1 // SPDX-License-Identifier: Apache-2.0 OR MIT 2 3 //! API to safely and fallibly initialize pinned `struct`s using in-place constructors. 4 //! 5 //! It also allows in-place initialization of big `struct`s that would otherwise produce a stack 6 //! overflow. 7 //! 8 //! Most `struct`s from the [`sync`] module need to be pinned, because they contain self-referential 9 //! `struct`s from C. [Pinning][pinning] is Rust's way of ensuring data does not move. 10 //! 11 //! # Overview 12 //! 13 //! To initialize a `struct` with an in-place constructor you will need two things: 14 //! - an in-place constructor, 15 //! - a memory location that can hold your `struct` (this can be the [stack], an [`Arc<T>`], 16 //! [`UniqueArc<T>`], [`Box<T>`] or any other smart pointer that implements [`InPlaceInit`]). 17 //! 18 //! To get an in-place constructor there are generally three options: 19 //! - directly creating an in-place constructor using the [`pin_init!`] macro, 20 //! - a custom function/macro returning an in-place constructor provided by someone else, 21 //! - using the unsafe function [`pin_init_from_closure()`] to manually create an initializer. 22 //! 23 //! Aside from pinned initialization, this API also supports in-place construction without pinning, 24 //! the macros/types/functions are generally named like the pinned variants without the `pin` 25 //! prefix. 26 //! 27 //! # Examples 28 //! 29 //! ## Using the [`pin_init!`] macro 30 //! 31 //! If you want to use [`PinInit`], then you will have to annotate your `struct` with 32 //! `#[`[`pin_data`]`]`. It is a macro that uses `#[pin]` as a marker for 33 //! [structurally pinned fields]. After doing this, you can then create an in-place constructor via 34 //! [`pin_init!`]. The syntax is almost the same as normal `struct` initializers. The difference is 35 //! that you need to write `<-` instead of `:` for fields that you want to initialize in-place. 36 //! 37 //! ```rust 38 //! # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] 39 //! use kernel::{prelude::*, sync::Mutex, new_mutex}; 40 //! # use core::pin::Pin; 41 //! #[pin_data] 42 //! struct Foo { 43 //! #[pin] 44 //! a: Mutex<usize>, 45 //! b: u32, 46 //! } 47 //! 48 //! let foo = pin_init!(Foo { 49 //! a <- new_mutex!(42, "Foo::a"), 50 //! b: 24, 51 //! }); 52 //! ``` 53 //! 54 //! `foo` now is of the type [`impl PinInit<Foo>`]. We can now use any smart pointer that we like 55 //! (or just the stack) to actually initialize a `Foo`: 56 //! 57 //! ```rust 58 //! # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] 59 //! # use kernel::{prelude::*, sync::Mutex, new_mutex}; 60 //! # use core::pin::Pin; 61 //! # #[pin_data] 62 //! # struct Foo { 63 //! # #[pin] 64 //! # a: Mutex<usize>, 65 //! # b: u32, 66 //! # } 67 //! # let foo = pin_init!(Foo { 68 //! # a <- new_mutex!(42, "Foo::a"), 69 //! # b: 24, 70 //! # }); 71 //! let foo: Result<Pin<Box<Foo>>> = Box::pin_init(foo); 72 //! ``` 73 //! 74 //! For more information see the [`pin_init!`] macro. 75 //! 76 //! ## Using a custom function/macro that returns an initializer 77 //! 78 //! Many types from the kernel supply a function/macro that returns an initializer, because the 79 //! above method only works for types where you can access the fields. 80 //! 81 //! ```rust 82 //! # use kernel::{new_mutex, sync::{Arc, Mutex}}; 83 //! let mtx: Result<Arc<Mutex<usize>>> = Arc::pin_init(new_mutex!(42, "example::mtx")); 84 //! ``` 85 //! 86 //! To declare an init macro/function you just return an [`impl PinInit<T, E>`]: 87 //! 88 //! ```rust 89 //! # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] 90 //! # use kernel::{sync::Mutex, prelude::*, new_mutex, init::PinInit, try_pin_init}; 91 //! #[pin_data] 92 //! struct DriverData { 93 //! #[pin] 94 //! status: Mutex<i32>, 95 //! buffer: Box<[u8; 1_000_000]>, 96 //! } 97 //! 98 //! impl DriverData { 99 //! fn new() -> impl PinInit<Self, Error> { 100 //! try_pin_init!(Self { 101 //! status <- new_mutex!(0, "DriverData::status"), 102 //! buffer: Box::init(kernel::init::zeroed())?, 103 //! }) 104 //! } 105 //! } 106 //! ``` 107 //! 108 //! ## Manual creation of an initializer 109 //! 110 //! Often when working with primitives the previous approaches are not sufficient. That is where 111 //! [`pin_init_from_closure()`] comes in. This `unsafe` function allows you to create a 112 //! [`impl PinInit<T, E>`] directly from a closure. Of course you have to ensure that the closure 113 //! actually does the initialization in the correct way. Here are the things to look out for 114 //! (we are calling the parameter to the closure `slot`): 115 //! - when the closure returns `Ok(())`, then it has completed the initialization successfully, so 116 //! `slot` now contains a valid bit pattern for the type `T`, 117 //! - when the closure returns `Err(e)`, then the caller may deallocate the memory at `slot`, so 118 //! you need to take care to clean up anything if your initialization fails mid-way, 119 //! - you may assume that `slot` will stay pinned even after the closure returns until `drop` of 120 //! `slot` gets called. 121 //! 