xref: /linux/rust/kernel/firmware.rs (revision f694f30e81c4ade358eb8c75273bac1a48f0cb8f)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Firmware abstraction
4 //!
5 //! C header: [`include/linux/firmware.h`](srctree/include/linux/firmware.h)
6 
7 use crate::{bindings, device::Device, error::Error, error::Result, str::CStr};
8 use core::ptr::NonNull;
9 
10 /// # Invariants
11 ///
12 /// One of the following: `bindings::request_firmware`, `bindings::firmware_request_nowarn`,
13 /// `bindings::firmware_request_platform`, `bindings::request_firmware_direct`.
14 struct FwFunc(
15     unsafe extern "C" fn(*mut *const bindings::firmware, *const u8, *mut bindings::device) -> i32,
16 );
17 
18 impl FwFunc {
19     fn request() -> Self {
20         Self(bindings::request_firmware)
21     }
22 
23     fn request_nowarn() -> Self {
24         Self(bindings::firmware_request_nowarn)
25     }
26 }
27 
28 /// Abstraction around a C `struct firmware`.
29 ///
30 /// This is a simple abstraction around the C firmware API. Just like with the C API, firmware can
31 /// be requested. Once requested the abstraction provides direct access to the firmware buffer as
32 /// `&[u8]`. The firmware is released once [`Firmware`] is dropped.
33 ///
34 /// # Invariants
35 ///
36 /// The pointer is valid, and has ownership over the instance of `struct firmware`.
37 ///
38 /// The `Firmware`'s backing buffer is not modified.
39 ///
40 /// # Examples
41 ///
42 /// ```no_run
43 /// # use kernel::{c_str, device::Device, firmware::Firmware};
44 ///
45 /// # fn no_run() -> Result<(), Error> {
46 /// # // SAFETY: *NOT* safe, just for the example to get an `ARef<Device>` instance
47 /// # let dev = unsafe { Device::get_device(core::ptr::null_mut()) };
48 ///
49 /// let fw = Firmware::request(c_str!("path/to/firmware.bin"), &dev)?;
50 /// let blob = fw.data();
51 ///
52 /// # Ok(())
53 /// # }
54 /// ```
55 pub struct Firmware(NonNull<bindings::firmware>);
56 
57 impl Firmware {
58     fn request_internal(name: &CStr, dev: &Device, func: FwFunc) -> Result<Self> {
59         let mut fw: *mut bindings::firmware = core::ptr::null_mut();
60         let pfw: *mut *mut bindings::firmware = &mut fw;
61 
62         // SAFETY: `pfw` is a valid pointer to a NULL initialized `bindings::firmware` pointer.
63         // `name` and `dev` are valid as by their type invariants.
64         let ret = unsafe { func.0(pfw as _, name.as_char_ptr(), dev.as_raw()) };
65         if ret != 0 {
66             return Err(Error::from_errno(ret));
67         }
68 
69         // SAFETY: `func` not bailing out with a non-zero error code, guarantees that `fw` is a
70         // valid pointer to `bindings::firmware`.
71         Ok(Firmware(unsafe { NonNull::new_unchecked(fw) }))
72     }
73 
74     /// Send a firmware request and wait for it. See also `bindings::request_firmware`.
75     pub fn request(name: &CStr, dev: &Device) -> Result<Self> {
76         Self::request_internal(name, dev, FwFunc::request())
77     }
78 
79     /// Send a request for an optional firmware module. See also
80     /// `bindings::firmware_request_nowarn`.
81     pub fn request_nowarn(name: &CStr, dev: &Device) -> Result<Self> {
82         Self::request_internal(name, dev, FwFunc::request_nowarn())
83     }
84 
85     fn as_raw(&self) -> *mut bindings::firmware {
86         self.0.as_ptr()
87     }
88 
89     /// Returns the size of the requested firmware in bytes.
90     pub fn size(&self) -> usize {
91         // SAFETY: `self.as_raw()` is valid by the type invariant.
92         unsafe { (*self.as_raw()).size }
93     }
94 
95     /// Returns the requested firmware as `&[u8]`.
96     pub fn data(&self) -> &[u8] {
97         // SAFETY: `self.as_raw()` is valid by the type invariant. Additionally,
98         // `bindings::firmware` guarantees, if successfully requested, that
99         // `bindings::firmware::data` has a size of `bindings::firmware::size` bytes.
