1 // SPDX-License-Identifier: GPL-2.0 2 3 //! Generic support for drivers of different buses (e.g., PCI, Platform, Amba, etc.). 4 //! 5 //! This documentation describes how to implement a bus specific driver API and how to align it with 6 //! the design of (bus specific) devices. 7 //! 8 //! Note: Readers are expected to know the content of the documentation of [`Device`] and 9 //! [`DeviceContext`]. 10 //! 11 //! # Driver Trait 12 //! 13 //! The main driver interface is defined by a bus specific driver trait. For instance: 14 //! 15 //! ```ignore 16 //! pub trait Driver: Send { 17 //! /// The type holding information about each device ID supported by the driver. 18 //! type IdInfo: 'static; 19 //! 20 //! /// The table of OF device ids supported by the driver. 21 //! const OF_ID_TABLE: Option<of::IdTable<Self::IdInfo>> = None; 22 //! 23 //! /// The table of ACPI device ids supported by the driver. 24 //! const ACPI_ID_TABLE: Option<acpi::IdTable<Self::IdInfo>> = None; 25 //! 26 //! /// Driver probe. 27 //! fn probe(dev: &Device<device::Core>, id_info: &Self::IdInfo) -> impl PinInit<Self, Error>; 28 //! 29 //! /// Driver unbind (optional). 30 //! fn unbind(dev: &Device<device::Core>, this: Pin<&Self>) { 31 //! let _ = (dev, this); 32 //! } 33 //! } 34 //! ``` 35 //! 36 //! For specific examples see: 37 //! 38 //! * [`platform::Driver`](kernel::platform::Driver) 39 #" 42 )] 43 #")] 44 //! 45 //! The `probe()` callback should return a `impl PinInit<Self, Error>`, i.e. the driver's private 46 //! data. The bus abstraction should store the pointer in the corresponding bus device. The generic 47 //! [`Device`] infrastructure provides common helpers for this purpose on its 48 //! [`Device<CoreInternal>`] implementation. 49 //! 50 //! All driver callbacks should provide a reference to the driver's private data. Once the driver 51 //! is unbound from the device, the bus abstraction should take back the ownership of the driver's 52 //! private data from the corresponding [`Device`] and [`drop`] it. 53 //! 54 //! All driver callbacks should provide a [`Device<Core>`] reference (see also [`device::Core`]). 55 //! 56 //! # Adapter 57 //! 58 //! The adapter implementation of a bus represents the abstraction layer between the C bus 59 //! callbacks and the Rust bus callbacks. It therefore has to be generic over an implementation of 60 //! the [driver trait](#driver-trait). 61 //! 62 //! ```ignore 63 //! pub struct Adapter<T: Driver>; 64 //! ``` 65 //! 66 //! There's a common [`Adapter`] trait that can be implemented to inherit common driver 67 //! infrastructure, such as finding the ID info from an [`of::IdTable`] or [`acpi::IdTable`]. 68 //! 69 //! # Driver Registration 70 //! 71 //! In order to register C driver types (such as `struct platform_driver`) the [adapter](#adapter) 72 //! should implement the [`RegistrationOps`] trait. 73 //! 74 //! This trait implementation can be used to create the actual registration with the common 75 //! [`Registration`] type. 76 //! 77 //! Typically, bus abstractions want to provide a bus specific `module_bus_driver!` macro, which 78 //! creates a kernel module with exactly one [`Registration`] for the bus specific adapter. 79 //! 80 //! The generic driver infrastructure provides a helper for this with the [`module_driver`] macro. 81 //! 82 //! # Device IDs 83 //! 84 //! Besides the common device ID types, such as [`of::DeviceId`] and [`acpi::DeviceId`], most buses 85 //! may need to implement their own device ID types. 86 //! 87 //! For this purpose the generic infrastructure in [`device_id`] should be used. 88 //! 89 //! [`Core`]: device::Core 90 //! [`Device`]: device::Device 91 //! [`Device<Core>`]: device::Device<device::Core> 92 //! [`Device<CoreInternal>`]: device::Device<device::CoreInternal> 93 //! [`DeviceContext`]: device::DeviceContext 94 //! [`device_id`]: kernel::device_id 95 //! [`module_driver`]: kernel::module_driver 96 97 use crate::{ 98 acpi, 99 device, 100 of, 101 prelude::*, 102 types::Opaque, 103 ThisModule, // 104 }; 105 106 /// The [`RegistrationOps`] trait serves as generic interface for subsystems (e.g., PCI, Platform, 107 /// Amba, etc.) to provide the corresponding subsystem specific implementation to register / 108 /// unregister a driver of the particular type (`RegType`). 