122 //! ```rust 123 //! use kernel::{prelude::*, init}; 124 //! use core::{ptr::addr_of_mut, marker::PhantomPinned, pin::Pin}; 125 //! # mod bindings { 126 //! # pub struct foo; 127 //! # pub unsafe fn init_foo(_ptr: *mut foo) {} 128 //! # pub unsafe fn destroy_foo(_ptr: *mut foo) {} 129 //! # pub unsafe fn enable_foo(_ptr: *mut foo, _flags: u32) -> i32 { 0 } 130 //! # } 131 //! /// # Invariants 132 //! /// 133 //! /// `foo` is always initialized 134 //! #[pin_data(PinnedDrop)] 135 //! pub struct RawFoo { 136 //! #[pin] 137 //! foo: Opaque<bindings::foo>, 138 //! #[pin] 139 //! _p: PhantomPinned, 140 //! } 141 //! 142 //! impl RawFoo { 143 //! pub fn new(flags: u32) -> impl PinInit<Self, Error> { 144 //! // SAFETY: 145 //! // - when the closure returns `Ok(())`, then it has successfully initialized and 146 //! // enabled `foo`, 147 //! // - when it returns `Err(e)`, then it has cleaned up before 148 //! unsafe { 149 //! init::pin_init_from_closure(move |slot: *mut Self| { 150 //! // `slot` contains uninit memory, avoid creating a reference. 151 //! let foo = addr_of_mut!((*slot).foo); 152 //! 153 //! // Initialize the `foo` 154 //! bindings::init_foo(Opaque::raw_get(foo)); 155 //! 156 //! // Try to enable it. 157 //! let err = bindings::enable_foo(Opaque::raw_get(foo), flags); 158 //! if err != 0 { 159 //! // Enabling has failed, first clean up the foo and then return the error. 160 //! bindings::destroy_foo(Opaque::raw_get(foo)); 161 //! return Err(Error::from_kernel_errno(err)); 162 //! } 163 //! 164 //! // All fields of `RawFoo` have been initialized, since `_p` is a ZST. 165 //! Ok(()) 166 //! }) 167 //! } 168 //! } 169 //! } 170 //! 171 //! #[pinned_drop] 172 //! impl PinnedDrop for RawFoo { 173 //! fn drop(self: Pin<&mut Self>) { 174 //! // SAFETY: Since `foo` is initialized, destroying is safe. 175 //! unsafe { bindings::destroy_foo(self.foo.get()) }; 176 //! } 177 //! } 178 //! ``` 179 //! 180 //! For the special case where initializing a field is a single FFI-function call that cannot fail, 181 //! there exist the helper function [`Opaque::ffi_init`]. This function initialize a single 182 //! [`Opaque`] field by just delegating to the supplied closure. You can use these in combination 183 //! with [`pin_init!`]. 184 //! 185 //! For more information on how to use [`pin_init_from_closure()`], take a look at the uses inside 186 //! the `kernel` crate. The [`sync`] module is a good starting point. 187 //! 188 //! [`sync`]: kernel::sync 189 //! [pinning]: https://doc.rust-lang.org/std/pin/index.html 190 //! [structurally pinned fields]: 191 //! https://doc.rust-lang.org/std/pin/index.html#pinning-is-structural-for-field 192 //! [stack]: crate::stack_pin_init 193 //! [`Arc<T>`]: crate::sync::Arc 194 //! [`impl PinInit<Foo>`]: PinInit 195 //! [`impl PinInit<T, E>`]: PinInit 196 //! [`impl Init<T, E>`]: Init 197 //! [`Opaque`]: kernel::types::Opaque 198 //! [`Opaque::ffi_init`]: kernel::types::Opaque::ffi_init 199 //! [`pin_data`]: ::macros::pin_data 200 //! [`pin_init!`]: crate::pin_init! 201 202 use crate::{ 203 error::{self, Error}, 204 sync::UniqueArc, 205 types::{Opaque, ScopeGuard}, 206 }; 207 use alloc::boxed::Box; 208 use core::{ 209 alloc::AllocError, 210 cell::UnsafeCell, 211 convert::Infallible, 212 marker::PhantomData, 213 mem::MaybeUninit, 214 num::*, 215 pin::Pin, 216 ptr::{self, NonNull}, 217 }; 218 219 #[doc(hidden)] 220 pub mod __internal; 221 #[doc(hidden)] 222 pub mod macros; 223 224 /// Initialize and pin a type directly on the stack. 225 /// 226 /// # Examples 227 /// 228 /// ```rust 229 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] 230 /// # use kernel::{init, pin_init, stack_pin_init, init::*, sync::Mutex, new_mutex}; 231 /// # use macros::pin_data; 232 /// # use core::pin::Pin; 233 /// #[pin_data] 234 /// struct Foo { 235 /// #[pin] 236 /// a: Mutex<usize>, 237 /// b: Bar, 238 /// } 239 /// 240 /// #[pin_data] 241 /// struct Bar { 242 /// x: u32, 243 /// } 244 /// 245 /// stack_pin_init!(let foo = pin_init!(Foo { 246 /// a <- new_mutex!(42), 247 /// b: Bar { 248 /// x: 64, 249 /// }, 250 /// })); 251 /// let foo: Pin<&mut Foo> = foo; 252 /// pr_info!("a: {}", &*foo.a.lock()); 253 /// ``` 254 /// 255 /// # Syntax 256 /// 257 /// A normal `let` binding with optional type annotation. The expression is expected to implement 258 /// [`PinInit`]/[`Init`] with the error type [`Infallible`]. If you want to use a different error 259 /// type, then use [`stack_try_pin_init!`]. 260 /// 261 /// [`stack_try_pin_init!`]: crate::stack_try_pin_init! 262 #[macro_export] 263 macro_rules! stack_pin_init { 264 (let $var:ident $(: $t:ty)? = $val:expr) => { 265 let val = $val; 266 let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit()); 267 let mut $var = match $crate::init::__internal::StackInit::init($var, val) { 268 Ok(res) => res, 269 Err(x) => { 270 let x: ::core::convert::Infallible = x; 271 match x {} 272 } 273 }; 274 }; 275 } 276 277 /// Initialize and pin a type directly on the stack. 278 /// 279 /// # Examples 280 /// 281 /// ```rust 282 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] 283 /// # use kernel::{init, pin_init, stack_try_pin_init, init::*, sync::Mutex, new_mutex}; 284 /// # use macros::pin_data; 285 /// # use core::{alloc::AllocError, pin::Pin}; 286 /// #[pin_data] 287 /// struct Foo { 288 /// #[pin] 289 /// a: Mutex<usize>, 290 /// b: Box<Bar>, 291 /// } 292 /// 293 /// struct Bar { 294 /// x: u32, 295 /// } 296 /// 297 /// stack_try_pin_init!