1 // SPDX-License-Identifier: GPL-2.0 2 3 //! Generic support for drivers of different buses (e.g., PCI, Platform, Amba, etc.). 4 //! 5 //! This documentation describes how to implement a bus specific driver API and how to align it with 6 //! the design of (bus specific) devices. 7 //! 8 //! Note: Readers are expected to know the content of the documentation of [`Device`] and 9 //! [`DeviceContext`]. 10 //! 11 //! # Driver Trait 12 //! 13 //! The main driver interface is defined by a bus specific driver trait. For instance: 14 //! 15 //! ```ignore 16 //! pub trait Driver: Send { 17 //! /// The type holding information about each device ID supported by the driver. 18 //! type IdInfo: 'static; 19 //! 20 //! /// The table of OF device ids supported by the driver. 21 //! const OF_ID_TABLE: Option<of::IdTable<Self::IdInfo>> = None; 22 //! 23 //! /// The table of ACPI device ids supported by the driver. 24 //! const ACPI_ID_TABLE: Option<acpi::IdTable<Self::IdInfo>> = None; 25 //! 26 //! /// Driver probe. 27 //! fn probe(dev: &Device<device::Core>, id_info: &Self::IdInfo) -> impl PinInit<Self, Error>; 28 //! 29 //! /// Driver unbind (optional). 30 //! fn unbind(dev: &Device<device::Core>, this: Pin<&Self>) { 31 //! let _ = (dev, this); 32 //! } 33 //! } 34 //! ``` 35 //! 36 //! For specific examples see: 37 //! 38 //! * [`platform::Driver`](kernel::platform::Driver) 39 #" 42 )] 43 #")] 44 //! 45 //! The `probe()` callback should return a `impl PinInit<Self, Error>`, i.e. the driver's private 46 //! data. The bus abstraction should store the pointer in the corresponding bus device. The generic 47 //! [`Device`] infrastructure provides common helpers for this purpose on its 48 //! [`Device<CoreInternal>`] implementation. 49 //! 50 //! All driver callbacks should provide a reference to the driver's private data. Once the driver 51 //! is unbound from the device, the bus abstraction should take back the ownership of the driver's 52 //! private data from the corresponding [`Device`] and [`drop`] it. 53 //! 54 //! All driver callbacks should provide a [`Device<Core>`] reference (see also [`device::Core`]). 55 //! 56 //! # Adapter 57 //! 58 //! The adapter implementation of a bus represents the abstraction layer between the C bus 59 //! callbacks and the Rust bus callbacks. It therefore has to be generic over an implementation of 60 //! the [driver trait](#driver-trait). 61 //! 62 //! ```ignore 63 //! pub struct Adapter<T: Driver>; 64 //! ``` 65 //! 66 //! There's a common [`Adapter`] trait that can be implemented to inherit common driver 67 //! infrastructure, such as finding the ID info from an [`of::IdTable`] or [`acpi::IdTable`]. 68 //! 69 //! # Driver Registration 70 //! 71 //! In order to register C driver types (such as `struct platform_driver`) the [adapter](#adapter) 72 //! should implement the [`RegistrationOps`] trait. 73 //! 74 //! This trait implementation can be used to create the actual registration with the common 75 //! [`Registration`] type. 76 //! 77 //! Typically, bus abstractions want to provide a bus specific `module_bus_driver!` macro, which 78 //! creates a kernel module with exactly one [`Registration`] for the bus specific adapter. 79 //! 80 //! The generic driver infrastructure provides a helper for this with the [`module_driver`] macro. 81 //! 82 //! # Device IDs 83 //! 84 //! Besides the common device ID types, such as [`of::DeviceId`] and [`acpi::DeviceId`], most buses 85 //! may need to implement their own device ID types. 86 //! 87 //! For this purpose the generic infrastructure in [`device_id`] should be used. 88 //! 89 //! [`Core`]: device::Core 90 //! [`Device`]: device::Device 91 //! [`Device<Core>`]: device::Device<device::Core> 92 //! [`Device<CoreInternal>`]: device::Device<device::CoreInternal> 93 //! [`DeviceContext`]: device::DeviceContext 94 //! [`device_id`]: kernel::device_id 95 //! [`module_driver`]: kernel::module_driver 96 97 use crate::error::{Error, Result}; 98 use crate::{acpi, device, of, str::CStr, try_pin_init, types::Opaque, ThisModule}; 99 use core::pin::Pin; 100 use pin_init::{pin_data, pinned_drop, PinInit}; 101 102 /// The [`RegistrationOps`] trait serves as generic interface for subsystems (e.g., PCI, Platform, 103 /// Amba, etc.) to provide the corresponding subsystem specific implementation to register / 104 /// unregister a driver of the particular type (`RegType`). 