1ad2907b4SAbdiel Janulgue // SPDX-License-Identifier: GPL-2.0 2ad2907b4SAbdiel Janulgue 3ad2907b4SAbdiel Janulgue //! Direct memory access (DMA). 4ad2907b4SAbdiel Janulgue //! 5ad2907b4SAbdiel Janulgue //! C header: [`include/linux/dma-mapping.h`](srctree/include/linux/dma-mapping.h) 6ad2907b4SAbdiel Janulgue 7ad2907b4SAbdiel Janulgue use crate::{ 8ad2907b4SAbdiel Janulgue bindings, build_assert, 97bd1710aSDanilo Krummrich device::{Bound, Device}, 10ad2907b4SAbdiel Janulgue error::code::*, 11ad2907b4SAbdiel Janulgue error::Result, 12ad2907b4SAbdiel Janulgue transmute::{AsBytes, FromBytes}, 13ad2907b4SAbdiel Janulgue types::ARef, 14ad2907b4SAbdiel Janulgue }; 15ad2907b4SAbdiel Janulgue 16ad2907b4SAbdiel Janulgue /// Possible attributes associated with a DMA mapping. 17ad2907b4SAbdiel Janulgue /// 18ad2907b4SAbdiel Janulgue /// They can be combined with the operators `|`, `&`, and `!`. 19ad2907b4SAbdiel Janulgue /// 20ad2907b4SAbdiel Janulgue /// Values can be used from the [`attrs`] module. 21ad2907b4SAbdiel Janulgue /// 22ad2907b4SAbdiel Janulgue /// # Examples 23ad2907b4SAbdiel Janulgue /// 24ad2907b4SAbdiel Janulgue /// ``` 257bd1710aSDanilo Krummrich /// # use kernel::device::{Bound, Device}; 26ad2907b4SAbdiel Janulgue /// use kernel::dma::{attrs::*, CoherentAllocation}; 27ad2907b4SAbdiel Janulgue /// 287bd1710aSDanilo Krummrich /// # fn test(dev: &Device<Bound>) -> Result { 29ad2907b4SAbdiel Janulgue /// let attribs = DMA_ATTR_FORCE_CONTIGUOUS | DMA_ATTR_NO_WARN; 30ad2907b4SAbdiel Janulgue /// let c: CoherentAllocation<u64> = 31ad2907b4SAbdiel Janulgue /// CoherentAllocation::alloc_attrs(dev, 4, GFP_KERNEL, attribs)?; 32ad2907b4SAbdiel Janulgue /// # Ok::<(), Error>(()) } 33ad2907b4SAbdiel Janulgue /// ``` 34ad2907b4SAbdiel Janulgue #[derive(Clone, Copy, PartialEq)] 35ad2907b4SAbdiel Janulgue #[repr(transparent)] 36ad2907b4SAbdiel Janulgue pub struct Attrs(u32); 37ad2907b4SAbdiel Janulgue 38ad2907b4SAbdiel Janulgue impl Attrs { 39ad2907b4SAbdiel Janulgue /// Get the raw representation of this attribute. as_raw(self) -> crate::ffi::c_ulong40ad2907b4SAbdiel Janulgue pub(crate) fn as_raw(self) -> crate::ffi::c_ulong { 41ad2907b4SAbdiel Janulgue self.0 as _ 42ad2907b4SAbdiel Janulgue } 43ad2907b4SAbdiel Janulgue 44ad2907b4SAbdiel Janulgue /// Check whether `flags` is contained in `self`. contains(self, flags: Attrs) -> bool45ad2907b4SAbdiel Janulgue pub fn contains(self, flags: Attrs) -> bool { 46ad2907b4SAbdiel Janulgue (self & flags) == flags 47ad2907b4SAbdiel Janulgue } 48ad2907b4SAbdiel Janulgue } 49ad2907b4SAbdiel Janulgue 50ad2907b4SAbdiel Janulgue impl core::ops::BitOr for Attrs { 51ad2907b4SAbdiel Janulgue type Output = Self; bitor(self, rhs: Self) -> Self::Output52ad2907b4SAbdiel Janulgue fn bitor(self, rhs: Self) -> Self::Output { 53ad2907b4SAbdiel Janulgue Self(self.0 | rhs.0) 54ad2907b4SAbdiel Janulgue } 55ad2907b4SAbdiel Janulgue } 56ad2907b4SAbdiel Janulgue 57ad2907b4SAbdiel Janulgue impl core::ops::BitAnd for Attrs { 58ad2907b4SAbdiel Janulgue type Output = Self; bitand(self, rhs: Self) -> Self::Output59ad2907b4SAbdiel Janulgue fn bitand(self, rhs: Self) -> Self::Output { 60ad2907b4SAbdiel Janulgue Self(self.0 & rhs.0) 61ad2907b4SAbdiel Janulgue } 62ad2907b4SAbdiel Janulgue } 63ad2907b4SAbdiel Janulgue 64ad2907b4SAbdiel Janulgue impl core::ops::Not for Attrs { 65ad2907b4SAbdiel Janulgue type Output = Self; not(self) -> Self::Output66ad2907b4SAbdiel Janulgue fn not(self) -> Self::Output { 67ad2907b4SAbdiel Janulgue Self(!self.0) 68ad2907b4SAbdiel Janulgue } 69ad2907b4SAbdiel Janulgue } 70ad2907b4SAbdiel Janulgue 71ad2907b4SAbdiel Janulgue /// DMA mapping attributes. 