(let foo: Result<Pin<&mut Foo>, AllocError> = pin_init!(Foo { 298 /// a <- new_mutex!(42), 299 /// b: Box::try_new(Bar { 300 /// x: 64, 301 /// })?, 302 /// })); 303 /// let foo = foo.unwrap(); 304 /// pr_info!("a: {}", &*foo.a.lock()); 305 /// ``` 306 /// 307 /// ```rust 308 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] 309 /// # use kernel::{init, pin_init, stack_try_pin_init, init::*, sync::Mutex, new_mutex}; 310 /// # use macros::pin_data; 311 /// # use core::{alloc::AllocError, pin::Pin}; 312 /// #[pin_data] 313 /// struct Foo { 314 /// #[pin] 315 /// a: Mutex<usize>, 316 /// b: Box<Bar>, 317 /// } 318 /// 319 /// struct Bar { 320 /// x: u32, 321 /// } 322 /// 323 /// stack_try_pin_init!(let foo: Pin<&mut Foo> =? pin_init!(Foo { 324 /// a <- new_mutex!(42), 325 /// b: Box::try_new(Bar { 326 /// x: 64, 327 /// })?, 328 /// })); 329 /// pr_info!("a: {}", &*foo.a.lock()); 330 /// # Ok::<_, AllocError>(()) 331 /// ``` 332 /// 333 /// # Syntax 334 /// 335 /// A normal `let` binding with optional type annotation. The expression is expected to implement 336 /// [`PinInit`]/[`Init`]. This macro assigns a result to the given variable, adding a `?` after the 337 /// `=` will propagate this error. 338 #[macro_export] 339 macro_rules! stack_try_pin_init { 340 (let $var:ident $(: $t:ty)? = $val:expr) => { 341 let val = $val; 342 let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit()); 343 let mut $var = $crate::init::__internal::StackInit::init($var, val); 344 }; 345 (let $var:ident $(: $t:ty)? =? $val:expr) => { 346 let val = $val; 347 let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit()); 348 let mut $var = $crate::init::__internal::StackInit::init($var, val)?; 349 }; 350 } 351 352 /// Construct an in-place, pinned initializer for `struct`s. 353 /// 354 /// This macro defaults the error to [`Infallible`]. If you need [`Error`], then use 355 /// [`try_pin_init!`]. 356 /// 357 /// The syntax is almost identical to that of a normal `struct` initializer: 358 /// 359 /// ```rust 360 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] 361 /// # use kernel::{init, pin_init, macros::pin_data, init::*}; 362 /// # use core::pin::Pin; 363 /// #[pin_data] 364 /// struct Foo { 365 /// a: usize, 366 /// b: Bar, 367 /// } 368 /// 369 /// #[pin_data] 370 /// struct Bar { 371 /// x: u32, 372 /// } 373 /// 374 /// # fn demo() -> impl PinInit<Foo> { 375 /// let a = 42; 376 /// 377 /// let initializer = pin_init!(Foo { 378 /// a, 379 /// b: Bar { 380 /// x: 64, 381 /// }, 382 /// }); 383 /// # initializer } 384 /// # Box::pin_init(demo()).unwrap(); 385 /// ``` 386 /// 387 /// Arbitrary Rust expressions can be used to set the value of a variable. 388 /// 389 /// The fields are initialized in the order that they appear in the initializer. So it is possible 390 /// to read already initialized fields using raw pointers. 391 /// 392 /// IMPORTANT: You are not allowed to create references to fields of the struct inside of the 393 /// initializer. 394 /// 395 /// # Init-functions 396 /// 397 /// When working with this API it is often desired to let others construct your types without 398 /// giving access to all fields. This is where you would normally write a plain function `new` 399 /// that would return a new instance of your type. With this API that is also possible. 400 /// However, there are a few extra things to keep in mind. 401 /// 402 /// To create an initializer function, simply declare it like this: 403 /// 404 /// ```rust 405 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] 406 /// # use kernel::{init, pin_init, prelude::*, init::*}; 407 /// # use core::pin::Pin; 408 /// # #[pin_data] 409 /// # struct Foo { 410 /// # a: usize, 411 /// # b: Bar, 412 /// # } 413 /// # #[pin_data] 414 /// # struct Bar { 415 /// # x: u32, 416 /// # } 417 /// impl Foo { 418 /// fn new() -> impl PinInit<Self> { 419 /// pin_init!(Self { 420 /// a: 42, 421 /// b: Bar { 422 /// x: 64, 423 /// }, 424 /// }) 425 /// } 426 /// } 427 /// ``` 428 /// 429 /// Users of `Foo` can now create it like this: 430 /// 431 /// ```rust 432 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] 433 /// # use kernel::{init, pin_init, macros::pin_data, init::*}; 434 /// # use core::pin::Pin; 435 /// # #[pin_data] 436 /// # struct Foo { 437 /// # a: usize, 438 /// # b: Bar, 439 /// # } 440 /// # #[pin_data] 441 /// # struct Bar { 442 /// # x: u32, 443 /// # } 444 /// # impl Foo { 445 /// # fn new() -> impl PinInit<Self> { 446 /// # pin_init!(Self { 447 /// # a: 42, 448 /// # b: Bar { 449 /// # x: 64, 450 /// # }, 451 /// # }) 452 /// # } 453 /// # } 454 /// let foo = Box::pin_init(Foo::new()); 455 /// ``` 456 /// 457 /// They can also easily embed it into their own `struct`s: 458 /// 459 /// ```rust 460 /// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)] 461 /// # use kernel::{init, pin_init, macros::pin_data, init::*}; 462 /// # use core::pin::Pin; 463 /// # #[pin_data] 464 /// # struct Foo { 465 /// # a: usize, 466 /// # b: Bar, 467 /// # } 468 /// # #[pin_data] 469 /// # struct Bar { 470 /// # x: u32, 471 /// # } 472 /// # impl Foo { 473 /// # fn new() -> impl PinInit<Self> { 474 /// # pin_init!