex, new_mutex}; 308 /// # use macros::pin_data; 309 /// # use core::{alloc::AllocError, pin::Pin}; 310 /// #[pin_data] 311 /// struct Foo { 312 /// #[pin] 313 /// a: Mutex<usize>, 314 /// b: Box<Bar>, 315 /// } 316 /// 317 /// struct Bar { 318 /// x: u32, 319 /// } 320 /// 321 /// stack_try_pin_init!(let foo: Pin<&mut Foo> =? pin_init!(Foo { 322 /// a <- new_mutex!(42), 323 /// b: Box::try_new(Bar { 324 /// x: 64, 325 /// })?, 326 /// })); 327 /// pr_info!("a: {}", &*foo.a.lock()); 328 /// # Ok::<_, AllocError>(()) 329 /// ``` 330 /// 331 /// # Syntax 332 /// 333 /// A normal `let` binding with optional type annotation. The expression is expected to implement 334 /// [`PinInit`]/[`Init`]. This macro assigns a result to the given variable, adding a `?` after the 335 /// `=` will propagate this error. 336 #[macro_export] 337 macro_rules! stack_try_pin_init { 338 (let $var:ident $(: $t:ty)? = $val:expr) => { 339 let val = $val; 340 let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit()); 341 let mut $var = $crate::init::__internal::StackInit::init($var, val); 342 }; 343 (let $var:ident $(: $t:ty)? =? $val:expr) => { 344 let val = $val; 345 let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit()); 346 let mut $var = $crate::init::__internal::StackInit::init($var, val)?; 347 }; 348 } 349 350 /// Construct an in-place, pinned initializer for `struct`s. 351 /// 352 /// This macro defaults the error to [`Infallible`]. If you need [`Error`], then use 353 /// [`try_pin_init!`]. 354 /// 355 /// The syntax is almost identical to that of a normal `struct` initializer: 356 /// 357 /// ```rust 358 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] 359 /// # use kernel::{init, pin_init, macros::pin_data, init::*}; 360 /// # use core::pin::Pin; 361 /// #[pin_data] 362 /// struct Foo { 363 /// a: usize, 364 /// b: Bar, 365 /// } 366 /// 367 /// #[pin_data] 368 /// struct Bar { 369 /// x: u32, 370 /// } 371 /// 372 /// # fn demo() -> impl PinInit<Foo> { 373 /// let a = 42; 374 /// 375 /// let initializer = pin_init!(Foo { 376 /// a, 377 /// b: Bar { 378 /// x: 64, 379 /// }, 380 /// }); 381 /// # initializer } 382 /// # Box::pin_init(demo()).unwrap(); 383 /// ``` 384 /// 385 /// Arbitrary Rust expressions can be used to set the value of a variable. 386 /// 387 /// The fields are initialized in the order that they appear in the initializer. So it is possible 388 /// to read already initialized fields using raw pointers. 389 /// 390 /// IMPORTANT: You are not allowed to create references to fields of the struct inside of the 391 /// initializer. 392 /// 393 /// # Init-functions 394 /// 395 /// When working with this API it is often desired to let others construct your types without 396 /// giving access to all fields. This is where you would normally write a plain function `new` 397 /// that would return a new instance of your type. With this API that is also possible. 398 /// However, there are a few extra things to keep in mind. 399 /// 400 /// To create an initializer function, simply declare it like this: 401 /// 402 /// ```rust 403 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] 404 /// # use kernel::{init, pin_init, prelude::*, init::*}; 405 /// # use core::pin::Pin; 406 /// # #[pin_data] 407 /// # struct Foo { 408 /// # a: usize, 409 /// # b: Bar, 410 /// # } 411 /// # #[pin_data] 412 /// # struct Bar { 413 /// # x: u32, 414 /// # } 415 /// impl Foo { 416 /// fn new() -> impl PinInit<Self> { 417 /// pin_init!(Self { 418 /// a: 42, 419 /// b: Bar { 420 /// x: 64, 421 /// }, 422 /// }) 423 /// } 424 /// } 425 /// ``` 426 /// 427 /// Users of `Foo` can now create it like this: 428 /// 429 /// ```rust 430 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] 431 /// # use kernel::{init, pin_init, macros::pin_data, init::*}; 432 /// # use core::pin::Pin; 433 /// # #[pin_data] 434 /// # struct Foo { 435 /// # a: usize, 436 /// # b: Bar, 437 /// # } 438 /// # #[pin_data] 439 /// # struct Bar { 440 /// # x: u32, 441 /// # } 442 /// # impl Foo { 443 /// # fn new() -> impl PinInit<Self> { 444 /// # pin_init!