1 // SPDX-License-Identifier: GPL-2.0 2 3 //! Generic devices that are part of the kernel's driver model. 4 //! 5 //! C header: [`include/linux/device.h`](srctree/include/linux/device.h) 6 7 use crate::{ 8 bindings, 9 fmt, 10 prelude::*, 11 sync::aref::ARef, 12 types::{ 13 ForeignOwnable, 14 Opaque, // 15 }, // 16 }; 17 use core::{ 18 any::TypeId, 19 marker::PhantomData, 20 ptr, // 21 }; 22 23 pub mod property; 24 25 // Assert that we can `read()` / `write()` a `TypeId` instance from / into `struct driver_type`. 26 static_assert!(core::mem::size_of::<bindings::driver_type>() >= core::mem::size_of::<TypeId>()); 27 28 /// The core representation of a device in the kernel's driver model. 29 /// 30 /// This structure represents the Rust abstraction for a C `struct device`. A [`Device`] can either 31 /// exist as temporary reference (see also [`Device::from_raw`]), which is only valid within a 32 /// certain scope or as [`ARef<Device>`], owning a dedicated reference count. 33 /// 34 /// # Device Types 35 /// 36 /// A [`Device`] can represent either a bus device or a class device. 37 /// 38 /// ## Bus Devices 39 /// 40 /// A bus device is a [`Device`] that is associated with a physical or virtual bus. Examples of 41 /// buses include PCI, USB, I2C, and SPI. Devices attached to a bus are registered with a specific 42 /// bus type, which facilitates matching devices with appropriate drivers based on IDs or other 43 /// identifying information. Bus devices are visible in sysfs under `/sys/bus/<bus-name>/devices/`. 44 /// 45 /// ## Class Devices 46 /// 47 /// A class device is a [`Device`] that is associated with a logical category of functionality 48 /// rather than a physical bus. Examples of classes include block devices, network interfaces, sound 49 /// cards, and input devices. Class devices are grouped under a common class and exposed to 50 /// userspace via entries in `/sys/class/<class-name>/`. 51 /// 52 /// # Device Context 53 /// 54 /// [`Device`] references are generic over a [`DeviceContext`], which represents the type state of 55 /// a [`Device`]. 56 /// 57 /// As the name indicates, this type state represents the context of the scope the [`Device`] 58 /// reference is valid in. For instance, the [`Bound`] context guarantees that the [`Device`] is 59 /// bound to a driver for the entire duration of the existence of a [`Device<Bound>`] reference. 60 /// 61 /// Other [`DeviceContext`] types besides [`Bound`] are [`Normal`], [`Core`] and [`CoreInternal`]. 62 /// 63 /// Unless selected otherwise [`Device`] defaults to the [`Normal`] [`DeviceContext`], which by 64 /// itself has no additional requirements. 65 /// 66 /// It is always up to the caller of [`Device::from_raw`] to select the correct [`DeviceContext`] 67 /// type for the corresponding scope the [`Device`] reference is created in. 68 /// 69 /// All [`DeviceContext`] types other than [`Normal`] are intended to be used with 70 /// [bus devices](#bus-devices) only. 71 /// 72 /// # Implementing Bus Devices 73 /// 74 /// This section provides a guideline to implement bus specific devices, such as: 75 #[cfg_attr(CONFIG_PCI, doc = "* [`pci::Device`](kernel::pci::Device)")] 76 /// * [`platform::Device`] 77 /// 78 /// A bus specific device should be defined as follows. 79 /// 80 /// ```ignore 81 /// #[repr(transparent)] 82 /// pub struct Device<Ctx: device::DeviceContext = device::Normal>( 83 /// Opaque<bindings::bus_device_type>, 84 /// PhantomData<Ctx>, 85 /// ); 86 /// ``` 87 /// 88 /// Since devices are reference counted, [`AlwaysRefCounted`] should be implemented for `Device` 89 /// (i.e. `Device<Normal>`). Note that [`AlwaysRefCounted`] must not be implemented for any other 90 /// [`DeviceContext`], since all other device context types are only valid within a certain scope. 91 /// 92 /// In order to be able to implement the [`DeviceContext`] dereference hierarchy, bus device 93 /// implementations should call the [`impl_device_context_deref`] macro as shown below. 94 /// 95 /// ```ignore 96 /// // SAFETY: `Device` is a transparent wrapper of a type that doesn't depend on `Device`'s 97 /// // generic argument. 98 /// kernel::impl_device_context_deref!(unsafe { Device }); 99 /// ``` 100 /// 101 /// In order to convert from a any [`Device<Ctx>`] to [`ARef<Device>`], bus devices can implement 102 /// the following macro call. 103 /// 104 /// ```ignore 105 /// kernel::impl_device_context_into_aref!