100         unsafe { core::slice::from_raw_parts((*self.as_raw()).data, self.size()) }
101     }
102 }
103 
104 impl Drop for Firmware {
105     fn drop(&mut self) {
106         // SAFETY: `self.as_raw()` is valid by the type invariant.
107         unsafe { bindings::release_firmware(self.as_raw()) };
108     }
109 }
110 
111 // SAFETY: `Firmware` only holds a pointer to a C `struct firmware`, which is safe to be used from
112 // any thread.
113 unsafe impl Send for Firmware {}
114 
115 // SAFETY: `Firmware` only holds a pointer to a C `struct firmware`, references to which are safe to
116 // be used from any thread.
117 unsafe impl Sync for Firmware {}
118 
119 /// Create firmware .modinfo entries.
120 ///
121 /// This macro is the counterpart of the C macro `MODULE_FIRMWARE()`, but instead of taking a
122 /// simple string literals, which is already covered by the `firmware` field of
123 /// [`crate::prelude::module!`], it allows the caller to pass a builder type, based on the
124 /// [`ModInfoBuilder`], which can create the firmware modinfo strings in a more flexible way.
125 ///
126 /// Drivers should extend the [`ModInfoBuilder`] with their own driver specific builder type.
127 ///
128 /// The `builder` argument must be a type which implements the following function.
129 ///
130 /// `const fn create(module_name: &'static CStr) -> ModInfoBuilder`
131 ///
132 /// `create` should pass the `module_name` to the [`ModInfoBuilder`] and, with the help of
133 /// it construct the corresponding firmware modinfo.
134 ///
135 /// Typically, such contracts would be enforced by a trait, however traits do not (yet) support
136 /// const functions.
137 ///
138 /// # Example
139 ///
140 /// ```
141 /// # mod module_firmware_test {
142 /// # use kernel::firmware;
143 /// # use kernel::prelude::*;
144 /// #
145 /// # struct MyModule;
146 /// #
147 /// # impl kernel::Module for MyModule {
148 /// #     fn init(_module: &'static ThisModule) -> Result<Self> {
149 /// #         Ok(Self)
150 /// #     }
151 /// # }
152 /// #
153 /// #
154 /// struct Builder<const N: usize>;
155 ///
156 /// impl<const N: usize> Builder<N> {
157 ///     const DIR: &'static str = "vendor/chip/";
158 ///     const FILES: [&'static str; 3] = [ "foo", "bar", "baz" ];
159 ///
160 ///     const fn create(module_name: &'static kernel::str::CStr) -> firmware::ModInfoBuilder<N> {
161 ///         let mut builder = firmware::ModInfoBuilder::new(module_name);
162 ///
163 ///         let mut i = 0;
164 ///         while i < Self::FILES.len() {
165 ///             builder = builder.new_entry()
166 ///                 .push(Self::DIR)
167 ///                 .push(Self::FILES[i])
168 ///                 .push(".bin");
169 ///
170 ///                 i += 1;
171 ///         }
172 ///
173 ///         builder
174 ///      }
175 /// }
176 ///
177 /// module! {
178 ///    type: MyModule,
179 ///    name: "module_firmware_test",
180 ///    author: "Rust for Linux",
181 ///    description: "module_firmware! test module",
182 ///    license: "GPL",
183 /// }
184 ///
185 /// kernel::module_firmware!(Builder);
186 /// # }
187 /// ```
188 #[macro_export]
189 macro_rules! module_firmware {
190     // The argument is the builder type without the const generic, since it's deferred from within
191     // this macro. Hence, we can neither use `expr` nor `ty`.
192     ($($builder:tt)*) => {
193         const _: () = {
194             const __MODULE_FIRMWARE_PREFIX: &'static $crate::str::CStr = if cfg!(MODULE) {
195                 $crate::c_str!("")
196             } else {
197                 <LocalModule as $crate::ModuleMetadata>::NAME
198             };
199 
200             #[link_section = ".modinfo"]
201             #[used]
202             static __MODULE_FIRMWARE: [u8; $($builder)*::create(__MODULE_FIRMWARE_PREFIX)
203                 .build_length()] = $($builder)*::create(__MODULE_FIRMWARE_PREFIX).build();
204         };
205     };
206 }
207 
208 /// Builder for firmware module info.
