xref: /linux/rust/kernel/device.rs (revision eb3dad518e4da48ab6c6df16aa8895b8b0bd6ecf)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Generic devices that are part of the kernel's driver model.
4 //!
5 //! C header: [`include/linux/device.h`](srctree/include/linux/device.h)
6 
7 use crate::{
8     bindings,
9     fmt,
10     prelude::*,
11     sync::aref::ARef,
12     types::{
13         ForeignOwnable,
14         Opaque, //
15     }, //
16 };
17 use core::{
18     any::TypeId,
19     marker::PhantomData,
20     ptr, //
21 };
22 
23 pub mod property;
24 
25 // Assert that we can `read()` / `write()` a `TypeId` instance from / into `struct driver_type`.
26 static_assert!(core::mem::size_of::<bindings::driver_type>() >= core::mem::size_of::<TypeId>());
27 
28 /// The core representation of a device in the kernel's driver model.
29 ///
30 /// This structure represents the Rust abstraction for a C `struct device`. A [`Device`] can either
31 /// exist as temporary reference (see also [`Device::from_raw`]), which is only valid within a
32 /// certain scope or as [`ARef<Device>`], owning a dedicated reference count.
33 ///
34 /// # Device Types
35 ///
36 /// A [`Device`] can represent either a bus device or a class device.
37 ///
38 /// ## Bus Devices
39 ///
40 /// A bus device is a [`Device`] that is associated with a physical or virtual bus. Examples of
41 /// buses include PCI, USB, I2C, and SPI. Devices attached to a bus are registered with a specific
42 /// bus type, which facilitates matching devices with appropriate drivers based on IDs or other
43 /// identifying information. Bus devices are visible in sysfs under `/sys/bus/<bus-name>/devices/`.
44 ///
45 /// ## Class Devices
46 ///
47 /// A class device is a [`Device`] that is associated with a logical category of functionality
48 /// rather than a physical bus. Examples of classes include block devices, network interfaces, sound
49 /// cards, and input devices. Class devices are grouped under a common class and exposed to
50 /// userspace via entries in `/sys/class/<class-name>/`.
51 ///
52 /// # Device Context
53 ///
54 /// [`Device`] references are generic over a [`DeviceContext`], which represents the type state of
55 /// a [`Device`].
56 ///
57 /// As the name indicates, this type state represents the context of the scope the [`Device`]
58 /// reference is valid in. For instance, the [`Bound`] context guarantees that the [`Device`] is
59 /// bound to a driver for the entire duration of the existence of a [`Device<Bound>`] reference.
60 ///
61 /// Other [`DeviceContext`] types besides [`Bound`] are [`Normal`], [`Core`] and [`CoreInternal`].
62 ///
63 /// Unless selected otherwise [`Device`] defaults to the [`Normal`] [`DeviceContext`], which by
64 /// itself has no additional requirements.
65 ///
66 /// It is always up to the caller of [`Device::from_raw`] to select the correct [`DeviceContext`]
67 /// type for the corresponding scope the [`Device`] reference is created in.
68 ///
69 /// All [`DeviceContext`] types other than [`Normal`] are intended to be used with
70 /// [bus devices](#bus-devices) only.
71 ///
72 /// # Implementing Bus Devices
73 ///
74 /// This section provides a guideline to implement bus specific devices, such as:
75 #[cfg_attr(CONFIG_PCI, doc = "* [`pci::Device`](kernel::pci::Device)")]
76 /// * [`platform::Device`]
77 ///
78 /// A bus specific device should be defined as follows.
79 ///
80 /// ```ignore
81 /// #[repr(transparent)]
82 /// pub struct Device<Ctx: device::DeviceContext = device::Normal>(
83 ///     Opaque<bindings::bus_device_type>,
84 ///     PhantomData<Ctx>,
85 /// );
86 /// ```
87 ///
88 /// Since devices are reference counted, [`AlwaysRefCounted`] should be implemented for `Device`
89 /// (i.e. `Device<Normal>`). Note that [`AlwaysRefCounted`] must not be implemented for any other
90 /// [`DeviceContext`], since all other device context types are only valid within a certain scope.
91 ///
92 /// In order to be able to implement the [`DeviceContext`] dereference hierarchy, bus device
93 /// implementations should call the [`impl_device_context_deref`] macro as shown below.
94 ///
95 /// ```ignore
96 /// // SAFETY: `Device` is a transparent wrapper of a type that doesn't depend on `Device`'s
97 /// // generic argument.
98 /// kernel::impl_device_context_deref!(unsafe { Device });
99 /// ```
100 ///
101 /// In order to convert from a any [`Device<Ctx>`] to [`ARef<Device>`], bus devices can implement
102 /// the following macro call.