(Device); 106 /// ``` 107 /// 108 /// Bus devices should also implement the following [`AsRef`] implementation, such that users can 109 /// easily derive a generic [`Device`] reference. 110 /// 111 /// ```ignore 112 /// impl<Ctx: device::DeviceContext> AsRef<device::Device<Ctx>> for Device<Ctx> { 113 /// fn as_ref(&self) -> &device::Device<Ctx> { 114 /// ... 115 /// } 116 /// } 117 /// ``` 118 /// 119 /// # Implementing Class Devices 120 /// 121 /// Class device implementations require less infrastructure and depend slightly more on the 122 /// specific subsystem. 123 /// 124 /// An example implementation for a class device could look like this. 125 /// 126 /// ```ignore 127 /// #[repr(C)] 128 /// pub struct Device<T: class::Driver> { 129 /// dev: Opaque<bindings::class_device_type>, 130 /// data: T::Data, 131 /// } 132 /// ``` 133 /// 134 /// This class device uses the sub-classing pattern to embed the driver's private data within the 135 /// allocation of the class device. For this to be possible the class device is generic over the 136 /// class specific `Driver` trait implementation. 137 /// 138 /// Just like any device, class devices are reference counted and should hence implement 139 /// [`AlwaysRefCounted`] for `Device`. 140 /// 141 /// Class devices should also implement the following [`AsRef`] implementation, such that users can 142 /// easily derive a generic [`Device`] reference. 143 /// 144 /// ```ignore 145 /// impl<T: class::Driver> AsRef<device::Device> for Device<T> { 146 /// fn as_ref(&self) -> &device::Device { 147 /// ... 148 /// } 149 /// } 150 /// ``` 151 /// 152 /// An example for a class device implementation is 153 #[cfg_attr(CONFIG_DRM = "y", doc = "[`drm::Device`](kernel::drm::Device).")] 154 #[cfg_attr(not(CONFIG_DRM = "y"), doc = "`drm::Device`.")] 155 /// 156 /// # Invariants 157 /// 158 /// A `Device` instance represents a valid `struct device` created by the C portion of the kernel. 159 /// 160 /// Instances of this type are always reference-counted, that is, a call to `get_device` ensures 161 /// that the allocation remains valid at least until the matching call to `put_device`. 162 /// 163 /// `bindings::device::release` is valid to be called from any thread, hence `ARef<Device>` can be 164 /// dropped from any thread. 165 /// 166 /// [`AlwaysRefCounted`]: kernel::sync::aref::AlwaysRefCounted 167 /// [`impl_device_context_deref`]: kernel::impl_device_context_deref 168 /// [`platform::Device`]: kernel::platform::Device 169 #[repr(transparent)] 170 pub struct Device<Ctx: DeviceContext = Normal>(Opaque<bindings::device>, PhantomData<Ctx>); 171 172 impl Device { 173 /// Creates a new reference-counted abstraction instance of an existing `struct device` pointer. 174 /// 175 /// # Safety 176 /// 177 /// Callers must ensure that `ptr` is valid, non-null, and has a non-zero reference count, 178 /// i.e. it must be ensured that the reference count of the C `struct device` `ptr` points to 179 /// can't drop to zero, for the duration of this function call. 180 /// 181 /// It must also be ensured that `bindings::device::release` can be called from any thread. 182 /// While not officially documented, this should be the case for any `struct device`. 183 pub unsafe fn get_device(ptr: *mut bindings::device) -> ARef<Self> { 184 // SAFETY: By the safety requirements ptr is valid 185 unsafe { Self::from_raw(ptr) }.into() 186 } 187 188 /// Convert a [`&Device`](Device) into a [`&Device<Bound>`](Device<Bound>). 189 /// 190 /// # Safety 191 /// 192 /// The caller is responsible to ensure that the returned [`&Device<Bound>`](Device<Bound>) 193 /// only lives as long as it can be guaranteed that the [`Device`] is actually bound. 194 pub unsafe fn as_bound(&self) -> &Device<Bound> { 195 let ptr = core::ptr::from_ref(self); 196 197 // CAST: By the safety requirements the caller is responsible to guarantee that the 198 // returned reference only lives as long as the device is actually bound. 199 let ptr = ptr.cast(); 200 201 // SAFETY: 202 // - `ptr` comes from `from_ref(self)` above, hence it's guaranteed to be valid. 203 // - Any valid `Device` pointer is also a valid pointer for `Device<Bound>`. 204 unsafe { &*ptr } 205 } 206 } 207 208 impl Device<CoreInternal> { 209 fn set_type_id<T: 'static>(&self) { 210 // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`. 