(Self { 475 /// # a: 42, 476 /// # b: Bar { 477 /// # x: 64, 478 /// # }, 479 /// # }) 480 /// # } 481 /// # } 482 /// #[pin_data] 483 /// struct FooContainer { 484 /// #[pin] 485 /// foo1: Foo, 486 /// #[pin] 487 /// foo2: Foo, 488 /// other: u32, 489 /// } 490 /// 491 /// impl FooContainer { 492 /// fn new(other: u32) -> impl PinInit<Self> { 493 /// pin_init!(Self { 494 /// foo1 <- Foo::new(), 495 /// foo2 <- Foo::new(), 496 /// other, 497 /// }) 498 /// } 499 /// } 500 /// ``` 501 /// 502 /// Here we see that when using `pin_init!` with `PinInit`, one needs to write `<-` instead of `:`. 503 /// This signifies that the given field is initialized in-place. As with `struct` initializers, just 504 /// writing the field (in this case `other`) without `:` or `<-` means `other: other,`. 505 /// 506 /// # Syntax 507 /// 508 /// As already mentioned in the examples above, inside of `pin_init!` a `struct` initializer with 509 /// the following modifications is expected: 510 /// - Fields that you want to initialize in-place have to use `<-` instead of `:`. 511 /// - In front of the initializer you can write `&this in` to have access to a [`NonNull<Self>`] 512 /// pointer named `this` inside of the initializer. 513 /// - Using struct update syntax one can place `..Zeroable::zeroed()` at the very end of the 514 /// struct, this initializes every field with 0 and then runs all initializers specified in the 515 /// body. This can only be done if [`Zeroable`] is implemented for the struct. 516 /// 517 /// For instance: 518 /// 519 /// ```rust 520 /// # use kernel::pin_init; 521 /// # use macros::{Zeroable, pin_data}; 522 /// # use core::{ptr::addr_of_mut, marker::PhantomPinned}; 523 /// #[pin_data] 524 /// #[derive(Zeroable)] 525 /// struct Buf { 526 /// // `ptr` points into `buf`. 527 /// ptr: *mut u8, 528 /// buf: [u8; 64], 529 /// #[pin] 530 /// pin: PhantomPinned, 531 /// } 532 /// pin_init!(&this in Buf { 533 /// buf: [0; 64], 534 /// ptr: unsafe { addr_of_mut!((*this.as_ptr()).buf).cast() }, 535 /// pin: PhantomPinned, 536 /// }); 537 /// pin_init!(Buf { 538 /// buf: [1; 64], 539 /// ..Zeroable::zeroed() 540 /// }); 541 /// ``` 542 /// 543 /// [`try_pin_init!`]: kernel::try_pin_init 544 /// [`NonNull<Self>`]: core::ptr::NonNull 545 // For a detailed example of how this macro works, see the module documentation of the hidden 546 // module `__internal` inside of `init/__internal.rs`. 547 #[macro_export] 548 macro_rules! pin_init { 549 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 550 $($fields:tt)* 551 }) => { 552 $crate::__init_internal!( 553 @this($($this)?), 554 @typ($t $(::<$($generics),*>)?), 555 @fields($($fields)*), 556 @error(::core::convert::Infallible), 557 @data(PinData, use_data), 558 @has_data(HasPinData, __pin_data), 559 @construct_closure(pin_init_from_closure), 560 @munch_fields($($fields)*), 561 ) 562 }; 563 } 564 565 /// Construct an in-place, fallible pinned initializer for `struct`s. 566 /// 567 /// If the initialization can complete without error (or [`Infallible`]), then use [`pin_init!`]. 568 /// 569 /// You can use the `?` operator or use `return Err(err)` inside the initializer to stop 570 /// initialization and return the error. 571 /// 572 /// IMPORTANT: if you have `unsafe` code inside of the initializer you have to ensure that when 573 /// initialization fails, the memory can be safely deallocated without any further modifications. 574 /// 575 /// This macro defaults the error to [`Error`]. 576 /// 577 /// The syntax is identical to [`pin_init!`] with the following exception: you can append `? $type` 578 /// after the `struct` initializer to specify the error type you want to use. 579 /// 580 /// # Examples 581 /// 582 /// ```rust 583 /// # #![feature(new_uninit)] 584 /// use kernel::{init::{self, PinInit}, error::Error}; 585 /// #[pin_data] 586 /// struct BigBuf { 587 /// big: Box<[u8; 1024 * 1024 * 1024]>, 588 /// small: [u8; 1024 * 1024], 589 /// ptr: *mut u8, 590 /// } 591 /// 592 /// impl BigBuf { 593 /// fn new() -> impl PinInit<Self, Error> { 594 /// try_pin_init!(Self { 595 /// big: Box::init(init::zeroed())?, 596 /// small: [0; 1024 * 1024], 597 /// ptr: core::ptr::null_mut(), 598 /// }? Error) 599 /// } 600 /// } 601 /// ``` 602 // For a detailed example of how this macro works, see the module documentation of the hidden 603 // module `__internal` inside of `init/__internal.rs`. 604 #[macro_export] 605 macro_rules! try_pin_init { 606 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 607 $($fields:tt)* 608 }) => { 609 $crate::__init_internal!( 610 @this($($this)?), 611 @typ($t $(::<$($generics),*>)? ), 612 @fields($($fields)*), 613 @error($crate::error::Error), 614 @data(PinData, use_data), 615 @has_data(HasPinData, __pin_data), 616 @construct_closure(pin_init_from_closure), 617 @munch_fields($($fields)*), 618 ) 619 }; 620 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 621 $($fields:tt)* 622 }? $err:ty) => { 623 $crate::__init_internal!