103 ///
104 /// ```ignore
105 /// kernel::impl_device_context_into_aref!(Device);
106 /// ```
107 ///
108 /// Bus devices should also implement the following [`AsRef`] implementation, such that users can
109 /// easily derive a generic [`Device`] reference.
110 ///
111 /// ```ignore
112 /// impl<Ctx: device::DeviceContext> AsRef<device::Device<Ctx>> for Device<Ctx> {
113 ///     fn as_ref(&self) -> &device::Device<Ctx> {
114 ///         ...
115 ///     }
116 /// }
117 /// ```
118 ///
119 /// # Implementing Class Devices
120 ///
121 /// Class device implementations require less infrastructure and depend slightly more on the
122 /// specific subsystem.
123 ///
124 /// An example implementation for a class device could look like this.
125 ///
126 /// ```ignore
127 /// #[repr(C)]
128 /// pub struct Device<T: class::Driver> {
129 ///     dev: Opaque<bindings::class_device_type>,
130 ///     data: T::Data,
131 /// }
132 /// ```
133 ///
134 /// This class device uses the sub-classing pattern to embed the driver's private data within the
135 /// allocation of the class device. For this to be possible the class device is generic over the
136 /// class specific `Driver` trait implementation.
137 ///
138 /// Just like any device, class devices are reference counted and should hence implement
139 /// [`AlwaysRefCounted`] for `Device`.
140 ///
141 /// Class devices should also implement the following [`AsRef`] implementation, such that users can
142 /// easily derive a generic [`Device`] reference.
143 ///
144 /// ```ignore
145 /// impl<T: class::Driver> AsRef<device::Device> for Device<T> {
146 ///     fn as_ref(&self) -> &device::Device {
147 ///         ...
148 ///     }
149 /// }
150 /// ```
151 ///
152 /// An example for a class device implementation is
153 #[cfg_attr(CONFIG_DRM = "y", doc = "[`drm::Device`](kernel::drm::Device).")]
154 #[cfg_attr(not(CONFIG_DRM = "y"), doc = "`drm::Device`.")]
155 ///
156 /// # Invariants
157 ///
158 /// A `Device` instance represents a valid `struct device` created by the C portion of the kernel.
159 ///
160 /// Instances of this type are always reference-counted, that is, a call to `get_device` ensures
161 /// that the allocation remains valid at least until the matching call to `put_device`.
162 ///
163 /// `bindings::device::release` is valid to be called from any thread, hence `ARef<Device>` can be
164 /// dropped from any thread.
165 ///
166 /// [`AlwaysRefCounted`]: kernel::sync::aref::AlwaysRefCounted
167 /// [`impl_device_context_deref`]: kernel::impl_device_context_deref
168 /// [`platform::Device`]: kernel::platform::Device
169 #[repr(transparent)]
170 pub struct Device<Ctx: DeviceContext = Normal>(Opaque<bindings::device>, PhantomData<Ctx>);
171 
172 impl Device {
173     /// Creates a new reference-counted abstraction instance of an existing `struct device` pointer.
174     ///
175     /// # Safety
176     ///
177     /// Callers must ensure that `ptr` is valid, non-null, and has a non-zero reference count,
178     /// i.e. it must be ensured that the reference count of the C `struct device` `ptr` points to
179     /// can't drop to zero, for the duration of this function call.
180     ///
181     /// It must also be ensured that `bindings::device::release` can be called from any thread.
182     /// While not officially documented, this should be the case for any `struct device`.
183     pub unsafe fn get_device(ptr: *mut bindings::device) -> ARef<Self> {
184         // SAFETY: By the safety requirements ptr is valid
185         unsafe { Self::from_raw(ptr) }.into()
186     }
187 
188     /// Convert a [`&Device`](Device) into a [`&Device<Bound>`](Device<Bound>).
189     ///
190     /// # Safety
191     ///
192     /// The caller is responsible to ensure that the returned [`&Device<Bound>`](Device<Bound>)
193     /// only lives as long as it can be guaranteed that the [`Device`] is actually bound.
194     pub unsafe fn as_bound(&self) -> &Device<Bound> {
195         let ptr = core::ptr::from_ref(self);
196 
197         // CAST: By the safety requirements the caller is responsible to guarantee that the
198         // returned reference only lives as long as the device is actually bound.
199         let ptr = ptr.cast();
200 
201         // SAFETY:
202         // - `ptr` comes from `from_ref(self)` above, hence it's guaranteed to be valid.
203         // - Any valid `Device` pointer is also a valid pointer for `Device<Bound>`.
204         unsafe { &*ptr }
205     }
206 }
207 
208 impl Device<CoreInternal> {
209     fn set_type_id<T: 'static>(&self) {
210         // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
211         let private = unsafe { (*self.as_raw()).p };
212 
213         // SAFETY: For a bound device (implied by the `CoreInternal` device context), `private` is
214         // guaranteed to be a valid pointer to a `struct device_private`.