211 let private = unsafe { (*self.as_raw()).p }; 212 213 // SAFETY: For a bound device (implied by the `CoreInternal` device context), `private` is 214 // guaranteed to be a valid pointer to a `struct device_private`. 215 let driver_type = unsafe { &raw mut (*private).driver_type }; 216 217 // SAFETY: `driver_type` is valid for (unaligned) writes of a `TypeId`. 218 unsafe { 219 driver_type 220 .cast::<TypeId>() 221 .write_unaligned(TypeId::of::<T>()) 222 }; 223 } 224 225 /// Store a pointer to the bound driver's private data. 226 pub fn set_drvdata<T: 'static>(&self, data: impl PinInit<T, Error>) -> Result { 227 let data = KBox::pin_init(data, GFP_KERNEL)?; 228 229 // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`. 230 unsafe { bindings::dev_set_drvdata(self.as_raw(), data.into_foreign().cast()) }; 231 self.set_type_id::<T>(); 232 233 Ok(()) 234 } 235 236 /// Take ownership of the private data stored in this [`Device`]. 237 /// 238 /// # Safety 239 /// 240 /// - The type `T` must match the type of the `ForeignOwnable` previously stored by 241 /// [`Device::set_drvdata`]. 242 pub(crate) unsafe fn drvdata_obtain<T: 'static>(&self) -> Option<Pin<KBox<T>>> { 243 // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`. 244 let ptr = unsafe { bindings::dev_get_drvdata(self.as_raw()) }; 245 246 // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`. 247 unsafe { bindings::dev_set_drvdata(self.as_raw(), core::ptr::null_mut()) }; 248 249 if ptr.is_null() { 250 return None; 251 } 252 253 // SAFETY: 254 // - If `ptr` is not NULL, it comes from a previous call to `into_foreign()`. 255 // - `dev_get_drvdata()` guarantees to return the same pointer given to `dev_set_drvdata()` 256 // in `into_foreign()`. 257 Some(unsafe { Pin::<KBox<T>>::from_foreign(ptr.cast()) }) 258 } 259 260 /// Borrow the driver's private data bound to this [`Device`]. 261 /// 262 /// # Safety 263 /// 264 /// - Must only be called after a preceding call to [`Device::set_drvdata`] and before the 265 /// device is fully unbound. 266 /// - The type `T` must match the type of the `ForeignOwnable` previously stored by 267 /// [`Device::set_drvdata`]. 268 pub unsafe fn drvdata_borrow<T: 'static>(&self) -> Pin<&T> { 269 // SAFETY: `drvdata_unchecked()` has the exact same safety requirements as the ones 270 // required by this method. 271 unsafe { self.drvdata_unchecked() } 272 } 273 } 274 275 impl Device<Bound> { 276 /// Borrow the driver's private data bound to this [`Device`]. 277 /// 278 /// # Safety 279 /// 280 /// - Must only be called after a preceding call to [`Device::set_drvdata`] and before 281 /// the device is fully unbound. 282 /// - The type `T` must match the type of the `ForeignOwnable` previously stored by 283 /// [`Device::set_drvdata`]. 284 unsafe fn drvdata_unchecked<T: 'static>(&self) -> Pin<&T> { 285 // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`. 286 let ptr = unsafe { bindings::dev_get_drvdata(self.as_raw()) }; 287 288 // SAFETY: 289 // - By the safety requirements of this function, `ptr` comes from a previous call to 290 // `into_foreign()`. 291 // - `dev_get_drvdata()` guarantees to return the same pointer given to `dev_set_drvdata()` 292 // in `into_foreign()`. 293 unsafe { Pin::<KBox<T>>::borrow(ptr.cast()) } 294 } 295 296 fn match_type_id<T: 'static>(&self) -> Result { 297 // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`. 298 let private = unsafe { (*self.as_raw()).p }; 299 300 // SAFETY: For a bound device, `private` is guaranteed to be a valid pointer to a 301 // `struct device_private`. 302 let driver_type = unsafe { &raw mut (*private).driver_type }; 303 304 // SAFETY: 305 // - `driver_type` is valid for (unaligned) reads of a `TypeId`. 306 // - A bound device guarantees that `driver_type` contains a valid `TypeId` value. 307 let type_id = unsafe { driver_type.cast::<TypeId>().read_unaligned() }; 308 309 if type_id != TypeId::of::<T>() { 310 return Err(EINVAL); 311 } 312 313 Ok(()) 314 } 315 316 /// Access a driver's private data. 317 /// 318 /// Returns a pinned reference to the driver's private data or [`EINVAL`] if it doesn't match 319 /// the asserted type `T`. 320 pub fn drvdata<T: 'static>(&self) -> Result<Pin<&T>> { 321 // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`. 