(Self { 445 /// # a: 42, 446 /// # b: Bar { 447 /// # x: 64, 448 /// # }, 449 /// # }) 450 /// # } 451 /// # } 452 /// let foo = Box::pin_init(Foo::new()); 453 /// ``` 454 /// 455 /// They can also easily embed it into their own `struct`s: 456 /// 457 /// ```rust 458 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] 459 /// # use kernel::{init, pin_init, macros::pin_data, init::*}; 460 /// # use core::pin::Pin; 461 /// # #[pin_data] 462 /// # struct Foo { 463 /// # a: usize, 464 /// # b: Bar, 465 /// # } 466 /// # #[pin_data] 467 /// # struct Bar { 468 /// # x: u32, 469 /// # } 470 /// # impl Foo { 471 /// # fn new() -> impl PinInit<Self> { 472 /// # pin_init!(Self { 473 /// # a: 42, 474 /// # b: Bar { 475 /// # x: 64, 476 /// # }, 477 /// # }) 478 /// # } 479 /// # } 480 /// #[pin_data] 481 /// struct FooContainer { 482 /// #[pin] 483 /// foo1: Foo, 484 /// #[pin] 485 /// foo2: Foo, 486 /// other: u32, 487 /// } 488 /// 489 /// impl FooContainer { 490 /// fn new(other: u32) -> impl PinInit<Self> { 491 /// pin_init!(Self { 492 /// foo1 <- Foo::new(), 493 /// foo2 <- Foo::new(), 494 /// other, 495 /// }) 496 /// } 497 /// } 498 /// ``` 499 /// 500 /// Here we see that when using `pin_init!` with `PinInit`, one needs to write `<-` instead of `:`. 501 /// This signifies that the given field is initialized in-place. As with `struct` initializers, just 502 /// writing the field (in this case `other`) without `:` or `<-` means `other: other,`. 503 /// 504 /// # Syntax 505 /// 506 /// As already mentioned in the examples above, inside of `pin_init!` a `struct` initializer with 507 /// the following modifications is expected: 508 /// - Fields that you want to initialize in-place have to use `<-` instead of `:`. 509 /// - In front of the initializer you can write `&this in` to have access to a [`NonNull<Self>`] 510 /// pointer named `this` inside of the initializer. 511 /// - Using struct update syntax one can place `..Zeroable::zeroed()` at the very end of the 512 /// struct, this initializes every field with 0 and then runs all initializers specified in the 513 /// body. This can only be done if [`Zeroable`] is implemented for the struct. 514 /// 515 /// For instance: 516 /// 517 /// ```rust 518 /// # use kernel::pin_init; 519 /// # use macros::{Zeroable, pin_data}; 520 /// # use core::{ptr::addr_of_mut, marker::PhantomPinned}; 521 /// #[pin_data] 522 /// #[derive(Zeroable)] 523 /// struct Buf { 524 /// // `ptr` points into `buf`. 525 /// ptr: *mut u8, 526 /// buf: [u8; 64], 527 /// #[pin] 528 /// pin: PhantomPinned, 529 /// } 530 /// pin_init!(&this in Buf { 531 /// buf: [0; 64], 532 /// ptr: unsafe { addr_of_mut!((*this.as_ptr()).buf).cast() }, 533 /// pin: PhantomPinned, 534 /// }); 535 /// pin_init!(Buf { 536 /// buf: [1; 64], 537 /// ..Zeroable::zeroed() 538 /// }); 539 /// ``` 540 /// 541 /// [`try_pin_init!`]: kernel::try_pin_init 542 /// [`NonNull<Self>`]: core::ptr::NonNull 543 // For a detailed example of how this macro works, see the module documentation of the hidden 544 // module `__internal` inside of `init/__internal.rs`. 545 #[macro_export] 546 macro_rules! pin_init { 547 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 548 $($fields:tt)* 549 }) => { 550 $crate::__init_internal!( 551 @this($($this)?), 552 @typ($t $(::<$($generics),*>)?), 553 @fields($($fields)*), 554 @error(::core::convert::Infallible), 555 @data(PinData, use_data), 556 @has_data(HasPinData, __pin_data), 557 @construct_closure(pin_init_from_closure), 558 @munch_fields($($fields)*), 559 ) 560 }; 561 } 562 563 /// Construct an in-place, fallible pinned initializer for `struct`s. 564 /// 565 /// If the initialization can complete without error (or [`Infallible`]), then use [`pin_init!