72ad2907b4SAbdiel Janulgue pub mod attrs { 73ad2907b4SAbdiel Janulgue use super::Attrs; 74ad2907b4SAbdiel Janulgue 75ad2907b4SAbdiel Janulgue /// Specifies that reads and writes to the mapping may be weakly ordered, that is that reads 76ad2907b4SAbdiel Janulgue /// and writes may pass each other. 77ad2907b4SAbdiel Janulgue pub const DMA_ATTR_WEAK_ORDERING: Attrs = Attrs(bindings::DMA_ATTR_WEAK_ORDERING); 78ad2907b4SAbdiel Janulgue 79ad2907b4SAbdiel Janulgue /// Specifies that writes to the mapping may be buffered to improve performance. 80ad2907b4SAbdiel Janulgue pub const DMA_ATTR_WRITE_COMBINE: Attrs = Attrs(bindings::DMA_ATTR_WRITE_COMBINE); 81ad2907b4SAbdiel Janulgue 82ad2907b4SAbdiel Janulgue /// Lets the platform to avoid creating a kernel virtual mapping for the allocated buffer. 83ad2907b4SAbdiel Janulgue pub const DMA_ATTR_NO_KERNEL_MAPPING: Attrs = Attrs(bindings::DMA_ATTR_NO_KERNEL_MAPPING); 84ad2907b4SAbdiel Janulgue 85ad2907b4SAbdiel Janulgue /// Allows platform code to skip synchronization of the CPU cache for the given buffer assuming 86ad2907b4SAbdiel Janulgue /// that it has been already transferred to 'device' domain. 87ad2907b4SAbdiel Janulgue pub const DMA_ATTR_SKIP_CPU_SYNC: Attrs = Attrs(bindings::DMA_ATTR_SKIP_CPU_SYNC); 88ad2907b4SAbdiel Janulgue 89ad2907b4SAbdiel Janulgue /// Forces contiguous allocation of the buffer in physical memory. 90ad2907b4SAbdiel Janulgue pub const DMA_ATTR_FORCE_CONTIGUOUS: Attrs = Attrs(bindings::DMA_ATTR_FORCE_CONTIGUOUS); 91ad2907b4SAbdiel Janulgue 92ad2907b4SAbdiel Janulgue /// This is a hint to the DMA-mapping subsystem that it's probably not worth the time to try 93ad2907b4SAbdiel Janulgue /// to allocate memory to in a way that gives better TLB efficiency. 94ad2907b4SAbdiel Janulgue pub const DMA_ATTR_ALLOC_SINGLE_PAGES: Attrs = Attrs(bindings::DMA_ATTR_ALLOC_SINGLE_PAGES); 95ad2907b4SAbdiel Janulgue 96ad2907b4SAbdiel Janulgue /// This tells the DMA-mapping subsystem to suppress allocation failure reports (similarly to 97*df523db1SMiguel Ojeda /// `__GFP_NOWARN`). 98ad2907b4SAbdiel Janulgue pub const DMA_ATTR_NO_WARN: Attrs = Attrs(bindings::DMA_ATTR_NO_WARN); 99ad2907b4SAbdiel Janulgue 100ad2907b4SAbdiel Janulgue /// Used to indicate that the buffer is fully accessible at an elevated privilege level (and 101ad2907b4SAbdiel Janulgue /// ideally inaccessible or at least read-only at lesser-privileged levels). 102ad2907b4SAbdiel Janulgue pub const DMA_ATTR_PRIVILEGED: Attrs = Attrs(bindings::DMA_ATTR_PRIVILEGED); 103ad2907b4SAbdiel Janulgue } 104ad2907b4SAbdiel Janulgue 105ad2907b4SAbdiel Janulgue /// An abstraction of the `dma_alloc_coherent` API. 106ad2907b4SAbdiel Janulgue /// 107ad2907b4SAbdiel Janulgue /// This is an abstraction around the `dma_alloc_coherent` API which is used to allocate and map 108ad2907b4SAbdiel Janulgue /// large consistent DMA regions. 