322 if unsafe { bindings::dev_get_drvdata(self.as_raw()) }.is_null() { 323 return Err(ENOENT); 324 } 325 326 self.match_type_id::<T>()?; 327 328 // SAFETY: 329 // - The above check of `dev_get_drvdata()` guarantees that we are called after 330 // `set_drvdata()`. 331 // - We've just checked that the type of the driver's private data is in fact `T`. 332 Ok(unsafe { self.drvdata_unchecked() }) 333 } 334 } 335 336 impl<Ctx: DeviceContext> Device<Ctx> { 337 /// Obtain the raw `struct device *`. 338 pub(crate) fn as_raw(&self) -> *mut bindings::device { 339 self.0.get() 340 } 341 342 /// Returns a reference to the parent device, if any. 343 #[cfg_attr(not(CONFIG_AUXILIARY_BUS), expect(dead_code))] 344 pub(crate) fn parent(&self) -> Option<&Device> { 345 // SAFETY: 346 // - By the type invariant `self.as_raw()` is always valid. 347 // - The parent device is only ever set at device creation. 348 let parent = unsafe { (*self.as_raw()).parent }; 349 350 if parent.is_null() { 351 None 352 } else { 353 // SAFETY: 354 // - Since `parent` is not NULL, it must be a valid pointer to a `struct device`. 355 // - `parent` is valid for the lifetime of `self`, since a `struct device` holds a 356 // reference count of its parent. 357 Some(unsafe { Device::from_raw(parent) }) 358 } 359 } 360 361 /// Convert a raw C `struct device` pointer to a `&'a Device`. 362 /// 363 /// # Safety 364 /// 365 /// Callers must ensure that `ptr` is valid, non-null, and has a non-zero reference count, 366 /// i.e. it must be ensured that the reference count of the C `struct device` `ptr` points to 367 /// can't drop to zero, for the duration of this function call and the entire duration when the 368 /// returned reference exists. 369 pub unsafe fn from_raw<'a>(ptr: *mut bindings::device) -> &'a Self { 370 // SAFETY: Guaranteed by the safety requirements of the function. 371 unsafe { &*ptr.cast() } 372 } 373 374 /// Prints an emergency-level message (level 0) prefixed with device information. 375 /// 376 /// More details are available from [`dev_emerg`]. 377 /// 378 /// [`dev_emerg`]: crate::dev_emerg 379 pub fn pr_emerg(&self, args: fmt::Arguments<'_>) { 380 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. 381 unsafe { self.printk(bindings::KERN_EMERG, args) }; 382 } 383 384 /// Prints an alert-level message (level 1) prefixed with device information. 385 /// 386 /// More details are available from [`dev_alert`]. 387 /// 388 /// [`dev_alert`]: crate::dev_alert 389 pub fn pr_alert(&self, args: fmt::Arguments<'_>) { 390 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. 391 unsafe { self.printk(bindings::KERN_ALERT, args) }; 392 } 393 394 /// Prints a critical-level message (level 2) prefixed with device information. 395 /// 396 /// More details are available from [`dev_crit`]. 397 /// 398 /// [`dev_crit`]: crate::dev_crit 399 pub fn pr_crit(&self, args: fmt::Arguments<'_>) { 400 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. 401 unsafe { self.printk(bindings::KERN_CRIT, args) }; 402 } 403 404 /// Prints an error-level message (level 3) prefixed with device information. 405 /// 406 /// More details are available from [`dev_err`]. 407 /// 408 /// [`dev_err`]: crate::dev_err 409 pub fn pr_err(&self, args: fmt::Arguments<'_>) { 410 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. 411 unsafe { self.printk(bindings::KERN_ERR, args) }; 412 } 413 414 /// Prints a warning-level message (level 4) prefixed with device information. 415 /// 416 /// More details are available from [`dev_warn`]. 417 /// 418 /// [`dev_warn`]: crate::dev_warn 419 pub fn pr_warn(&self, args: fmt::Arguments<'_>) { 420 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. 421 unsafe { self.printk(bindings::KERN_WARNING, args) }; 422 } 423 424 /// Prints a notice-level message (level 5) prefixed with device information. 425 /// 426 /// More details are available from [`dev_notice`]. 427 /// 428 /// [`dev_notice`]: crate::dev_notice 429 pub fn pr_notice(&self, args: fmt::Arguments<'_>) { 430 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. 431 unsafe { self.printk(bindings::KERN_NOTICE, args) }; 432 } 433 434 /// Prints an info-level message (level 6) prefixed with device information. 435 /// 436 /// More details are available from [`dev_info`]. 437 /// 438 /// [`dev_info`]: crate::dev_info 439 pub fn pr_info(&self, args: fmt::Arguments<'_>) { 440 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. 