`]. 566 /// 567 /// You can use the `?` operator or use `return Err(err)` inside the initializer to stop 568 /// initialization and return the error. 569 /// 570 /// IMPORTANT: if you have `unsafe` code inside of the initializer you have to ensure that when 571 /// initialization fails, the memory can be safely deallocated without any further modifications. 572 /// 573 /// This macro defaults the error to [`Error`]. 574 /// 575 /// The syntax is identical to [`pin_init!`] with the following exception: you can append `? $type` 576 /// after the `struct` initializer to specify the error type you want to use. 577 /// 578 /// # Examples 579 /// 580 /// ```rust 581 /// # #![feature(new_uninit)] 582 /// use kernel::{init::{self, PinInit}, error::Error}; 583 /// #[pin_data] 584 /// struct BigBuf { 585 /// big: Box<[u8; 1024 * 1024 * 1024]>, 586 /// small: [u8; 1024 * 1024], 587 /// ptr: *mut u8, 588 /// } 589 /// 590 /// impl BigBuf { 591 /// fn new() -> impl PinInit<Self, Error> { 592 /// try_pin_init!(Self { 593 /// big: Box::init(init::zeroed())?, 594 /// small: [0; 1024 * 1024], 595 /// ptr: core::ptr::null_mut(), 596 /// }? Error) 597 /// } 598 /// } 599 /// ``` 600 // For a detailed example of how this macro works, see the module documentation of the hidden 601 // module `__internal` inside of `init/__internal.rs`. 602 #[macro_export] 603 macro_rules! try_pin_init { 604 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 605 $($fields:tt)* 606 }) => { 607 $crate::__init_internal!( 608 @this($($this)?), 609 @typ($t $(::<$($generics),*>)? ), 610 @fields($($fields)*), 611 @error($crate::error::Error), 612 @data(PinData, use_data), 613 @has_data(HasPinData, __pin_data), 614 @construct_closure(pin_init_from_closure), 615 @munch_fields($($fields)*), 616 ) 617 }; 618 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 619 $($fields:tt)* 620 }? $err:ty) => { 621 $crate::__init_internal!( 622 @this($($this)?), 623 @typ($t $(::<$($generics),*>)? ), 624 @fields($($fields)*), 625 @error($err), 626 @data(PinData, use_data), 627 @has_data(HasPinData, __pin_data), 628 @construct_closure(pin_init_from_closure), 629 @munch_fields($($fields)*), 630 ) 631 }; 632 } 633 634 /// Construct an in-place initializer for `struct`s. 635 /// 636 /// This macro defaults the error to [`Infallible`]. If you need [`Error`], then use 637 /// [`try_init!`]. 638 /// 639 /// The syntax is identical to [`pin_init!`] and its safety caveats also apply: 640 /// - `unsafe` code must guarantee either full initialization or return an error and allow 641 /// deallocation of the memory. 642 /// - the fields are initialized in the order given in the initializer. 643 /// - no references to fields are allowed to be created inside of the initializer. 644 /// 645 /// This initializer is for initializing data in-place that might later be moved. If you want to 646 /// pin-initialize, use [`pin_init!`]. 647 /// 648 /// [`try_init!`]: crate::try_init! 649 // For a detailed example of how this macro works, see the module documentation of the hidden 650 // module `__internal` inside of `init/__internal.rs`. 651 #[macro_export] 652 macro_rules! init { 653 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 654 $($fields:tt)* 655 }) => { 656 $crate::__init_internal!( 657 @this($($this)?), 658 @typ($t $(::<$($generics),*>)?), 659 @fields($($fields)*), 660 @error(::core::convert::Infallible), 661 @data(InitData, /*no use_data*/), 662 @has_data(HasInitData, __init_data), 663 @construct_closure(init_from_closure), 664 @munch_fields($($fields)*), 665 ) 666 } 667 } 668 669 /// Construct an in-place fallible initializer for `struct`s. 670 /// 671 /// This macro defaults the error to [`Error`]. If you need [`Infallible`], then use 672 /// [`init!`]. 673 /// 674 /// The syntax is identical to [`try_pin_init!