109ad2907b4SAbdiel Janulgue /// 110ad2907b4SAbdiel Janulgue /// A [`CoherentAllocation`] instance contains a pointer to the allocated region (in the 111ad2907b4SAbdiel Janulgue /// processor's virtual address space) and the device address which can be given to the device 112ad2907b4SAbdiel Janulgue /// as the DMA address base of the region. The region is released once [`CoherentAllocation`] 113ad2907b4SAbdiel Janulgue /// is dropped. 114ad2907b4SAbdiel Janulgue /// 115ad2907b4SAbdiel Janulgue /// # Invariants 116ad2907b4SAbdiel Janulgue /// 117ad2907b4SAbdiel Janulgue /// For the lifetime of an instance of [`CoherentAllocation`], the `cpu_addr` is a valid pointer 118ad2907b4SAbdiel Janulgue /// to an allocated region of consistent memory and `dma_handle` is the DMA address base of 119ad2907b4SAbdiel Janulgue /// the region. 120ad2907b4SAbdiel Janulgue // TODO 121ad2907b4SAbdiel Janulgue // 122ad2907b4SAbdiel Janulgue // DMA allocations potentially carry device resources (e.g.IOMMU mappings), hence for soundness 123ad2907b4SAbdiel Janulgue // reasons DMA allocation would need to be embedded in a `Devres` container, in order to ensure 124ad2907b4SAbdiel Janulgue // that device resources can never survive device unbind. 125ad2907b4SAbdiel Janulgue // 126ad2907b4SAbdiel Janulgue // However, it is neither desirable nor necessary to protect the allocated memory of the DMA 127ad2907b4SAbdiel Janulgue // allocation from surviving device unbind; it would require RCU read side critical sections to 128ad2907b4SAbdiel Janulgue // access the memory, which may require subsequent unnecessary copies. 129ad2907b4SAbdiel Janulgue // 130ad2907b4SAbdiel Janulgue // Hence, find a way to revoke the device resources of a `CoherentAllocation`, but not the 131ad2907b4SAbdiel Janulgue // entire `CoherentAllocation` including the allocated memory itself. 132ad2907b4SAbdiel Janulgue pub struct CoherentAllocation<T: AsBytes + FromBytes> { 133ad2907b4SAbdiel Janulgue dev: ARef<Device>, 134ad2907b4SAbdiel Janulgue dma_handle: bindings::dma_addr_t, 135ad2907b4SAbdiel Janulgue count: usize, 136ad2907b4SAbdiel Janulgue cpu_addr: *mut T, 137ad2907b4SAbdiel Janulgue dma_attrs: Attrs, 138ad2907b4SAbdiel Janulgue } 139ad2907b4SAbdiel Janulgue 140ad2907b4SAbdiel Janulgue impl<T: AsBytes + FromBytes> CoherentAllocation<T> { 141ad2907b4SAbdiel Janulgue /// Allocates a region of `size_of::<T> * count` of consistent memory. 142ad2907b4SAbdiel Janulgue /// 143ad2907b4SAbdiel Janulgue /// # Examples 144ad2907b4SAbdiel Janulgue /// 145ad2907b4SAbdiel Janulgue /// ``` 1467bd1710aSDanilo Krummrich /// # use kernel::device::{Bound, Device}; 147ad2907b4SAbdiel Janulgue /// use kernel::dma::{attrs::*, CoherentAllocation}; 148ad2907b4SAbdiel Janulgue /// 1497bd1710aSDanilo Krummrich /// # fn test(dev: &Device<Bound>) -> Result { 150ad2907b4SAbdiel Janulgue /// let c: CoherentAllocation<u64> = 151ad2907b4SAbdiel Janulgue /// CoherentAllocation::alloc_attrs(dev, 4, GFP_KERNEL, DMA_ATTR_NO_WARN)?; 