441 unsafe { self.printk(bindings::KERN_INFO, args) }; 442 } 443 444 /// Prints a debug-level message (level 7) prefixed with device information. 445 /// 446 /// More details are available from [`dev_dbg`]. 447 /// 448 /// [`dev_dbg`]: crate::dev_dbg 449 pub fn pr_dbg(&self, args: fmt::Arguments<'_>) { 450 if cfg!(debug_assertions) { 451 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. 452 unsafe { self.printk(bindings::KERN_DEBUG, args) }; 453 } 454 } 455 456 /// Prints the provided message to the console. 457 /// 458 /// # Safety 459 /// 460 /// Callers must ensure that `klevel` is null-terminated; in particular, one of the 461 /// `KERN_*`constants, for example, `KERN_CRIT`, `KERN_ALERT`, etc. 462 #[cfg_attr(not(CONFIG_PRINTK), allow(unused_variables))] 463 unsafe fn printk(&self, klevel: &[u8], msg: fmt::Arguments<'_>) { 464 // SAFETY: `klevel` is null-terminated and one of the kernel constants. `self.as_raw` 465 // is valid because `self` is valid. The "%pA" format string expects a pointer to 466 // `fmt::Arguments`, which is what we're passing as the last argument. 467 #[cfg(CONFIG_PRINTK)] 468 unsafe { 469 bindings::_dev_printk( 470 klevel.as_ptr().cast::<crate::ffi::c_char>(), 471 self.as_raw(), 472 c"%pA".as_char_ptr(), 473 core::ptr::from_ref(&msg).cast::<crate::ffi::c_void>(), 474 ) 475 }; 476 } 477 478 /// Obtain the [`FwNode`](property::FwNode) corresponding to this [`Device`]. 479 pub fn fwnode(&self) -> Option<&property::FwNode> { 480 // SAFETY: `self` is valid. 481 let fwnode_handle = unsafe { bindings::__dev_fwnode(self.as_raw()) }; 482 if fwnode_handle.is_null() { 483 return None; 484 } 485 // SAFETY: `fwnode_handle` is valid. Its lifetime is tied to `&self`. We 486 // return a reference instead of an `ARef<FwNode>` because `dev_fwnode()` 487 // doesn't increment the refcount. It is safe to cast from a 488 // `struct fwnode_handle*` to a `*const FwNode` because `FwNode` is 489 // defined as a `#[repr(transparent)]` wrapper around `fwnode_handle`. 490 Some(unsafe { &*fwnode_handle.cast() }) 491 } 492 } 493 494 // SAFETY: `Device` is a transparent wrapper of a type that doesn't depend on `Device`'s generic 495 // argument. 496 kernel::impl_device_context_deref!(unsafe { Device }); 497 kernel::impl_device_context_into_aref!(Device); 498 499 // SAFETY: Instances of `Device` are always reference-counted. 500 unsafe impl crate::sync::aref::AlwaysRefCounted for Device { 501 fn inc_ref(&self) { 502 // SAFETY: The existence of a shared reference guarantees that the refcount is non-zero. 503 unsafe { bindings::get_device(self.as_raw()) }; 504 } 505 506 unsafe fn dec_ref(obj: ptr::NonNull<Self>) { 507 // SAFETY: The safety requirements guarantee that the refcount is non-zero. 508 unsafe { bindings::put_device(obj.cast().as_ptr()) } 509 } 510 } 511 512 // SAFETY: As by the type invariant `Device` can be sent to any thread. 513 unsafe impl Send for Device {} 514 515 // SAFETY: `Device` can be shared among threads because all immutable methods are protected by the 516 // synchronization in `struct device`. 517 unsafe impl Sync for Device {} 518 519 /// Marker trait for the context or scope of a bus specific device. 520 /// 521 /// [`DeviceContext`] is a marker trait for types representing the context of a bus specific 522 /// [`Device`]. 523 /// 524 /// The specific device context types are: [`CoreInternal`], [`Core`], [`Bound`] and [`Normal`]. 525 /// 526 /// [`DeviceContext`] types are hierarchical, which means that there is a strict hierarchy that 527 /// defines which [`DeviceContext`] type can be derived from another. For instance, any 528 /// [`Device<Core>`] can dereference to a [`Device<Bound>`]. 529 /// 530 /// The following enumeration illustrates the dereference hierarchy of [`DeviceContext`] types. 531 /// 532 /// - [`CoreInternal`] => [`Core`] => [`Bound`] => [`Normal`] 533 /// 534 /// Bus devices can automatically implement the dereference hierarchy by using 535 /// [`impl_device_context_deref`]. 536 /// 537 /// Note that the guarantee for a [`Device`] reference to have a certain [`DeviceContext`] comes 538 /// from the specific scope the [`Device`] reference is valid in. 539 /// 540 /// [`impl_device_context_deref`]: kernel::impl_device_context_deref 541 pub trait DeviceContext: private::Sealed {} 542 543 /// The [`Normal`] context is the default [`DeviceContext`] of any [`Device`]. 