`]. If you want to specify a custom error, 675 /// append `? $type` after the `struct` initializer. 676 /// The safety caveats from [`try_pin_init!`] also apply: 677 /// - `unsafe` code must guarantee either full initialization or return an error and allow 678 /// deallocation of the memory. 679 /// - the fields are initialized in the order given in the initializer. 680 /// - no references to fields are allowed to be created inside of the initializer. 681 /// 682 /// # Examples 683 /// 684 /// ```rust 685 /// use kernel::{init::PinInit, error::Error, InPlaceInit}; 686 /// struct BigBuf { 687 /// big: Box<[u8; 1024 * 1024 * 1024]>, 688 /// small: [u8; 1024 * 1024], 689 /// } 690 /// 691 /// impl BigBuf { 692 /// fn new() -> impl Init<Self, Error> { 693 /// try_init!(Self { 694 /// big: Box::init(zeroed())?, 695 /// small: [0; 1024 * 1024], 696 /// }? Error) 697 /// } 698 /// } 699 /// ``` 700 // For a detailed example of how this macro works, see the module documentation of the hidden 701 // module `__internal` inside of `init/__internal.rs`. 702 #[macro_export] 703 macro_rules! try_init { 704 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 705 $($fields:tt)* 706 }) => { 707 $crate::__init_internal!( 708 @this($($this)?), 709 @typ($t $(::<$($generics),*>)?), 710 @fields($($fields)*), 711 @error($crate::error::Error), 712 @data(InitData, /*no use_data*/), 713 @has_data(HasInitData, __init_data), 714 @construct_closure(init_from_closure), 715 @munch_fields($($fields)*), 716 ) 717 }; 718 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 719 $($fields:tt)* 720 }? $err:ty) => { 721 $crate::__init_internal!( 722 @this($($this)?), 723 @typ($t $(::<$($generics),*>)?), 724 @fields($($fields)*), 725 @error($err), 726 @data(InitData, /*no use_data*/), 727 @has_data(HasInitData, __init_data), 728 @construct_closure(init_from_closure), 729 @munch_fields($($fields)*), 730 ) 731 }; 732 } 733 734 /// A pin-initializer for the type `T`. 735 /// 736 /// To use this initializer, you will need a suitable memory location that can hold a `T`. This can 737 /// be [`Box<T>`], [`Arc<T>`], [`UniqueArc<T>`] or even the stack (see [`stack_pin_init!`]). Use the 738 /// [`InPlaceInit::pin_init`] function of a smart pointer like [`Arc<T>`] on this. 739 /// 740 /// Also see the [module description](self). 741 /// 742 /// # Safety 743 /// 744 /// When implementing this type you will need to take great care. Also there are probably very few 745 /// cases where a manual implementation is necessary. Use [`pin_init_from_closure`] where possible. 746 /// 747 /// The [`PinInit::__pinned_init`] function 748 /// - returns `Ok(())` if it initialized every field of `slot`, 749 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 750 /// - `slot` can be deallocated without UB occurring, 751 /// - `slot` does not need to be dropped, 752 /// - `slot` is not partially initialized. 753 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 754 /// 755 /// [`Arc<T>`]: crate::sync::Arc 756 /// [`Arc::pin_init`]: crate::sync::Arc::pin_init 757 #[must_use = "An initializer must be used in order to create its value."] 758 pub unsafe trait PinInit<T: ?Sized, E = Infallible>: Sized { 759 /// Initializes `slot`. 760 /// 761 /// # Safety 762 /// 763 /// - `slot` is a valid pointer to uninitialized memory. 764 /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to 765 /// deallocate. 766 /// - `slot` will not move until it is dropped, i.e. it will be pinned. 767 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E>; 768 } 769 770 /// An initializer for `T`. 771 /// 772 /// To use this initializer, you will need a suitable memory location that can hold a `T`. This can 773 /// be [`Box<T>`], [`Arc<T>`], [`UniqueArc<T>`] or even the stack (see [`stack_pin_init!