( 624 @this($($this)?), 625 @typ($t $(::<$($generics),*>)? ), 626 @fields($($fields)*), 627 @error($err), 628 @data(PinData, use_data), 629 @has_data(HasPinData, __pin_data), 630 @construct_closure(pin_init_from_closure), 631 @munch_fields($($fields)*), 632 ) 633 }; 634 } 635 636 /// Construct an in-place initializer for `struct`s. 637 /// 638 /// This macro defaults the error to [`Infallible`]. If you need [`Error`], then use 639 /// [`try_init!`]. 640 /// 641 /// The syntax is identical to [`pin_init!`] and its safety caveats also apply: 642 /// - `unsafe` code must guarantee either full initialization or return an error and allow 643 /// deallocation of the memory. 644 /// - the fields are initialized in the order given in the initializer. 645 /// - no references to fields are allowed to be created inside of the initializer. 646 /// 647 /// This initializer is for initializing data in-place that might later be moved. If you want to 648 /// pin-initialize, use [`pin_init!`]. 649 /// 650 /// [`try_init!`]: crate::try_init! 651 // For a detailed example of how this macro works, see the module documentation of the hidden 652 // module `__internal` inside of `init/__internal.rs`. 653 #[macro_export] 654 macro_rules! init { 655 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 656 $($fields:tt)* 657 }) => { 658 $crate::__init_internal!( 659 @this($($this)?), 660 @typ($t $(::<$($generics),*>)?), 661 @fields($($fields)*), 662 @error(::core::convert::Infallible), 663 @data(InitData, /*no use_data*/), 664 @has_data(HasInitData, __init_data), 665 @construct_closure(init_from_closure), 666 @munch_fields($($fields)*), 667 ) 668 } 669 } 670 671 /// Construct an in-place fallible initializer for `struct`s. 672 /// 673 /// This macro defaults the error to [`Error`]. If you need [`Infallible`], then use 674 /// [`init!`]. 675 /// 676 /// The syntax is identical to [`try_pin_init!`]. If you want to specify a custom error, 677 /// append `? $type` after the `struct` initializer. 678 /// The safety caveats from [`try_pin_init!`] also apply: 679 /// - `unsafe` code must guarantee either full initialization or return an error and allow 680 /// deallocation of the memory. 681 /// - the fields are initialized in the order given in the initializer. 682 /// - no references to fields are allowed to be created inside of the initializer. 683 /// 684 /// # Examples 685 /// 686 /// ```rust 687 /// use kernel::{init::PinInit, error::Error, InPlaceInit}; 688 /// struct BigBuf { 689 /// big: Box<[u8; 1024 * 1024 * 1024]>, 690 /// small: [u8; 1024 * 1024], 691 /// } 692 /// 693 /// impl BigBuf { 694 /// fn new() -> impl Init<Self, Error> { 695 /// try_init!(Self { 696 /// big: Box::init(zeroed())?, 697 /// small: [0; 1024 * 1024], 698 /// }? Error) 699 /// } 700 /// } 701 /// ``` 702 // For a detailed example of how this macro works, see the module documentation of the hidden 703 // module `__internal` inside of `init/__internal.rs`. 704 #[macro_export] 705 macro_rules! try_init { 706 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 707 $($fields:tt)* 708 }) => { 709 $crate::__init_internal!( 710 @this($($this)?), 711 @typ($t $(::<$($generics),*>)?), 712 @fields($($fields)*), 713 @error($crate::error::Error), 714 @data(InitData, /*no use_data*/), 715 @has_data(HasInitData, __init_data), 716 @construct_closure(init_from_closure), 717 @munch_fields($($fields)*), 718 ) 719 }; 720 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 721 $($fields:tt)* 722 }? $err:ty) => { 723 $crate::__init_internal!( 724 @this($($this)?), 725 @typ($t $(::<$($generics),*>)?), 726 @fields($($fields)*), 727 @error($err), 728 @data(InitData, /*no use_data*/), 729 @has_data(HasInitData, __init_data), 730 @construct_closure(init_from_closure), 731 @munch_fields($($fields)*), 732 ) 733 }; 734 } 735 736 /// A pin-initializer for the type `T`. 737 /// 738 /// To use this initializer, you will need a suitable memory location that can hold a `T`. This can 739 /// be [`Box<T>`], [`Arc<T>`], [`UniqueArc<T>`] or even the stack (see [`stack_pin_init!`]). Use the 740 /// [`InPlaceInit::pin_init`] function of a smart pointer like [`Arc<T>`] on this. 741 /// 742 /// Also see the [module description](self). 743 /// 744 /// # Safety 745 /// 746 /// When implementing this type you will need to take great care. Also there are probably very few 747 /// cases where a manual implementation is necessary. Use [`pin_init_from_closure`] where possible. 748 /// 749 /// The [`PinInit::__pinned_init`] function 750 /// - returns `Ok(())` if it initialized every field of `slot`, 751 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 752 /// - `slot` can be deallocated without UB occurring, 753 /// - `slot` does not need to be dropped, 754 /// - `slot` is not partially initialized. 755 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 756 /// 757 /// [`Arc<T>`]: crate::sync::Arc 758 /// [`Arc::pin_init`]: crate::sync::Arc::pin_init 759 #[must_use = "An initializer must be used in order to create its value."] 760 pub unsafe trait PinInit<T: ?Sized, E = Infallible>: Sized { 761 /// Initializes `slot`. 762 /// 763 /// # Safety 764 /// 765 /// - `slot` is a valid pointer to uninitialized memory. 766 /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to 767 /// deallocate. 768 /// - `slot` will not move until it is dropped, i.e. it will be pinned. 