544 /// 545 /// The normal context does not indicate any specific context. Any `Device<Ctx>` is also a valid 546 /// [`Device<Normal>`]. It is the only [`DeviceContext`] for which it is valid to implement 547 /// [`AlwaysRefCounted`] for. 548 /// 549 /// [`AlwaysRefCounted`]: kernel::sync::aref::AlwaysRefCounted 550 pub struct Normal; 551 552 /// The [`Core`] context is the context of a bus specific device when it appears as argument of 553 /// any bus specific callback, such as `probe()`. 554 /// 555 /// The core context indicates that the [`Device<Core>`] reference's scope is limited to the bus 556 /// callback it appears in. It is intended to be used for synchronization purposes. Bus device 557 /// implementations can implement methods for [`Device<Core>`], such that they can only be called 558 /// from bus callbacks. 559 pub struct Core; 560 561 /// Semantically the same as [`Core`], but reserved for internal usage of the corresponding bus 562 /// abstraction. 563 /// 564 /// The internal core context is intended to be used in exactly the same way as the [`Core`] 565 /// context, with the difference that this [`DeviceContext`] is internal to the corresponding bus 566 /// abstraction. 567 /// 568 /// This context mainly exists to share generic [`Device`] infrastructure that should only be called 569 /// from bus callbacks with bus abstractions, but without making them accessible for drivers. 570 pub struct CoreInternal; 571 572 /// The [`Bound`] context is the [`DeviceContext`] of a bus specific device when it is guaranteed to 573 /// be bound to a driver. 574 /// 575 /// The bound context indicates that for the entire duration of the lifetime of a [`Device<Bound>`] 576 /// reference, the [`Device`] is guaranteed to be bound to a driver. 577 /// 578 /// Some APIs, such as [`dma::CoherentAllocation`] or [`Devres`] rely on the [`Device`] to be bound, 579 /// which can be proven with the [`Bound`] device context. 580 /// 581 /// Any abstraction that can guarantee a scope where the corresponding bus device is bound, should 582 /// provide a [`Device<Bound>`] reference to its users for this scope. This allows users to benefit 583 /// from optimizations for accessing device resources, see also [`Devres::access`]. 584 /// 585 /// [`Devres`]: kernel::devres::Devres 586 /// [`Devres::access`]: kernel::devres::Devres::access 587 /// [`dma::CoherentAllocation`]: kernel::dma::CoherentAllocation 588 pub struct Bound; 589 590 mod private { 591 pub trait Sealed {} 592 593 impl Sealed for super::Bound {} 594 impl Sealed for super::Core {} 595 impl Sealed for super::CoreInternal {} 596 impl Sealed for super::Normal {} 597 } 598 599 impl DeviceContext for Bound {} 600 impl DeviceContext for Core {} 601 impl DeviceContext for CoreInternal {} 602 impl DeviceContext for Normal {} 603 604 impl<Ctx: DeviceContext> AsRef<Device<Ctx>> for Device<Ctx> { 605 #[inline] 606 fn as_ref(&self) -> &Device<Ctx> { 607 self 608 } 609 } 610 611 /// Convert device references to bus device references. 612 /// 613 /// Bus devices can implement this trait to allow abstractions to provide the bus device in 614 /// class device callbacks. 615 /// 616 /// This must not be used by drivers and is intended for bus and class device abstractions only. 617 /// 618 /// # Safety 619 /// 620 /// `AsBusDevice::OFFSET` must be the offset of the embedded base `struct device` field within a 621 /// bus device structure. 622 pub unsafe trait AsBusDevice<Ctx: DeviceContext>: AsRef<Device<Ctx>> { 623 /// The relative offset to the device field. 624 /// 625 /// Use `offset_of!(bindings, field)` macro to avoid breakage. 626 const OFFSET: usize; 627 628 /// Convert a reference to [`Device`] into `Self`. 629 /// 630 /// # Safety 631 /// 632 /// `dev` must be contained in `Self`. 633 unsafe fn from_device(dev: &Device<Ctx>) -> &Self 634 where 635 Self: Sized, 636 { 637 let raw = dev.as_raw(); 638 // SAFETY: `raw - Self::OFFSET` is guaranteed by the safety requirements 639 // to be a valid pointer to `Self`. 640 unsafe { &*raw.byte_sub(Self::OFFSET).cast::<Self>() } 641 } 642 } 643 644 /// # Safety 645 /// 646 /// The type given as `$device` must be a transparent wrapper of a type that doesn't depend on the 647 /// generic argument of `$device`. 