`]). Use the 774 /// [`InPlaceInit::init`] function of a smart pointer like [`Arc<T>`] on this. Because 775 /// [`PinInit<T, E>`] is a super trait, you can use every function that takes it as well. 776 /// 777 /// Also see the [module description](self). 778 /// 779 /// # Safety 780 /// 781 /// When implementing this type you will need to take great care. Also there are probably very few 782 /// cases where a manual implementation is necessary. Use [`init_from_closure`] where possible. 783 /// 784 /// The [`Init::__init`] function 785 /// - returns `Ok(())` if it initialized every field of `slot`, 786 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 787 /// - `slot` can be deallocated without UB occurring, 788 /// - `slot` does not need to be dropped, 789 /// - `slot` is not partially initialized. 790 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 791 /// 792 /// The `__pinned_init` function from the supertrait [`PinInit`] needs to execute the exact same 793 /// code as `__init`. 794 /// 795 /// Contrary to its supertype [`PinInit<T, E>`] the caller is allowed to 796 /// move the pointee after initialization. 797 /// 798 /// [`Arc<T>`]: crate::sync::Arc 799 #[must_use = "An initializer must be used in order to create its value."] 800 pub unsafe trait Init<T: ?Sized, E = Infallible>: Sized { 801 /// Initializes `slot`. 802 /// 803 /// # Safety 804 /// 805 /// - `slot` is a valid pointer to uninitialized memory. 806 /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to 807 /// deallocate. 808 unsafe fn __init(self, slot: *mut T) -> Result<(), E>; 809 } 810 811 // SAFETY: Every in-place initializer can also be used as a pin-initializer. 812 unsafe impl<T: ?Sized, E, I> PinInit<T, E> for I 813 where 814 I: Init<T, E>, 815 { 816 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> { 817 // SAFETY: `__init` meets the same requirements as `__pinned_init`, except that it does not 818 // require `slot` to not move after init. 819 unsafe { self.__init(slot) } 820 } 821 } 822 823 /// Creates a new [`PinInit<T, E>`] from the given closure. 824 /// 825 /// # Safety 826 /// 827 /// The closure: 828 /// - returns `Ok(())` if it initialized every field of `slot`, 829 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 830 /// - `slot` can be deallocated without UB occurring, 831 /// - `slot` does not need to be dropped, 832 /// - `slot` is not partially initialized. 833 /// - may assume that the `slot` does not move if `T: !Unpin`, 834 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 835 #[inline] 836 pub const unsafe fn pin_init_from_closure<T: ?Sized, E>( 837 f: impl FnOnce(*mut T) -> Result<(), E>, 838 ) -> impl PinInit<T, E> { 839 __internal::InitClosure(f, PhantomData) 840 } 841 842 /// Creates a new [`Init<T, E>`] from the given closure. 843 /// 844 /// # Safety 845 /// 846 /// The closure: 847 /// - returns `Ok(())` if it initialized every field of `slot`, 848 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 849 /// - `slot` can be deallocated without UB occurring, 850 /// - `slot` does not need to be dropped, 851 /// - `slot` is not partially initialized. 852 /// - the `slot` may move after initialization. 853 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 854 #[inline] 855 pub const unsafe fn init_from_closure<T: ?Sized, E>( 856 f: impl FnOnce(*mut T) -> Result<(), E>, 857 ) -> impl Init<T, E> { 858 __internal::InitClosure(f, PhantomData) 859 } 860 861 /// An initializer that leaves the memory uninitialized. 862 /// 863 /// The initializer is a no-op. The `slot` memory is not changed. 864 #[inline] 865 pub fn uninit<T, E>() -> impl Init<MaybeUninit<T>, E> { 866 // SAFETY: The memory is allowed to be uninitialized. 867 unsafe { init_from_closure(|_| Ok(())) } 868 } 869 870 // SAFETY: Every type can be initialized by-value. 871 unsafe impl<T, E> Init<T, E> for T { 872 unsafe fn __init(self, slot: *mut T) -> Result<(), E> { 873 unsafe { slot.write(self) }; 874 Ok(()) 875 } 876 } 877 878 /// Smart pointer that can initialize memory in-place. 