209 ///
210 /// [`ModInfoBuilder`] is a helper component to flexibly compose firmware paths strings for the
211 /// .modinfo section in const context.
212 ///
213 /// Therefore the [`ModInfoBuilder`] provides the methods [`ModInfoBuilder::new_entry`] and
214 /// [`ModInfoBuilder::push`], where the latter is used to push path components and the former to
215 /// mark the beginning of a new path string.
216 ///
217 /// [`ModInfoBuilder`] is meant to be used in combination with [`kernel::module_firmware!`].
218 ///
219 /// The const generic `N` as well as the `module_name` parameter of [`ModInfoBuilder::new`] is an
220 /// internal implementation detail and supplied through the above macro.
221 pub struct ModInfoBuilder<const N: usize> {
222     buf: [u8; N],
223     n: usize,
224     module_name: &'static CStr,
225 }
226 
227 impl<const N: usize> ModInfoBuilder<N> {
228     /// Create an empty builder instance.
229     pub const fn new(module_name: &'static CStr) -> Self {
230         Self {
231             buf: [0; N],
232             n: 0,
233             module_name,
234         }
235     }
236 
237     const fn push_internal(mut self, bytes: &[u8]) -> Self {
238         let mut j = 0;
239 
240         if N == 0 {
241             self.n += bytes.len();
242             return self;
243         }
244 
245         while j < bytes.len() {
246             if self.n < N {
247                 self.buf[self.n] = bytes[j];
248             }
249             self.n += 1;
250             j += 1;
251         }
252         self
253     }
254 
255     /// Push an additional path component.
256     ///
257     /// Append path components to the [`ModInfoBuilder`] instance. Paths need to be separated
258     /// with [`ModInfoBuilder::new_entry`].
259     ///
260     /// # Example
261     ///
262     /// ```
263     /// use kernel::firmware::ModInfoBuilder;
264     ///
265     /// # const DIR: &str = "vendor/chip/";
266     /// # const fn no_run<const N: usize>(builder: ModInfoBuilder<N>) {
267     /// let builder = builder.new_entry()
268     ///     .push(DIR)
269     ///     .push("foo.bin")
270     ///     .new_entry()
271     ///     .push(DIR)
272     ///     .push("bar.bin");
273     /// # }
274     /// ```
275     pub const fn push(self, s: &str) -> Self {
276         // Check whether there has been an initial call to `next_entry()`.
277         if N != 0 && self.n == 0 {
278             crate::build_error!("Must call next_entry() before push().");
279         }
280 
281         self.push_internal(s.as_bytes())
282     }
283 
284     const fn push_module_name(self) -> Self {
285         let mut this = self;
286         let module_name = this.module_name;
287 
288         if !this.module_name.is_empty() {
289             this = this.push_internal(module_name.as_bytes_with_nul());
290 
291             if N != 0 {
292                 // Re-use the space taken by the NULL terminator and swap it with the '.' separator.
293                 this.buf[this.n - 1] = b'.';
294             }
295         }
296 
297         this
298     }
299 
300     /// Prepare the [`ModInfoBuilder`] for the next entry.
301     ///
302     /// This method acts as a separator between module firmware path entries.
303     ///
304     /// Must be called before constructing a new entry with subsequent calls to
305     /// [`ModInfoBuilder::push`].
306     ///
307     /// See [`ModInfoBuilder::push`] for an example.
308     pub const fn new_entry(self) -> Self {
309         self.push_internal(b"\0")
310             .push_module_name()
311             .push_internal(b"firmware=")
312     }
313 
314     /// Build the byte array.
315     pub const fn build(self) -> [u8; N] {
316         // Add the final NULL terminator.
317         let this = self.push_internal(b"\0");
318 
319         if this.n == N {
320             this.buf
321         } else {
322             crate::build_error!("Length mismatch.");
323         }
324     }
325 }
326 
327 impl ModInfoBuilder<0> {
328     /// Return the length of the byte array to build.
329     pub const fn build_length(self) -> usize {
330         // Compensate for the NULL terminator added by `build`.
331         self.n + 1
332     }
333 }
334