152ad2907b4SAbdiel Janulgue /// # Ok::<(), Error>(()) } 153ad2907b4SAbdiel Janulgue /// ``` alloc_attrs( dev: &Device<Bound>, count: usize, gfp_flags: kernel::alloc::Flags, dma_attrs: Attrs, ) -> Result<CoherentAllocation<T>>154ad2907b4SAbdiel Janulgue pub fn alloc_attrs( 1557bd1710aSDanilo Krummrich dev: &Device<Bound>, 156ad2907b4SAbdiel Janulgue count: usize, 157ad2907b4SAbdiel Janulgue gfp_flags: kernel::alloc::Flags, 158ad2907b4SAbdiel Janulgue dma_attrs: Attrs, 159ad2907b4SAbdiel Janulgue ) -> Result<CoherentAllocation<T>> { 160ad2907b4SAbdiel Janulgue build_assert!( 161ad2907b4SAbdiel Janulgue core::mem::size_of::<T>() > 0, 162ad2907b4SAbdiel Janulgue "It doesn't make sense for the allocated type to be a ZST" 163ad2907b4SAbdiel Janulgue ); 164ad2907b4SAbdiel Janulgue 165ad2907b4SAbdiel Janulgue let size = count 166ad2907b4SAbdiel Janulgue .checked_mul(core::mem::size_of::<T>()) 167ad2907b4SAbdiel Janulgue .ok_or(EOVERFLOW)?; 168ad2907b4SAbdiel Janulgue let mut dma_handle = 0; 169ad2907b4SAbdiel Janulgue // SAFETY: Device pointer is guaranteed as valid by the type invariant on `Device`. 170ad2907b4SAbdiel Janulgue let ret = unsafe { 171ad2907b4SAbdiel Janulgue bindings::dma_alloc_attrs( 172ad2907b4SAbdiel Janulgue dev.as_raw(), 173ad2907b4SAbdiel Janulgue size, 174ad2907b4SAbdiel Janulgue &mut dma_handle, 175ad2907b4SAbdiel Janulgue gfp_flags.as_raw(), 176ad2907b4SAbdiel Janulgue dma_attrs.as_raw(), 177ad2907b4SAbdiel Janulgue ) 178ad2907b4SAbdiel Janulgue }; 179ad2907b4SAbdiel Janulgue if ret.is_null() { 180ad2907b4SAbdiel Janulgue return Err(ENOMEM); 181ad2907b4SAbdiel Janulgue } 182ad2907b4SAbdiel Janulgue // INVARIANT: We just successfully allocated a coherent region which is accessible for 183ad2907b4SAbdiel Janulgue // `count` elements, hence the cpu address is valid. We also hold a refcounted reference 184ad2907b4SAbdiel Janulgue // to the device. 185ad2907b4SAbdiel Janulgue Ok(Self { 186ad2907b4SAbdiel Janulgue dev: dev.into(), 187ad2907b4SAbdiel Janulgue dma_handle, 188ad2907b4SAbdiel Janulgue count, 189ad2907b4SAbdiel Janulgue cpu_addr: ret as *mut T, 190ad2907b4SAbdiel Janulgue dma_attrs, 191ad2907b4SAbdiel Janulgue }) 192ad2907b4SAbdiel Janulgue } 193ad2907b4SAbdiel Janulgue 194ad2907b4SAbdiel Janulgue /// Performs the same functionality as [`CoherentAllocation::alloc_attrs`], except the 195ad2907b4SAbdiel Janulgue /// `dma_attrs` is 0 by default. alloc_coherent( dev: &Device<Bound>, count: usize, gfp_flags: kernel::alloc::Flags, ) -> Result<CoherentAllocation<T>>196ad2907b4SAbdiel Janulgue pub fn alloc_coherent( 1977bd1710aSDanilo Krummrich dev: &Device<Bound>, 198ad2907b4SAbdiel Janulgue count: usize, 199ad2907b4SAbdiel Janulgue gfp_flags: kernel::alloc::Flags, 200ad2907b4SAbdiel Janulgue ) -> Result<CoherentAllocation<T>> { 201ad2907b4SAbdiel Janulgue CoherentAllocation::alloc_attrs(dev, count, gfp_flags, Attrs(0)) 202ad2907b4SAbdiel Janulgue } 203ad2907b4SAbdiel Janulgue 204ad2907b4SAbdiel Janulgue /// Returns the base address to the allocated region in the CPU's virtual address space. start_ptr(&self) -> *const T205ad2907b4SAbdiel Janulgue pub fn start_ptr(&self) -> *const T { 206ad2907b4SAbdiel