215         let driver_type = unsafe { &raw mut (*private).driver_type };
216 
217         // SAFETY: `driver_type` is valid for (unaligned) writes of a `TypeId`.
218         unsafe {
219             driver_type
220                 .cast::<TypeId>()
221                 .write_unaligned(TypeId::of::<T>())
222         };
223     }
224 
225     /// Store a pointer to the bound driver's private data.
226     pub fn set_drvdata<T: 'static>(&self, data: impl PinInit<T, Error>) -> Result {
227         let data = KBox::pin_init(data, GFP_KERNEL)?;
228 
229         // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
230         unsafe { bindings::dev_set_drvdata(self.as_raw(), data.into_foreign().cast()) };
231         self.set_type_id::<T>();
232 
233         Ok(())
234     }
235 
236     /// Take ownership of the private data stored in this [`Device`].
237     ///
238     /// # Safety
239     ///
240     /// - The type `T` must match the type of the `ForeignOwnable` previously stored by
241     ///   [`Device::set_drvdata`].
242     pub(crate) unsafe fn drvdata_obtain<T: 'static>(&self) -> Option<Pin<KBox<T>>> {
243         // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
244         let ptr = unsafe { bindings::dev_get_drvdata(self.as_raw()) };
245 
246         // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
247         unsafe { bindings::dev_set_drvdata(self.as_raw(), core::ptr::null_mut()) };
248 
249         if ptr.is_null() {
250             return None;
251         }
252 
253         // SAFETY:
254         // - If `ptr` is not NULL, it comes from a previous call to `into_foreign()`.
255         // - `dev_get_drvdata()` guarantees to return the same pointer given to `dev_set_drvdata()`
256         //   in `into_foreign()`.
257         Some(unsafe { Pin::<KBox<T>>::from_foreign(ptr.cast()) })
258     }
259 
260     /// Borrow the driver's private data bound to this [`Device`].
261     ///
262     /// # Safety
263     ///
264     /// - Must only be called after a preceding call to [`Device::set_drvdata`] and before the
265     ///   device is fully unbound.
266     /// - The type `T` must match the type of the `ForeignOwnable` previously stored by
267     ///   [`Device::set_drvdata`].
268     pub unsafe fn drvdata_borrow<T: 'static>(&self) -> Pin<&T> {
269         // SAFETY: `drvdata_unchecked()` has the exact same safety requirements as the ones
270         // required by this method.
271         unsafe { self.drvdata_unchecked() }
272     }
273 }
274 
275 impl Device<Bound> {
276     /// Borrow the driver's private data bound to this [`Device`].
277     ///
278     /// # Safety
279     ///
280     /// - Must only be called after a preceding call to [`Device::set_drvdata`] and before
281     ///   the device is fully unbound.
282     /// - The type `T` must match the type of the `ForeignOwnable` previously stored by
283     ///   [`Device::set_drvdata`].
284     unsafe fn drvdata_unchecked<T: 'static>(&self) -> Pin<&T> {
285         // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
286         let ptr = unsafe { bindings::dev_get_drvdata(self.as_raw()) };
287 
288         // SAFETY:
289         // - By the safety requirements of this function, `ptr` comes from a previous call to
290         //   `into_foreign()`.
291         // - `dev_get_drvdata()` guarantees to return the same pointer given to `dev_set_drvdata()`
292         //   in `into_foreign()`.
293         unsafe { Pin::<KBox<T>>::borrow(ptr.cast()) }
294     }
295 
296     fn match_type_id<T: 'static>(&self) -> Result {
297         // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
298         let private = unsafe { (*self.as_raw()).p };
299 
300         // SAFETY: For a bound device, `private` is guaranteed to be a valid pointer to a
301         // `struct device_private`.
302         let driver_type = unsafe { &raw mut (*private).driver_type };
303 
304         // SAFETY:
305         // - `driver_type` is valid for (unaligned) reads of a `TypeId`.
306         // - A bound device guarantees that `driver_type` contains a valid `TypeId` value.
307         let type_id = unsafe { driver_type.cast::<TypeId>().read_unaligned() };
308 
309         if type_id != TypeId::of::<T>() {
310             return Err(EINVAL);
311         }
312 
313         Ok(())
314     }
315 
316     /// Access a driver's private data.
317     ///
318     /// Returns a pinned reference to the driver's private data or [`EINVAL`] if it doesn't match
319     /// the asserted type `T`.