879 pub trait InPlaceInit<T>: Sized { 880 /// Use the given pin-initializer to pin-initialize a `T` inside of a new smart pointer of this 881 /// type. 882 /// 883 /// If `T: !Unpin` it will not be able to move afterwards. 884 fn try_pin_init<E>(init: impl PinInit<T, E>) -> Result<Pin<Self>, E> 885 where 886 E: From<AllocError>; 887 888 /// Use the given pin-initializer to pin-initialize a `T` inside of a new smart pointer of this 889 /// type. 890 /// 891 /// If `T: !Unpin` it will not be able to move afterwards. 892 fn pin_init<E>(init: impl PinInit<T, E>) -> error::Result<Pin<Self>> 893 where 894 Error: From<E>, 895 { 896 // SAFETY: We delegate to `init` and only change the error type. 897 let init = unsafe { 898 pin_init_from_closure(|slot| init.__pinned_init(slot).map_err(|e| Error::from(e))) 899 }; 900 Self::try_pin_init(init) 901 } 902 903 /// Use the given initializer to in-place initialize a `T`. 904 fn try_init<E>(init: impl Init<T, E>) -> Result<Self, E> 905 where 906 E: From<AllocError>; 907 908 /// Use the given initializer to in-place initialize a `T`. 909 fn init<E>(init: impl Init<T, E>) -> error::Result<Self> 910 where 911 Error: From<E>, 912 { 913 // SAFETY: We delegate to `init` and only change the error type. 914 let init = unsafe { 915 init_from_closure(|slot| init.__pinned_init(slot).map_err(|e| Error::from(e))) 916 }; 917 Self::try_init(init) 918 } 919 } 920 921 impl<T> InPlaceInit<T> for Box<T> { 922 #[inline] 923 fn try_pin_init<E>(init: impl PinInit<T, E>) -> Result<Pin<Self>, E> 924 where 925 E: From<AllocError>, 926 { 927 let mut this = Box::try_new_uninit()?; 928 let slot = this.as_mut_ptr(); 929 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 930 // slot is valid and will not be moved, because we pin it later. 931 unsafe { init.__pinned_init(slot)? }; 932 // SAFETY: All fields have been initialized. 933 Ok(unsafe { this.assume_init() }.into()) 934 } 935 936 #[inline] 937 fn try_init<E>(init: impl Init<T, E>) -> Result<Self, E> 938 where 939 E: From<AllocError>, 940 { 941 let mut this = Box::try_new_uninit()?; 942 let slot = this.as_mut_ptr(); 943 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 944 // slot is valid. 945 unsafe { init.__init(slot)? }; 946 // SAFETY: All fields have been initialized. 947 Ok(unsafe { this.assume_init() }) 948 } 949 } 950 951 impl<T> InPlaceInit<T> for UniqueArc<T> { 952 #[inline] 953 fn try_pin_init<E>(init: impl PinInit<T, E>) -> Result<Pin<Self>, E> 954 where 955 E: From<AllocError>, 956 { 957 let mut this = UniqueArc::try_new_uninit()?; 958 let slot = this.as_mut_ptr(); 959 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 960 // slot is valid and will not be moved, because we pin it later. 961 unsafe { init.__pinned_init(slot)? }; 962 // SAFETY: All fields have been initialized. 963 Ok(unsafe { this.assume_init() }.into()) 964 } 965 966 #[inline] 967 fn try_init<E>(init: impl Init<T, E>) -> Result<Self, E> 968 where 969 E: From<AllocError>, 970 { 971 let mut this = UniqueArc::try_new_uninit()?; 972 let slot = this.as_mut_ptr(); 973 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 974 // slot is valid. 975 unsafe { init.__init(slot)? }; 976 // SAFETY: All fields have been initialized. 977 Ok(unsafe { this.assume_init() }) 978 } 979 } 980 981 /// Trait facilitating pinned destruction. 982 /// 983 /// Use [`pinned_drop`] to implement this trait safely: 984 /// 985 /// ```rust 986 /// # use kernel::sync::Mutex; 987 /// use kernel::macros::pinned_drop; 988 /// use core::pin::Pin; 989 /// #[pin_data(PinnedDrop)] 990 /// struct Foo { 991 /// #[pin] 992 /// mtx: Mutex<usize>, 993 /// } 994 /// 995 /// #[pinned_drop] 996 /// impl PinnedDrop for Foo { 997 /// fn drop(self: Pin<&mut Self>) { 998 /// pr_info!