Janulgue self.cpu_addr 207ad2907b4SAbdiel Janulgue } 208ad2907b4SAbdiel Janulgue 209ad2907b4SAbdiel Janulgue /// Returns the base address to the allocated region in the CPU's virtual address space as 210ad2907b4SAbdiel Janulgue /// a mutable pointer. start_ptr_mut(&mut self) -> *mut T211ad2907b4SAbdiel Janulgue pub fn start_ptr_mut(&mut self) -> *mut T { 212ad2907b4SAbdiel Janulgue self.cpu_addr 213ad2907b4SAbdiel Janulgue } 214ad2907b4SAbdiel Janulgue 215ad2907b4SAbdiel Janulgue /// Returns a DMA handle which may given to the device as the DMA address base of 216ad2907b4SAbdiel Janulgue /// the region. dma_handle(&self) -> bindings::dma_addr_t217ad2907b4SAbdiel Janulgue pub fn dma_handle(&self) -> bindings::dma_addr_t { 218ad2907b4SAbdiel Janulgue self.dma_handle 219ad2907b4SAbdiel Janulgue } 220ad2907b4SAbdiel Janulgue 221ad2907b4SAbdiel Janulgue /// Returns a pointer to an element from the region with bounds checking. `offset` is in 222ad2907b4SAbdiel Janulgue /// units of `T`, not the number of bytes. 223ad2907b4SAbdiel Janulgue /// 224ad2907b4SAbdiel Janulgue /// Public but hidden since it should only be used from [`dma_read`] and [`dma_write`] macros. 225ad2907b4SAbdiel Janulgue #[doc(hidden)] item_from_index(&self, offset: usize) -> Result<*mut T>226ad2907b4SAbdiel Janulgue pub fn item_from_index(&self, offset: usize) -> Result<*mut T> { 227ad2907b4SAbdiel Janulgue if offset >= self.count { 228ad2907b4SAbdiel Janulgue return Err(EINVAL); 229ad2907b4SAbdiel Janulgue } 230ad2907b4SAbdiel Janulgue // SAFETY: 231ad2907b4SAbdiel Janulgue // - The pointer is valid due to type invariant on `CoherentAllocation` 232ad2907b4SAbdiel Janulgue // and we've just checked that the range and index is within bounds. 233ad2907b4SAbdiel Janulgue // - `offset` can't overflow since it is smaller than `self.count` and we've checked 234ad2907b4SAbdiel Janulgue // that `self.count` won't overflow early in the constructor. 235ad2907b4SAbdiel Janulgue Ok(unsafe { self.cpu_addr.add(offset) }) 236ad2907b4SAbdiel Janulgue } 237ad2907b4SAbdiel Janulgue 238ad2907b4SAbdiel Janulgue /// Reads the value of `field` and ensures that its type is [`FromBytes`]. 239ad2907b4SAbdiel Janulgue /// 240ad2907b4SAbdiel Janulgue /// # Safety 241ad2907b4SAbdiel Janulgue /// 242ad2907b4SAbdiel Janulgue /// This must be called from the [`dma_read`] macro which ensures that the `field` pointer is 243ad2907b4SAbdiel Janulgue /// validated beforehand. 244ad2907b4SAbdiel Janulgue /// 245ad2907b4SAbdiel Janulgue /// Public but hidden since it should only be used from [`dma_read`] macro. 246ad2907b4SAbdiel Janulgue #[doc(hidden)] field_read<F: FromBytes>(&self, field: *const F) -> F247ad2907b4SAbdiel Janulgue pub unsafe fn field_read<F: FromBytes>(&self, field: *const F) -> F { 248ad2907b4SAbdiel Janulgue // SAFETY: 249ad2907b4SAbdiel Janulgue // - By the safety requirements field is valid. 