648 #[doc(hidden)] 649 #[macro_export] 650 macro_rules! __impl_device_context_deref { 651 (unsafe { $device:ident, $src:ty => $dst:ty }) => { 652 impl ::core::ops::Deref for $device<$src> { 653 type Target = $device<$dst>; 654 655 fn deref(&self) -> &Self::Target { 656 let ptr: *const Self = self; 657 658 // CAST: `$device<$src>` and `$device<$dst>` transparently wrap the same type by the 659 // safety requirement of the macro. 660 let ptr = ptr.cast::<Self::Target>(); 661 662 // SAFETY: `ptr` was derived from `&self`. 663 unsafe { &*ptr } 664 } 665 } 666 }; 667 } 668 669 /// Implement [`core::ops::Deref`] traits for allowed [`DeviceContext`] conversions of a (bus 670 /// specific) device. 671 /// 672 /// # Safety 673 /// 674 /// The type given as `$device` must be a transparent wrapper of a type that doesn't depend on the 675 /// generic argument of `$device`. 676 #[macro_export] 677 macro_rules! impl_device_context_deref { 678 (unsafe { $device:ident }) => { 679 // SAFETY: This macro has the exact same safety requirement as 680 // `__impl_device_context_deref!`. 681 ::kernel::__impl_device_context_deref!(unsafe { 682 $device, 683 $crate::device::CoreInternal => $crate::device::Core 684 }); 685 686 // SAFETY: This macro has the exact same safety requirement as 687 // `__impl_device_context_deref!`. 688 ::kernel::__impl_device_context_deref!(unsafe { 689 $device, 690 $crate::device::Core => $crate::device::Bound 691 }); 692 693 // SAFETY: This macro has the exact same safety requirement as 694 // `__impl_device_context_deref!`. 695 ::kernel::__impl_device_context_deref!(unsafe { 696 $device, 697 $crate::device::Bound => $crate::device::Normal 698 }); 699 }; 700 } 701 702 #[doc(hidden)] 703 #[macro_export] 704 macro_rules! __impl_device_context_into_aref { 705 ($src:ty, $device:tt) => { 706 impl ::core::convert::From<&$device<$src>> for $crate::sync::aref::ARef<$device> { 707 fn from(dev: &$device<$src>) -> Self { 708 (&**dev).into() 709 } 710 } 711 }; 712 } 713 714 /// Implement [`core::convert::From`], such that all `&Device<Ctx>` can be converted to an 715 /// `ARef<Device>`. 716 #[macro_export] 717 macro_rules! impl_device_context_into_aref { 718 ($device:tt) => { 719 ::kernel::__impl_device_context_into_aref!($crate::device::CoreInternal, $device); 720 ::kernel::__impl_device_context_into_aref!($crate::device::Core, $device); 721 ::kernel::__impl_device_context_into_aref!($crate::device::Bound, $device); 722 }; 723 } 724 725 #[doc(hidden)] 726 #[macro_export] 727 macro_rules! dev_printk { 728 ($method:ident, $dev:expr, $($f:tt)*) => { 729 { 730 $crate::device::Device::$method($dev.as_ref(), $crate::prelude::fmt!($($f)*)) 731 } 732 } 733 } 734 735 /// Prints an emergency-level message (level 0) prefixed with device information. 736 /// 737 /// This level should be used if the system is unusable. 738 /// 739 /// Equivalent to the kernel's `dev_emerg` macro. 740 /// 741 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from 742 /// [`core::fmt`] and [`std::format!`]. 743 /// 744 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html 745 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html 746 /// 747 /// # Examples 748 /// 749 /// ``` 750 /// # use kernel::device::Device; 751 /// 752 /// fn example(dev: &Device) { 753 /// dev_emerg!(dev, "hello {}\n", "there"); 754 /// } 755 /// ``` 756 #[macro_export] 757 macro_rules! dev_emerg { 758 ($($f:tt)*) => { $crate::dev_printk!(pr_emerg, $($f)*); } 759 } 760 761 /// Prints an alert-level message (level 1) prefixed with device information. 762 /// 763 /// This level should be used if action must be taken immediately. 764 /// 765 /// Equivalent to the kernel's `dev_alert` macro. 766 /// 767 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from 768 /// [`core::fmt`] and [`std::format!`]. 769 /// 770 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html 771 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html 772 /// 773 /// # Examples 774 /// 775 /// ``` 776 /// # use kernel::device::Device; 777 /// 778 /// fn example(dev: &Device) { 779 /// dev_alert!(dev, "hello {}\n", "there"); 780 /// } 781 /// ``` 782 #[macro_export] 783 macro_rules! dev_alert { 784 ($($f:tt)*) => { $crate::dev_printk!(pr_alert, $($f)*); } 785 } 786 787 /// Prints a critical-level message (level 2) prefixed with device information. 788 /// 789 /// This level should be used in critical conditions. 790 /// 791 /// Equivalent to the kernel's `dev_crit` macro. 792 /// 793 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from 794 /// [`core::fmt`] and [`std::format!