109 /// 110 /// For instance, the PCI subsystem would set `RegType` to `bindings::pci_driver` and call 111 /// `bindings::__pci_register_driver` from `RegistrationOps::register` and 112 /// `bindings::pci_unregister_driver` from `RegistrationOps::unregister`. 113 /// 114 /// # Safety 115 /// 116 /// A call to [`RegistrationOps::unregister`] for a given instance of `RegType` is only valid if a 117 /// preceding call to [`RegistrationOps::register`] has been successful. 118 pub unsafe trait RegistrationOps { 119 /// The type that holds information about the registration. This is typically a struct defined 120 /// by the C portion of the kernel. 121 type RegType: Default; 122 123 /// Registers a driver. 124 /// 125 /// # Safety 126 /// 127 /// On success, `reg` must remain pinned and valid until the matching call to 128 /// [`RegistrationOps::unregister`]. 129 unsafe fn register( 130 reg: &Opaque<Self::RegType>, 131 name: &'static CStr, 132 module: &'static ThisModule, 133 ) -> Result; 134 135 /// Unregisters a driver previously registered with [`RegistrationOps::register`]. 136 /// 137 /// # Safety 138 /// 139 /// Must only be called after a preceding successful call to [`RegistrationOps::register`] for 140 /// the same `reg`. 141 unsafe fn unregister(reg: &Opaque<Self::RegType>); 142 } 143 144 /// A [`Registration`] is a generic type that represents the registration of some driver type (e.g. 145 /// `bindings::pci_driver`). Therefore a [`Registration`] must be initialized with a type that 146 /// implements the [`RegistrationOps`] trait, such that the generic `T::register` and 147 /// `T::unregister` calls result in the subsystem specific registration calls. 148 /// 149 ///Once the `Registration` structure is dropped, the driver is unregistered. 150 #[pin_data(PinnedDrop)] 151 pub struct Registration<T: RegistrationOps> { 152 #[pin] 153 reg: Opaque<T::RegType>, 154 } 155 156 // SAFETY: `Registration` has no fields or methods accessible via `&Registration`, so it is safe to 157 // share references to it with multiple threads as nothing can be done. 158 unsafe impl<T: RegistrationOps> Sync for Registration<T> {} 159 160 // SAFETY: Both registration and unregistration are implemented in C and safe to be performed from 161 // any thread, so `Registration` is `Send`. 162 unsafe impl<T: RegistrationOps> Send for Registration<T> {} 163 164 impl<T: RegistrationOps> Registration<T> { 165 /// Creates a new instance of the registration object. 166 pub fn new(name: &'static CStr, module: &'static ThisModule) -> impl PinInit<Self, Error> { 167 try_pin_init!(Self { 168 reg <- Opaque::try_ffi_init(|ptr: *mut T::RegType| { 169 // SAFETY: `try_ffi_init` guarantees that `ptr` is valid for write. 170 unsafe { ptr.write(T::RegType::default()) }; 171 172 // SAFETY: `try_ffi_init` guarantees that `ptr` is valid for write, and it has 173 // just been initialised above, so it's also valid for read. 174 let drv = unsafe { &*(ptr as *const Opaque<T::RegType>) }; 175 176 // SAFETY: `drv` is guaranteed to be pinned until `T::unregister`. 177 unsafe { T::register(drv, name, module) } 178 }), 179 }) 180 } 181 } 182 183 #[pinned_drop] 184 impl<T: RegistrationOps> PinnedDrop for Registration<T> { 185 fn drop(self: Pin<&mut Self>) { 186 // SAFETY: The existence of `self` guarantees that `self.reg` has previously been 187 // successfully registered with `T::register` 188 unsafe { T::unregister(&self.reg) }; 189 } 190 } 191 192 /// Declares a kernel module that exposes a single driver. 193 /// 194 /// It is meant to be used as a helper by other subsystems so they can more easily expose their own 195 /// macros. 