105 /// 106 /// For instance, the PCI subsystem would set `RegType` to `bindings::pci_driver` and call 107 /// `bindings::__pci_register_driver` from `RegistrationOps::register` and 108 /// `bindings::pci_unregister_driver` from `RegistrationOps::unregister`. 109 /// 110 /// # Safety 111 /// 112 /// A call to [`RegistrationOps::unregister`] for a given instance of `RegType` is only valid if a 113 /// preceding call to [`RegistrationOps::register`] has been successful. 114 pub unsafe trait RegistrationOps { 115 /// The type that holds information about the registration. This is typically a struct defined 116 /// by the C portion of the kernel. 117 type RegType: Default; 118 119 /// Registers a driver. 120 /// 121 /// # Safety 122 /// 123 /// On success, `reg` must remain pinned and valid until the matching call to 124 /// [`RegistrationOps::unregister`]. 125 unsafe fn register( 126 reg: &Opaque<Self::RegType>, 127 name: &'static CStr, 128 module: &'static ThisModule, 129 ) -> Result; 130 131 /// Unregisters a driver previously registered with [`RegistrationOps::register`]. 132 /// 133 /// # Safety 134 /// 135 /// Must only be called after a preceding successful call to [`RegistrationOps::register`] for 136 /// the same `reg`. 137 unsafe fn unregister(reg: &Opaque<Self::RegType>); 138 } 139 140 /// A [`Registration`] is a generic type that represents the registration of some driver type (e.g. 141 /// `bindings::pci_driver`). Therefore a [`Registration`] must be initialized with a type that 142 /// implements the [`RegistrationOps`] trait, such that the generic `T::register` and 143 /// `T::unregister` calls result in the subsystem specific registration calls. 144 /// 145 ///Once the `Registration` structure is dropped, the driver is unregistered. 146 #[pin_data(PinnedDrop)] 147 pub struct Registration<T: RegistrationOps> { 148 #[pin] 149 reg: Opaque<T::RegType>, 150 } 151 152 // SAFETY: `Registration` has no fields or methods accessible via `&Registration`, so it is safe to 153 // share references to it with multiple threads as nothing can be done. 154 unsafe impl<T: RegistrationOps> Sync for Registration<T> {} 155 156 // SAFETY: Both registration and unregistration are implemented in C and safe to be performed from 157 // any thread, so `Registration` is `Send`. 158 unsafe impl<T: RegistrationOps> Send for Registration<T> {} 159 160 impl<T: RegistrationOps> Registration<T> { 161 /// Creates a new instance of the registration object. 162 pub fn new(name: &'static CStr, module: &'static ThisModule) -> impl PinInit<Self, Error> { 163 try_pin_init!(Self { 164 reg <- Opaque::try_ffi_init(|ptr: *mut T::RegType| { 165 // SAFETY: `try_ffi_init` guarantees that `ptr` is valid for write. 166 unsafe { ptr.write(T::RegType::default()) }; 167 168 // SAFETY: `try_ffi_init` guarantees that `ptr` is valid for write, and it has 169 // just been initialised above, so it's also valid for read. 170 let drv = unsafe { &*(ptr as *const Opaque<T::RegType>) }; 171 172 // SAFETY: `drv` is guaranteed to be pinned until `T::unregister`. 173 unsafe { T::register(drv, name, module) } 174 }), 175 }) 176 } 177 } 178 179 #[pinned_drop] 180 impl<T: RegistrationOps> PinnedDrop for Registration<T> { 181 fn drop(self: Pin<&mut Self>) { 182 // SAFETY: The existence of `self` guarantees that `self.reg` has previously been 183 // successfully registered with `T::register` 184 unsafe { T::unregister(&self.reg) }; 185 } 186 } 187 188 /// Declares a kernel module that exposes a single driver. 189 /// 190 /// It is meant to be used as a helper by other subsystems so they can more easily expose their own 191 /// macros. 