250ad2907b4SAbdiel Janulgue // - Using read_volatile() here is not sound as per the usual rules, the usage here is 251ad2907b4SAbdiel Janulgue // a special exception with the following notes in place. When dealing with a potential 252ad2907b4SAbdiel Janulgue // race from a hardware or code outside kernel (e.g. user-space program), we need that 253ad2907b4SAbdiel Janulgue // read on a valid memory is not UB. Currently read_volatile() is used for this, and the 254ad2907b4SAbdiel Janulgue // rationale behind is that it should generate the same code as READ_ONCE() which the 255ad2907b4SAbdiel Janulgue // kernel already relies on to avoid UB on data races. Note that the usage of 256ad2907b4SAbdiel Janulgue // read_volatile() is limited to this particular case, it cannot be used to prevent 257ad2907b4SAbdiel Janulgue // the UB caused by racing between two kernel functions nor do they provide atomicity. 258ad2907b4SAbdiel Janulgue unsafe { field.read_volatile() } 259ad2907b4SAbdiel Janulgue } 260ad2907b4SAbdiel Janulgue 261ad2907b4SAbdiel Janulgue /// Writes a value to `field` and ensures that its type is [`AsBytes`]. 262ad2907b4SAbdiel Janulgue /// 263ad2907b4SAbdiel Janulgue /// # Safety 264ad2907b4SAbdiel Janulgue /// 265ad2907b4SAbdiel Janulgue /// This must be called from the [`dma_write`] macro which ensures that the `field` pointer is 266ad2907b4SAbdiel Janulgue /// validated beforehand. 267ad2907b4SAbdiel Janulgue /// 268ad2907b4SAbdiel Janulgue /// Public but hidden since it should only be used from [`dma_write`] macro. 269ad2907b4SAbdiel Janulgue #[doc(hidden)] field_write<F: AsBytes>(&self, field: *mut F, val: F)270ad2907b4SAbdiel Janulgue pub unsafe fn field_write<F: AsBytes>(&self, field: *mut F, val: F) { 271ad2907b4SAbdiel Janulgue // SAFETY: 272ad2907b4SAbdiel Janulgue // - By the safety requirements field is valid. 273ad2907b4SAbdiel Janulgue // - Using write_volatile() here is not sound as per the usual rules, the usage here is 274ad2907b4SAbdiel Janulgue // a special exception with the following notes in place. When dealing with a potential 275ad2907b4SAbdiel Janulgue // race from a hardware or code outside kernel (e.g. user-space program), we need that 276ad2907b4SAbdiel Janulgue // write on a valid memory is not UB. Currently write_volatile() is used for this, and the 277ad2907b4SAbdiel Janulgue // rationale behind is that it should generate the same code as WRITE_ONCE() which the 278ad2907b4SAbdiel Janulgue // kernel already relies on to avoid UB on data races. Note that the usage of 279ad2907b4SAbdiel Janulgue // write_volatile() is limited to this particular case, it cannot be used to prevent 280ad2907b4SAbdiel Janulgue // the UB caused by racing between two kernel functions nor do they provide atomicity. 281ad2907b4SAbdiel Janulgue unsafe { field.write_volatile(val) } 282ad2907b4SAbdiel Janulgue } 283ad2907b4SAbdiel Janulgue } 284ad2907b4SAbdiel Janulgue 285ad2907b4SAbdiel Janulgue /// Note that the device configured to do DMA must be halted before this object is dropped. 286ad2907b4SAbdiel Janulgue impl<T: AsBytes + FromBytes> Drop for CoherentAllocation<T> { drop(&mut self)287ad2907b4SAbdiel Janulgue fn drop(&mut self) { 288ad2907b4SAbdiel Janulgue let size = self.count * core::mem::size_of::<T>(); 289ad2907b4SAbdiel Janulgue // SAFETY: Device pointer is guaranteed as valid by the type invariant on `Device`. 