("Foo is being dropped!"); 999 /// } 1000 /// } 1001 /// ``` 1002 /// 1003 /// # Safety 1004 /// 1005 /// This trait must be implemented via the [`pinned_drop`] proc-macro attribute on the impl. 1006 /// 1007 /// [`pinned_drop`]: kernel::macros::pinned_drop 1008 pub unsafe trait PinnedDrop: __internal::HasPinData { 1009 /// Executes the pinned destructor of this type. 1010 /// 1011 /// While this function is marked safe, it is actually unsafe to call it manually. For this 1012 /// reason it takes an additional parameter. This type can only be constructed by `unsafe` code 1013 /// and thus prevents this function from being called where it should not. 1014 /// 1015 /// This extra parameter will be generated by the `#[pinned_drop]` proc-macro attribute 1016 /// automatically. 1017 fn drop(self: Pin<&mut Self>, only_call_from_drop: __internal::OnlyCallFromDrop); 1018 } 1019 1020 /// Marker trait for types that can be initialized by writing just zeroes. 1021 /// 1022 /// # Safety 1023 /// 1024 /// The bit pattern consisting of only zeroes is a valid bit pattern for this type. In other words, 1025 /// this is not UB: 1026 /// 1027 /// ```rust,ignore 1028 /// let val: Self = unsafe { core::mem::zeroed() }; 1029 /// ``` 1030 pub unsafe trait Zeroable {} 1031 1032 /// Create a new zeroed T. 1033 /// 1034 /// The returned initializer will write `0x00` to every byte of the given `slot`. 1035 #[inline] 1036 pub fn zeroed<T: Zeroable>() -> impl Init<T> { 1037 // SAFETY: Because `T: Zeroable`, all bytes zero is a valid bit pattern for `T` 1038 // and because we write all zeroes, the memory is initialized. 1039 unsafe { 1040 init_from_closure(|slot: *mut T| { 1041 slot.write_bytes(0, 1); 1042 Ok(()) 1043 }) 1044 } 1045 } 1046 1047 macro_rules! impl_zeroable { 1048 ($($({$($generics:tt)*})? $t:ty, )*) => { 1049 $(unsafe impl$($($generics)*)? Zeroable for $t {})* 1050 }; 1051 } 1052 1053 impl_zeroable! { 1054 // SAFETY: All primitives that are allowed to be zero. 1055 bool, 1056 char, 1057 u8, u16, u32, u64, u128, usize, 1058 i8, i16, i32, i64, i128, isize, 1059 f32, f64, 1060 1061 // SAFETY: These are ZSTs, there is nothing to zero. 1062 {<T: ?Sized>} PhantomData<T>, core::marker::PhantomPinned, Infallible, (), 1063 1064 // SAFETY: Type is allowed to take any value, including all zeros. 1065 {<T>} MaybeUninit<T>, 1066 1067 // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee). 1068 Option<NonZeroU8>, Option<NonZeroU16>, Option<NonZeroU32>, Option<NonZeroU64>, 1069 Option<NonZeroU128>, Option<NonZeroUsize>, 1070 Option<NonZeroI8>, Option<NonZeroI16>, Option<NonZeroI32>, Option<NonZeroI64>, 1071 Option<NonZeroI128>, Option<NonZeroIsize>, 1072 1073 // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee). 1074 // 1075 // In this case we are allowed to use `T: ?Sized`, since all zeros is the `None` variant. 1076 {<T: ?Sized>} Option<NonNull<T>>, 1077 {<T: ?Sized>} Option<Box<T>>, 1078 1079 // SAFETY: `null` pointer is valid. 1080 // 1081 // We cannot use `T: ?Sized`, since the VTABLE pointer part of fat pointers is not allowed to be 1082 // null. 1083 // 1084 // When `Pointee` gets stabilized, we could use 1085 // `T: ?Sized where <T as Pointee>::Metadata: Zeroable` 1086 {<T>} *mut T, {<T>} *const T, 1087 1088 // SAFETY: `null` pointer is valid and the metadata part of these fat pointers is allowed to be 1089 // zero. 1090 {<T>} *mut [T], {<T>} *const [T], *mut str, *const str, 1091 1092 // SAFETY: `T` is `Zeroable`. 1093 {<const N: usize, T: Zeroable>} [T; N], {<T: Zeroable>} Wrapping<T>, 1094 } 1095 1096 macro_rules! impl_tuple_zeroable { 1097 ($(,)?) => {}; 1098 ($first:ident, $($t:ident),* $(,)?) => { 1099 // SAFETY: All elements are zeroable and padding can be zero. 1100 unsafe impl<$first: Zeroable, $($t: Zeroable),*> Zeroable for ($first, $($t),*) {} 1101 impl_tuple_zeroable!($($t),* ,); 1102 } 1103 } 1104 1105 impl_tuple_zeroable!(A, B, C, D, E, F, G, H, I, J); 1106