`]. 795 /// 796 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html 797 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html 798 /// 799 /// # Examples 800 /// 801 /// ``` 802 /// # use kernel::device::Device; 803 /// 804 /// fn example(dev: &Device) { 805 /// dev_crit!(dev, "hello {}\n", "there"); 806 /// } 807 /// ``` 808 #[macro_export] 809 macro_rules! dev_crit { 810 ($($f:tt)*) => { $crate::dev_printk!(pr_crit, $($f)*); } 811 } 812 813 /// Prints an error-level message (level 3) prefixed with device information. 814 /// 815 /// This level should be used in error conditions. 816 /// 817 /// Equivalent to the kernel's `dev_err` macro. 818 /// 819 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from 820 /// [`core::fmt`] and [`std::format!`]. 821 /// 822 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html 823 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html 824 /// 825 /// # Examples 826 /// 827 /// ``` 828 /// # use kernel::device::Device; 829 /// 830 /// fn example(dev: &Device) { 831 /// dev_err!(dev, "hello {}\n", "there"); 832 /// } 833 /// ``` 834 #[macro_export] 835 macro_rules! dev_err { 836 ($($f:tt)*) => { $crate::dev_printk!(pr_err, $($f)*); } 837 } 838 839 /// Prints a warning-level message (level 4) prefixed with device information. 840 /// 841 /// This level should be used in warning conditions. 842 /// 843 /// Equivalent to the kernel's `dev_warn` macro. 844 /// 845 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from 846 /// [`core::fmt`] and [`std::format!`]. 847 /// 848 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html 849 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html 850 /// 851 /// # Examples 852 /// 853 /// ``` 854 /// # use kernel::device::Device; 855 /// 856 /// fn example(dev: &Device) { 857 /// dev_warn!(dev, "hello {}\n", "there"); 858 /// } 859 /// ``` 860 #[macro_export] 861 macro_rules! dev_warn { 862 ($($f:tt)*) => { $crate::dev_printk!(pr_warn, $($f)*); } 863 } 864 865 /// Prints a notice-level message (level 5) prefixed with device information. 866 /// 867 /// This level should be used in normal but significant conditions. 868 /// 869 /// Equivalent to the kernel's `dev_notice` macro. 870 /// 871 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from 872 /// [`core::fmt`] and [`std::format!`]. 873 /// 874 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html 875 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html 876 /// 877 /// # Examples 878 /// 879 /// ``` 880 /// # use kernel::device::Device; 881 /// 882 /// fn example(dev: &Device) { 883 /// dev_notice!(dev, "hello {}\n", "there"); 884 /// } 885 /// ``` 886 #[macro_export] 887 macro_rules! dev_notice { 888 ($($f:tt)*) => { $crate::dev_printk!(pr_notice, $($f)*); } 889 } 890 891 /// Prints an info-level message (level 6) prefixed with device information. 892 /// 893 /// This level should be used for informational messages. 894 /// 895 /// Equivalent to the kernel's `dev_info` macro. 896 /// 897 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from 898 /// [`core::fmt`] and [`std::format!`]. 899 /// 900 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html 901 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html 902 /// 903 /// # Examples 904 /// 905 /// ``` 906 /// # use kernel::device::Device; 907 /// 908 /// fn example(dev: &Device) { 909 /// dev_info!(dev, "hello {}\n", "there"); 910 /// } 911 /// ``` 912 #[macro_export] 913 macro_rules! dev_info { 914 ($($f:tt)*) => { $crate::dev_printk!(pr_info, $($f)*); } 915 } 916 917 /// Prints a debug-level message (level 7) prefixed with device information. 918 /// 919 /// This level should be used for debug messages. 920 /// 921 /// Equivalent to the kernel's `dev_dbg` macro, except that it doesn't support dynamic debug yet. 922 /// 923 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from 924 /// [`core::fmt`] and [`std::format!`]. 925 /// 926 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html 927 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html 928 /// 929 /// # Examples 930 /// 931 /// ``` 932 /// # use kernel::device::Device; 933 /// 934 /// fn example(dev: &Device) { 935 /// dev_dbg!(dev, "hello {}\n", "there"); 936 /// } 937 /// ``` 938 #[macro_export] 939 macro_rules! dev_dbg { 940 ($($f:tt)*) => { $crate::dev_printk!(pr_dbg, $($f)*); } 941 } 942