290ad2907b4SAbdiel Janulgue // The cpu address, and the dma handle are valid due to the type invariants on 291ad2907b4SAbdiel Janulgue // `CoherentAllocation`. 292ad2907b4SAbdiel Janulgue unsafe { 293ad2907b4SAbdiel Janulgue bindings::dma_free_attrs( 294ad2907b4SAbdiel Janulgue self.dev.as_raw(), 295ad2907b4SAbdiel Janulgue size, 296ad2907b4SAbdiel Janulgue self.cpu_addr as _, 297ad2907b4SAbdiel Janulgue self.dma_handle, 298ad2907b4SAbdiel Janulgue self.dma_attrs.as_raw(), 299ad2907b4SAbdiel Janulgue ) 300ad2907b4SAbdiel Janulgue } 301ad2907b4SAbdiel Janulgue } 302ad2907b4SAbdiel Janulgue } 303ad2907b4SAbdiel Janulgue 30428bb48c4SDanilo Krummrich // SAFETY: It is safe to send a `CoherentAllocation` to another thread if `T` 30528bb48c4SDanilo Krummrich // can be sent to another thread. 30628bb48c4SDanilo Krummrich unsafe impl<T: AsBytes + FromBytes + Send> Send for CoherentAllocation<T> {} 30728bb48c4SDanilo Krummrich 308ad2907b4SAbdiel Janulgue /// Reads a field of an item from an allocated region of structs. 309ad2907b4SAbdiel Janulgue /// 310ad2907b4SAbdiel Janulgue /// # Examples 311ad2907b4SAbdiel Janulgue /// 312ad2907b4SAbdiel Janulgue /// ``` 313ad2907b4SAbdiel Janulgue /// use kernel::device::Device; 314ad2907b4SAbdiel Janulgue /// use kernel::dma::{attrs::*, CoherentAllocation}; 315ad2907b4SAbdiel Janulgue /// 316ad2907b4SAbdiel Janulgue /// struct MyStruct { field: u32, } 317ad2907b4SAbdiel Janulgue /// 318ad2907b4SAbdiel Janulgue /// // SAFETY: All bit patterns are acceptable values for `MyStruct`. 319ad2907b4SAbdiel Janulgue /// unsafe impl kernel::transmute::FromBytes for MyStruct{}; 320ad2907b4SAbdiel Janulgue /// // SAFETY: Instances of `MyStruct` have no uninitialized portions. 321ad2907b4SAbdiel Janulgue /// unsafe impl kernel::transmute::AsBytes for MyStruct{}; 322ad2907b4SAbdiel Janulgue /// 323ad2907b4SAbdiel Janulgue /// # fn test(alloc: &kernel::dma::CoherentAllocation<MyStruct>) -> Result { 324ad2907b4SAbdiel Janulgue /// let whole = kernel::dma_read!(alloc[2]); 325ad2907b4SAbdiel Janulgue /// let field = kernel::dma_read!(alloc[1].field); 326ad2907b4SAbdiel Janulgue /// # Ok::<(), Error>(()) } 327ad2907b4SAbdiel Janulgue /// ``` 328ad2907b4SAbdiel Janulgue #[macro_export] 329ad2907b4SAbdiel Janulgue macro_rules! dma_read { 330ad2907b4SAbdiel Janulgue ($dma:expr, $idx: expr, $($field:tt)*) => {{ 331ad2907b4SAbdiel Janulgue let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?; 332ad2907b4SAbdiel Janulgue // SAFETY: `item_from_index` ensures that `item` is always a valid pointer and can be 333ad2907b4SAbdiel Janulgue // dereferenced. The compiler also further validates the expression on whether `field` 334ad2907b4SAbdiel Janulgue // is a member of `item` when expanded by the macro. 335ad2907b4SAbdiel Janulgue unsafe { 336ad2907b4SAbdiel Janulgue let ptr_field = ::core::ptr::addr_of!((*item) $($field)*); 337ad2907b4SAbdiel Janulgue $crate::dma::CoherentAllocation::field_read(&$dma, ptr_field) 338ad2907b4SAbdiel Janulgue } 339ad2907b4SAbdiel Janulgue }}; 340ad2907b4SAbdiel Janulgue ($dma:ident [ $idx:expr ] $($field:tt)* ) => { 341ad2907b4SAbdiel Janulgue $crate::dma_read!($dma, $idx, $($field)*); 342ad2907b4SAbdiel Janulgue }; 343ad2907b4SAbdiel Janulgue ($($dma:ident).