769 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E>; 770 } 771 772 /// An initializer for `T`. 773 /// 774 /// To use this initializer, you will need a suitable memory location that can hold a `T`. This can 775 /// be [`Box<T>`], [`Arc<T>`], [`UniqueArc<T>`] or even the stack (see [`stack_pin_init!`]). Use the 776 /// [`InPlaceInit::init`] function of a smart pointer like [`Arc<T>`] on this. Because 777 /// [`PinInit<T, E>`] is a super trait, you can use every function that takes it as well. 778 /// 779 /// Also see the [module description](self). 780 /// 781 /// # Safety 782 /// 783 /// When implementing this type you will need to take great care. Also there are probably very few 784 /// cases where a manual implementation is necessary. Use [`init_from_closure`] where possible. 785 /// 786 /// The [`Init::__init`] function 787 /// - returns `Ok(())` if it initialized every field of `slot`, 788 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 789 /// - `slot` can be deallocated without UB occurring, 790 /// - `slot` does not need to be dropped, 791 /// - `slot` is not partially initialized. 792 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 793 /// 794 /// The `__pinned_init` function from the supertrait [`PinInit`] needs to execute the exact same 795 /// code as `__init`. 796 /// 797 /// Contrary to its supertype [`PinInit<T, E>`] the caller is allowed to 798 /// move the pointee after initialization. 799 /// 800 /// [`Arc<T>`]: crate::sync::Arc 801 #[must_use = "An initializer must be used in order to create its value."] 802 pub unsafe trait Init<T: ?Sized, E = Infallible>: Sized { 803 /// Initializes `slot`. 804 /// 805 /// # Safety 806 /// 807 /// - `slot` is a valid pointer to uninitialized memory. 808 /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to 809 /// deallocate. 810 unsafe fn __init(self, slot: *mut T) -> Result<(), E>; 811 } 812 813 // SAFETY: Every in-place initializer can also be used as a pin-initializer. 814 unsafe impl<T: ?Sized, E, I> PinInit<T, E> for I 815 where 816 I: Init<T, E>, 817 { 818 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> { 819 // SAFETY: `__init` meets the same requirements as `__pinned_init`, except that it does not 820 // require `slot` to not move after init. 821 unsafe { self.__init(slot) } 822 } 823 } 824 825 /// Creates a new [`PinInit<T, E>`] from the given closure. 826 /// 827 /// # Safety 828 /// 829 /// The closure: 830 /// - returns `Ok(())` if it initialized every field of `slot`, 831 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 832 /// - `slot` can be deallocated without UB occurring, 833 /// - `slot` does not need to be dropped, 834 /// - `slot` is not partially initialized. 835 /// - may assume that the `slot` does not move if `T: !Unpin`, 836 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 837 #[inline] 838 pub const unsafe fn pin_init_from_closure<T: ?Sized, E>( 839 f: impl FnOnce(*mut T) -> Result<(), E>, 840 ) -> impl PinInit<T, E> { 841 __internal::InitClosure(f, PhantomData) 842 } 843 844 /// Creates a new [`Init<T, E>`] from the given closure. 845 /// 846 /// # Safety 847 /// 848 /// The closure: 849 /// - returns `Ok(())` if it initialized every field of `slot`, 850 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 851 /// - `slot` can be deallocated without UB occurring, 852 /// - `slot` does not need to be dropped, 853 /// - `slot` is not partially initialized. 854 /// - the `slot` may move after initialization. 855 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 856 #[inline] 857 pub const unsafe fn init_from_closure<T: ?Sized, E>( 858 f: impl FnOnce(*mut T) -> Result<(), E>, 859 ) -> impl Init<T, E> { 860 __internal::InitClosure(f, PhantomData) 861 } 862 863 /// An initializer that leaves the memory uninitialized. 864 /// 865 /// The initializer is a no-op. The `slot` memory is not changed. 866 #[inline] 867 pub fn uninit<T, E>() -> impl Init<MaybeUninit<T>, E> { 868 // SAFETY: The memory is allowed to be uninitialized. 869 unsafe { init_from_closure(|_| Ok(())) } 870 } 871 872 /// Initializes an array by initializing each element via the provided initializer. 873 /// 874 /// # Examples 875 /// 876 /// ```rust 877 /// use kernel::{error::Error, init::init_array_from_fn}; 878 /// let array: Box<[usize; 1_000]>= Box::init::<Error>(init_array_from_fn(|i| i)).unwrap(); 879 /// assert_eq!(array.len(), 1_000); 880 /// ``` 881 pub fn init_array_from_fn<I, const N: usize, T, E>( 882 mut make_init: impl FnMut(usize) -> I, 883 ) -> impl Init<[T; N], E> 884 where 885 I: Init<T, E>, 886 { 887 let init = move |slot: *mut [T; N]| { 888 let slot = slot.cast::<T>(); 889 // Counts the number of initialized elements and when dropped drops that many elements from 890 // `slot`. 891 let mut init_count = ScopeGuard::new_with_data(0, |i| { 892 // We now free every element that has been initialized before: 893 // SAFETY: The loop initialized exactly the values from 0..i and since we 894 // return `Err` below, the caller will consider the memory at `slot` as 895 // uninitialized. 896 unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) }; 897 }); 898 for i in 0..N { 899 let init = make_init(i); 900 // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`. 