196 #[macro_export] 197 macro_rules! module_driver { 198 (<$gen_type:ident>, $driver_ops:ty, { type: $type:ty, $($f:tt)* }) => { 199 type Ops<$gen_type> = $driver_ops; 200 201 #[$crate::prelude::pin_data] 202 struct DriverModule { 203 #[pin] 204 _driver: $crate::driver::Registration<Ops<$type>>, 205 } 206 207 impl $crate::InPlaceModule for DriverModule { 208 fn init( 209 module: &'static $crate::ThisModule 210 ) -> impl ::pin_init::PinInit<Self, $crate::error::Error> { 211 $crate::try_pin_init!(Self { 212 _driver <- $crate::driver::Registration::new( 213 <Self as $crate::ModuleMetadata>::NAME, 214 module, 215 ), 216 }) 217 } 218 } 219 220 $crate::prelude::module! { 221 type: DriverModule, 222 $($f)* 223 } 224 } 225 } 226 227 /// The bus independent adapter to match a drivers and a devices. 228 /// 229 /// This trait should be implemented by the bus specific adapter, which represents the connection 230 /// of a device and a driver. 231 /// 232 /// It provides bus independent functions for device / driver interactions. 233 pub trait Adapter { 234 /// The type holding driver private data about each device id supported by the driver. 235 type IdInfo: 'static; 236 237 /// The [`acpi::IdTable`] of the corresponding driver 238 fn acpi_id_table() -> Option<acpi::IdTable<Self::IdInfo>>; 239 240 /// Returns the driver's private data from the matching entry in the [`acpi::IdTable`], if any. 241 /// 242 /// If this returns `None`, it means there is no match with an entry in the [`acpi::IdTable`]. 243 fn acpi_id_info(dev: &device::Device) -> Option<&'static Self::IdInfo> { 244 #[cfg(not(CONFIG_ACPI))] 245 { 246 let _ = dev; 247 None 248 } 249 250 #[cfg(CONFIG_ACPI)] 251 { 252 let table = Self::acpi_id_table()?; 253 254 // SAFETY: 255 // - `table` has static lifetime, hence it's valid for read, 256 // - `dev` is guaranteed to be valid while it's alive, and so is `dev.as_raw()`. 257 let raw_id = unsafe { bindings::acpi_match_device(table.as_ptr(), dev.as_raw()) }; 258 259 if raw_id.is_null() { 260 None 261 } else { 262 // SAFETY: `DeviceId` is a `#[repr(transparent)]` wrapper of `struct acpi_device_id` 263 // and does not add additional invariants, so it's safe to transmute. 264 let id = unsafe { &*raw_id.cast::<acpi::DeviceId>() }; 265 266 Some(table.info(<acpi::DeviceId as crate::device_id::RawDeviceIdIndex>::index(id))) 267 } 268 } 269 } 270 271 /// The [`of::IdTable`] of the corresponding driver. 272 fn of_id_table() -> Option<of::IdTable<Self::IdInfo>>; 273 274 /// Returns the driver's private data from the matching entry in the [`of::IdTable`], if any. 275 /// 276 /// If this returns `None`, it means there is no match with an entry in the [`of::IdTable`]. 277 fn of_id_info(dev: &device::Device) -> Option<&'static Self::IdInfo> { 278 #[cfg(not(CONFIG_OF))] 279 { 280 let _ = dev; 281 None 282 } 283 284 #[cfg(CONFIG_OF)] 285 { 286 let table = Self::of_id_table()?; 287 288 // SAFETY: 289 // - `table` has static lifetime, hence it's valid for read, 290 // - `dev` is guaranteed to be valid while it's alive, and so is `dev.as_raw()`. 291 let raw_id = unsafe { bindings::of_match_device(table.as_ptr(), dev.as_raw()) }; 292 293 if raw_id.is_null() { 294 None 295 } else { 296 // SAFETY: `DeviceId` is a `#[repr(transparent)]` wrapper of `struct of_device_id` 297 // and does not add additional invariants, so it's safe to transmute. 298 let id = unsafe { &*raw_id.cast::<of::DeviceId>() }; 299 300 Some( 301 table.info(<of::DeviceId as crate::device_id::RawDeviceIdIndex>::index( 302 id, 303 )), 304 ) 305 } 306 } 307 } 308 309 /// Returns the driver's private data from the matching entry of any of the ID tables, if any. 310 /// 311 /// If this returns `None`, it means that there is no match in any of the ID tables directly 312 /// associated with a [`device::Device`]. 313 fn id_info(dev: &device::Device) -> Option<&'static Self::IdInfo> { 314 let id = Self::acpi_id_info(dev); 315 if id.is_some() { 316 return id; 317 } 318 319 let id = Self::of_id_info(dev); 320 if id.is_some() { 321 return id; 322 } 323 324 None 325 } 326 } 327