* [ $idx:expr ] $($field:tt)* ) => { 344ad2907b4SAbdiel Janulgue $crate::dma_read!($($dma).*, $idx, $($field)*); 345ad2907b4SAbdiel Janulgue }; 346ad2907b4SAbdiel Janulgue } 347ad2907b4SAbdiel Janulgue 348ad2907b4SAbdiel Janulgue /// Writes to a field of an item from an allocated region of structs. 349ad2907b4SAbdiel Janulgue /// 350ad2907b4SAbdiel Janulgue /// # Examples 351ad2907b4SAbdiel Janulgue /// 352ad2907b4SAbdiel Janulgue /// ``` 353ad2907b4SAbdiel Janulgue /// use kernel::device::Device; 354ad2907b4SAbdiel Janulgue /// use kernel::dma::{attrs::*, CoherentAllocation}; 355ad2907b4SAbdiel Janulgue /// 356ad2907b4SAbdiel Janulgue /// struct MyStruct { member: u32, } 357ad2907b4SAbdiel Janulgue /// 358ad2907b4SAbdiel Janulgue /// // SAFETY: All bit patterns are acceptable values for `MyStruct`. 359ad2907b4SAbdiel Janulgue /// unsafe impl kernel::transmute::FromBytes for MyStruct{}; 360ad2907b4SAbdiel Janulgue /// // SAFETY: Instances of `MyStruct` have no uninitialized portions. 361ad2907b4SAbdiel Janulgue /// unsafe impl kernel::transmute::AsBytes for MyStruct{}; 362ad2907b4SAbdiel Janulgue /// 363ad2907b4SAbdiel Janulgue /// # fn test(alloc: &kernel::dma::CoherentAllocation<MyStruct>) -> Result { 364ad2907b4SAbdiel Janulgue /// kernel::dma_write!(alloc[2].member = 0xf); 365ad2907b4SAbdiel Janulgue /// kernel::dma_write!(alloc[1] = MyStruct { member: 0xf }); 366ad2907b4SAbdiel Janulgue /// # Ok::<(), Error>(()) } 367ad2907b4SAbdiel Janulgue /// ``` 368ad2907b4SAbdiel Janulgue #[macro_export] 369ad2907b4SAbdiel Janulgue macro_rules! dma_write { 370ad2907b4SAbdiel Janulgue ($dma:ident [ $idx:expr ] $($field:tt)*) => {{ 371ad2907b4SAbdiel Janulgue $crate::dma_write!($dma, $idx, $($field)*); 372ad2907b4SAbdiel Janulgue }}; 373ad2907b4SAbdiel Janulgue ($($dma:ident).* [ $idx:expr ] $($field:tt)* ) => {{ 374ad2907b4SAbdiel Janulgue $crate::dma_write!($($dma).*, $idx, $($field)*); 375ad2907b4SAbdiel Janulgue }}; 376ad2907b4SAbdiel Janulgue ($dma:expr, $idx: expr, = $val:expr) => { 377ad2907b4SAbdiel Janulgue let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?; 378ad2907b4SAbdiel Janulgue // SAFETY: `item_from_index` ensures that `item` is always a valid item. 379ad2907b4SAbdiel Janulgue unsafe { $crate::dma::CoherentAllocation::field_write(&$dma, item, $val) } 380ad2907b4SAbdiel Janulgue }; 381ad2907b4SAbdiel Janulgue ($dma:expr, $idx: expr, $(.$field:ident)* = $val:expr) => { 382ad2907b4SAbdiel Janulgue let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?; 383ad2907b4SAbdiel Janulgue // SAFETY: `item_from_index` ensures that `item` is always a valid pointer and can be 384ad2907b4SAbdiel Janulgue // dereferenced. The compiler also further validates the expression on whether `field` 385ad2907b4SAbdiel Janulgue // is a member of `item` when expanded by the macro. 386ad2907b4SAbdiel Janulgue unsafe { 387ad2907b4SAbdiel Janulgue let ptr_field = ::core::ptr::addr_of_mut!((*item) $(.$field)*); 388ad2907b4SAbdiel Janulgue $crate::dma::CoherentAllocation::field_write(&$dma, ptr_field, $val) 389ad2907b4SAbdiel Janulgue } 390ad2907b4SAbdiel Janulgue }; 391ad2907b4SAbdiel Janulgue } 392