901 let ptr = unsafe { slot.add(i) }; 902 // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init` 903 // requirements. 904 unsafe { init.__init(ptr) }?; 905 *init_count += 1; 906 } 907 init_count.dismiss(); 908 Ok(()) 909 }; 910 // SAFETY: The initializer above initializes every element of the array. On failure it drops 911 // any initialized elements and returns `Err`. 912 unsafe { init_from_closure(init) } 913 } 914 915 /// Initializes an array by initializing each element via the provided initializer. 916 /// 917 /// # Examples 918 /// 919 /// ```rust 920 /// use kernel::{sync::{Arc, Mutex}, init::pin_init_array_from_fn, new_mutex}; 921 /// let array: Arc<[Mutex<usize>; 1_000]>= 922 /// Arc::pin_init(pin_init_array_from_fn(|i| new_mutex!(i))).unwrap(); 923 /// assert_eq!(array.len(), 1_000); 924 /// ``` 925 pub fn pin_init_array_from_fn<I, const N: usize, T, E>( 926 mut make_init: impl FnMut(usize) -> I, 927 ) -> impl PinInit<[T; N], E> 928 where 929 I: PinInit<T, E>, 930 { 931 let init = move |slot: *mut [T; N]| { 932 let slot = slot.cast::<T>(); 933 // Counts the number of initialized elements and when dropped drops that many elements from 934 // `slot`. 935 let mut init_count = ScopeGuard::new_with_data(0, |i| { 936 // We now free every element that has been initialized before: 937 // SAFETY: The loop initialized exactly the values from 0..i and since we 938 // return `Err` below, the caller will consider the memory at `slot` as 939 // uninitialized. 940 unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) }; 941 }); 942 for i in 0..N { 943 let init = make_init(i); 944 // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`. 945 let ptr = unsafe { slot.add(i) }; 946 // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init` 947 // requirements. 948 unsafe { init.__pinned_init(ptr) }?; 949 *init_count += 1; 950 } 951 init_count.dismiss(); 952 Ok(()) 953 }; 954 // SAFETY: The initializer above initializes every element of the array. On failure it drops 955 // any initialized elements and returns `Err`. 956 unsafe { pin_init_from_closure(init) } 957 } 958 959 // SAFETY: Every type can be initialized by-value. 960 unsafe impl<T, E> Init<T, E> for T { 961 unsafe fn __init(self, slot: *mut T) -> Result<(), E> { 962 unsafe { slot.write(self) }; 963 Ok(()) 964 } 965 } 966 967 /// Smart pointer that can initialize memory in-place. 968 pub trait InPlaceInit<T>: Sized { 969 /// Use the given pin-initializer to pin-initialize a `T` inside of a new smart pointer of this 970 /// type. 971 /// 972 /// If `T: !Unpin` it will not be able to move afterwards. 973 fn try_pin_init<E>(init: impl PinInit<T, E>) -> Result<Pin<Self>, E> 974 where 975 E: From<AllocError>; 976 977 /// Use the given pin-initializer to pin-initialize a `T` inside of a new smart pointer of this 978 /// type. 979 /// 980 /// If `T: !Unpin` it will not be able to move afterwards. 981 fn pin_init<E>(init: impl PinInit<T, E>) -> error::Result<Pin<Self>> 982 where 983 Error: From<E>, 984 { 985 // SAFETY: We delegate to `init` and only change the error type. 986 let init = unsafe { 987 pin_init_from_closure(|slot| init.__pinned_init(slot).map_err(|e| Error::from(e))) 988 }; 989 Self::try_pin_init(init) 990 } 991 992 /// Use the given initializer to in-place initialize a `T`. 993 fn try_init<E>(init: impl Init<T, E>) -> Result<Self, E> 994 where 995 E: From<AllocError>; 996 997 /// Use the given initializer to in-place initialize a `T`. 998 fn init<E>(init: impl Init<T, E>) -> error::Result<Self> 999 where 1000 Error: From<E>, 1001 { 1002 // SAFETY: We delegate to `init` and only change the error type. 1003 let init = unsafe { 1004 init_from_closure(|slot| init.__pinned_init(slot).map_err(|e| Error::from(e))) 1005 }; 1006 Self::try_init(init) 1007 } 1008 } 1009 1010 impl<T> InPlaceInit<T> for Box<T> { 1011 #[inline] 1012 fn try_pin_init<E>(init: impl PinInit<T, E>) -> Result<Pin<Self>, E> 1013 where 1014 E: From<AllocError>, 1015 { 1016 let mut this = Box::try_new_uninit()?; 1017 let slot = this.as_mut_ptr(); 1018 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 1019 // slot is valid and will not be moved, because we pin it later. 1020 unsafe { init.__pinned_init(slot)? }; 1021 // SAFETY: All fields have been initialized. 1022 Ok(unsafe { this.assume_init() }.into()) 1023 } 1024 1025 #[inline] 1026 fn try_init<E>(init: impl Init<T, E>) -> Result<Self, E> 1027 where 1028 E: From<AllocError>, 1029 { 1030 let mut this = Box::try_new_uninit()?; 1031 let slot = this.as_mut_ptr(); 1032 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 1033 // slot is valid. 1034 unsafe { init.__init(slot)? }; 1035 // SAFETY: All fields have been initialized. 1036 Ok(unsafe { this.assume_init() }) 1037 } 1038 } 1039 1040 impl<T> InPlaceInit<T> for UniqueArc<T> { 1041 #[inline] 1042 fn try_pin_init<E>(init: impl PinInit<T, E>) -> Result<Pin<Self>, E> 1043 where 1044 E: From<AllocError>, 1045 { 1046 let mut this = UniqueArc::try_new_uninit()?; 1047 let slot = this.as_mut_ptr(); 1048 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 1049 // slot is valid and will not be moved, because we pin it later. 