192 #[macro_export] 193 macro_rules! module_driver { 194 (<$gen_type:ident>, $driver_ops:ty, { type: $type:ty, $($f:tt)* }) => { 195 type Ops<$gen_type> = $driver_ops; 196 197 #[$crate::prelude::pin_data] 198 struct DriverModule { 199 #[pin] 200 _driver: $crate::driver::Registration<Ops<$type>>, 201 } 202 203 impl $crate::InPlaceModule for DriverModule { 204 fn init( 205 module: &'static $crate::ThisModule 206 ) -> impl ::pin_init::PinInit<Self, $crate::error::Error> { 207 $crate::try_pin_init!(Self { 208 _driver <- $crate::driver::Registration::new( 209 <Self as $crate::ModuleMetadata>::NAME, 210 module, 211 ), 212 }) 213 } 214 } 215 216 $crate::prelude::module! { 217 type: DriverModule, 218 $($f)* 219 } 220 } 221 } 222 223 /// The bus independent adapter to match a drivers and a devices. 224 /// 225 /// This trait should be implemented by the bus specific adapter, which represents the connection 226 /// of a device and a driver. 227 /// 228 /// It provides bus independent functions for device / driver interactions. 229 pub trait Adapter { 230 /// The type holding driver private data about each device id supported by the driver. 231 type IdInfo: 'static; 232 233 /// The [`acpi::IdTable`] of the corresponding driver 234 fn acpi_id_table() -> Option<acpi::IdTable<Self::IdInfo>>; 235 236 /// Returns the driver's private data from the matching entry in the [`acpi::IdTable`], if any. 237 /// 238 /// If this returns `None`, it means there is no match with an entry in the [`acpi::IdTable`]. 239 fn acpi_id_info(dev: &device::Device) -> Option<&'static Self::IdInfo> { 240 #[cfg(not(CONFIG_ACPI))] 241 { 242 let _ = dev; 243 None 244 } 245 246 #[cfg(CONFIG_ACPI)] 247 { 248 let table = Self::acpi_id_table()?; 249 250 // SAFETY: 251 // - `table` has static lifetime, hence it's valid for read, 252 // - `dev` is guaranteed to be valid while it's alive, and so is `dev.as_raw()`. 253 let raw_id = unsafe { bindings::acpi_match_device(table.as_ptr(), dev.as_raw()) }; 254 255 if raw_id.is_null() { 256 None 257 } else { 258 // SAFETY: `DeviceId` is a `#[repr(transparent)]` wrapper of `struct acpi_device_id` 259 // and does not add additional invariants, so it's safe to transmute. 260 let id = unsafe { &*raw_id.cast::<acpi::DeviceId>() }; 261 262 Some(table.info(<acpi::DeviceId as crate::device_id::RawDeviceIdIndex>::index(id))) 263 } 264 } 265 } 266 267 /// The [`of::IdTable`] of the corresponding driver. 268 fn of_id_table() -> Option<of::IdTable<Self::IdInfo>>; 269 270 /// Returns the driver's private data from the matching entry in the [`of::IdTable`], if any. 271 /// 272 /// If this returns `None`, it means there is no match with an entry in the [`of::IdTable`]. 273 fn of_id_info(dev: &device::Device) -> Option<&'static Self::IdInfo> { 274 #[cfg(not(CONFIG_OF))] 275 { 276 let _ = dev; 277 None 278 } 279 280 #[cfg(CONFIG_OF)] 281 { 282 let table = Self::of_id_table()?; 283 284 // SAFETY: 285 // - `table` has static lifetime, hence it's valid for read, 286 // - `dev` is guaranteed to be valid while it's alive, and so is `dev.as_raw()`. 287 let raw_id = unsafe { bindings::of_match_device(table.as_ptr(), dev.as_raw()) }; 288 289 if raw_id.is_null() { 290 None 291 } else { 292 // SAFETY: `DeviceId` is a `#[repr(transparent)]` wrapper of `struct of_device_id` 293 // and does not add additional invariants, so it's safe to transmute. 294 let id = unsafe { &*raw_id.cast::<of::DeviceId>() }; 295 296 Some( 297 table.info(<of::DeviceId as crate::device_id::RawDeviceIdIndex>::index( 298 id, 299 )), 300 ) 301 } 302 } 303 } 304 305 /// Returns the driver's private data from the matching entry of any of the ID tables, if any. 306 /// 307 /// If this returns `None`, it means that there is no match in any of the ID tables directly 308 /// associated with a [`device::Device`]. 309 fn id_info(dev: &device::Device) -> Option<&'static Self::IdInfo> { 310 let id = Self::acpi_id_info(dev); 311 if id.is_some() { 312 return id; 313 } 314 315 let id = Self::of_id_info(dev); 316 if id.is_some() { 317 return id; 318 } 319 320 None 321 } 322 } 323