1050 unsafe { init.__pinned_init(slot)? }; 1051 // SAFETY: All fields have been initialized. 1052 Ok(unsafe { this.assume_init() }.into()) 1053 } 1054 1055 #[inline] 1056 fn try_init<E>(init: impl Init<T, E>) -> Result<Self, E> 1057 where 1058 E: From<AllocError>, 1059 { 1060 let mut this = UniqueArc::try_new_uninit()?; 1061 let slot = this.as_mut_ptr(); 1062 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 1063 // slot is valid. 1064 unsafe { init.__init(slot)? }; 1065 // SAFETY: All fields have been initialized. 1066 Ok(unsafe { this.assume_init() }) 1067 } 1068 } 1069 1070 /// Trait facilitating pinned destruction. 1071 /// 1072 /// Use [`pinned_drop`] to implement this trait safely: 1073 /// 1074 /// ```rust 1075 /// # use kernel::sync::Mutex; 1076 /// use kernel::macros::pinned_drop; 1077 /// use core::pin::Pin; 1078 /// #[pin_data(PinnedDrop)] 1079 /// struct Foo { 1080 /// #[pin] 1081 /// mtx: Mutex<usize>, 1082 /// } 1083 /// 1084 /// #[pinned_drop] 1085 /// impl PinnedDrop for Foo { 1086 /// fn drop(self: Pin<&mut Self>) { 1087 /// pr_info!("Foo is being dropped!"); 1088 /// } 1089 /// } 1090 /// ``` 1091 /// 1092 /// # Safety 1093 /// 1094 /// This trait must be implemented via the [`pinned_drop`] proc-macro attribute on the impl. 1095 /// 1096 /// [`pinned_drop`]: kernel::macros::pinned_drop 1097 pub unsafe trait PinnedDrop: __internal::HasPinData { 1098 /// Executes the pinned destructor of this type. 1099 /// 1100 /// While this function is marked safe, it is actually unsafe to call it manually. For this 1101 /// reason it takes an additional parameter. This type can only be constructed by `unsafe` code 1102 /// and thus prevents this function from being called where it should not. 1103 /// 1104 /// This extra parameter will be generated by the `#[pinned_drop]` proc-macro attribute 1105 /// automatically. 1106 fn drop(self: Pin<&mut Self>, only_call_from_drop: __internal::OnlyCallFromDrop); 1107 } 1108 1109 /// Marker trait for types that can be initialized by writing just zeroes. 1110 /// 1111 /// # Safety 1112 /// 1113 /// The bit pattern consisting of only zeroes is a valid bit pattern for this type. In other words, 1114 /// this is not UB: 1115 /// 1116 /// ```rust,ignore 1117 /// let val: Self = unsafe { core::mem::zeroed() }; 1118 /// ``` 1119 pub unsafe trait Zeroable {} 1120 1121 /// Create a new zeroed T. 1122 /// 1123 /// The returned initializer will write `0x00` to every byte of the given `slot`. 1124 #[inline] 1125 pub fn zeroed<T: Zeroable>() -> impl Init<T> { 1126 // SAFETY: Because `T: Zeroable`, all bytes zero is a valid bit pattern for `T` 1127 // and because we write all zeroes, the memory is initialized. 1128 unsafe { 1129 init_from_closure(|slot: *mut T| { 1130 slot.write_bytes(0, 1); 1131 Ok(()) 1132 }) 1133 } 1134 } 1135 1136 macro_rules! impl_zeroable { 1137 ($($({$($generics:tt)*})? $t:ty, )*) => { 1138 $(unsafe impl$($($generics)*)? Zeroable for $t {})* 1139 }; 1140 } 1141 1142 impl_zeroable! { 1143 // SAFETY: All primitives that are allowed to be zero. 1144 bool, 1145 char, 1146 u8, u16, u32, u64, u128, usize, 1147 i8, i16, i32, i64, i128, isize, 1148 f32, f64, 1149 1150 // SAFETY: These are ZSTs, there is nothing to zero. 1151 {<T: ?Sized>} PhantomData<T>, core::marker::PhantomPinned, Infallible, (), 1152 1153 // SAFETY: Type is allowed to take any value, including all zeros. 1154 {<T>} MaybeUninit<T>, 1155 // SAFETY: Type is allowed to take any value, including all zeros. 1156 {<T>} Opaque<T>, 1157 1158 // SAFETY: `T: Zeroable` and `UnsafeCell` is `repr(transparent)`. 1159 {<T: ?Sized + Zeroable>} UnsafeCell<T>, 1160 1161 // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee). 1162 Option<NonZeroU8>, Option<NonZeroU16>, Option<NonZeroU32>, Option<NonZeroU64>, 1163 Option<NonZeroU128>, Option<NonZeroUsize>, 1164 Option<NonZeroI8>, Option<NonZeroI16>, Option<NonZeroI32>, Option<NonZeroI64>, 1165 Option<NonZeroI128>, Option<NonZeroIsize>, 1166 1167 // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee). 1168 // 1169 // In this case we are allowed to use `T: ?Sized`, since all zeros is the `None` variant. 1170 {<T: ?Sized>} Option<NonNull<T>>, 1171 {<T: ?Sized>} Option<Box<T>>, 1172 1173 // SAFETY: `null` pointer is valid. 1174 // 1175 // We cannot use `T: ?Sized`, since the VTABLE pointer part of fat pointers is not allowed to be 1176 // null. 1177 // 1178 // When `Pointee` gets stabilized, we could use 1179 // `T: ?Sized where <T as Pointee>::Metadata: Zeroable` 1180 {<T>} *mut T, {<T>} *const T, 1181 1182 // SAFETY: `null` pointer is valid and the metadata part of these fat pointers is allowed to be 1183 // zero. 1184 {<T>} *mut [T], {<T>} *const [T], *mut str, *const str, 1185 1186 // SAFETY: `T` is `Zeroable`. 1187 {<const N: usize, T: Zeroable>} [T; N], {<T: Zeroable>} Wrapping<T>, 1188 } 1189 1190 macro_rules! impl_tuple_zeroable { 1191 ($(,)?) => {}; 1192 ($first:ident, $($t:ident),* $(,)?) => { 1193 // SAFETY: All elements are zeroable and padding can be zero. 1194 unsafe impl<$first: Zeroable, $($t: Zeroable),*> Zeroable for ($first, $($t),*) {} 1195 impl_tuple_zeroable!($($t),* ,); 1196 } 1197 } 1198 1199 impl_tuple_zeroable!(A, B, C, D, E, F, G, H, I, J); 1200