320     pub fn drvdata<T: 'static>(&self) -> Result<Pin<&T>> {
321         // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
322         if unsafe { bindings::dev_get_drvdata(self.as_raw()) }.is_null() {
323             return Err(ENOENT);
324         }
325 
326         self.match_type_id::<T>()?;
327 
328         // SAFETY:
329         // - The above check of `dev_get_drvdata()` guarantees that we are called after
330         //   `set_drvdata()`.
331         // - We've just checked that the type of the driver's private data is in fact `T`.
332         Ok(unsafe { self.drvdata_unchecked() })
333     }
334 }
335 
336 impl<Ctx: DeviceContext> Device<Ctx> {
337     /// Obtain the raw `struct device *`.
338     pub(crate) fn as_raw(&self) -> *mut bindings::device {
339         self.0.get()
340     }
341 
342     /// Returns a reference to the parent device, if any.
343     #[cfg_attr(not(CONFIG_AUXILIARY_BUS), expect(dead_code))]
344     pub(crate) fn parent(&self) -> Option<&Device> {
345         // SAFETY:
346         // - By the type invariant `self.as_raw()` is always valid.
347         // - The parent device is only ever set at device creation.
348         let parent = unsafe { (*self.as_raw()).parent };
349 
350         if parent.is_null() {
351             None
352         } else {
353             // SAFETY:
354             // - Since `parent` is not NULL, it must be a valid pointer to a `struct device`.
355             // - `parent` is valid for the lifetime of `self`, since a `struct device` holds a
356             //   reference count of its parent.
357             Some(unsafe { Device::from_raw(parent) })
358         }
359     }
360 
361     /// Convert a raw C `struct device` pointer to a `&'a Device`.
362     ///
363     /// # Safety
364     ///
365     /// Callers must ensure that `ptr` is valid, non-null, and has a non-zero reference count,
366     /// i.e. it must be ensured that the reference count of the C `struct device` `ptr` points to
367     /// can't drop to zero, for the duration of this function call and the entire duration when the
368     /// returned reference exists.
369     pub unsafe fn from_raw<'a>(ptr: *mut bindings::device) -> &'a Self {
370         // SAFETY: Guaranteed by the safety requirements of the function.
371         unsafe { &*ptr.cast() }
372     }
373 
374     /// Prints an emergency-level message (level 0) prefixed with device information.
375     ///
376     /// More details are available from [`dev_emerg`].
377     ///
378     /// [`dev_emerg`]: crate::dev_emerg
379     pub fn pr_emerg(&self, args: fmt::Arguments<'_>) {
380         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
381         unsafe { self.printk(bindings::KERN_EMERG, args) };
382     }
383 
384     /// Prints an alert-level message (level 1) prefixed with device information.
385     ///
386     /// More details are available from [`dev_alert`].
387     ///
388     /// [`dev_alert`]: crate::dev_alert
389     pub fn pr_alert(&self, args: fmt::Arguments<'_>) {
390         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
391         unsafe { self.printk(bindings::KERN_ALERT, args) };
392     }
393 
394     /// Prints a critical-level message (level 2) prefixed with device information.
395     ///
396     /// More details are available from [`dev_crit`].
397     ///
398     /// [`dev_crit`]: crate::dev_crit
399     pub fn pr_crit(&self, args: fmt::Arguments<'_>) {
400         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
401         unsafe { self.printk(bindings::KERN_CRIT, args) };
402     }
403 
404     /// Prints an error-level message (level 3) prefixed with device information.
405     ///
406     /// More details are available from [`dev_err`].
407     ///
408     /// [`dev_err`]: crate::dev_err
409     pub fn pr_err(&self, args: fmt::Arguments<'_>) {
410         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
411         unsafe { self.printk(bindings::KERN_ERR, args) };
412     }
413 
414     /// Prints a warning-level message (level 4) prefixed with device information.
415     ///
416     /// More details are available from [`dev_warn`].
417     ///
418     /// [`dev_warn`]: crate::dev_warn
419     pub fn pr_warn(&self, args: fmt::Arguments<'_>) {
420         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
421         unsafe { self.printk(bindings::KERN_WARNING, args) };
422     }
423 
424     /// Prints a notice-level message (level 5) prefixed with device information.
425     ///
426     /// More details are available from [`dev_notice`].
427     ///
428     /// [`dev_notice`]: crate::dev_notice
429     pub fn pr_notice(&self, args: fmt::Arguments<'_>) {
430         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
431         unsafe { self.printk(bindings::KERN_NOTICE, args) };
432     }
433 
434     /// Prints an info-level message (level 6) prefixed with device information.
435     ///
436     /// More details are available from [`dev_info`].
437     ///
438     /// [`dev_info`]: crate::dev_info
439     pub fn pr_info(&self, args: fmt::Arguments<'_>) {
440         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
441         unsafe { self.printk(bindings::KERN_INFO, args) };
442     }
443 
444     /// Prints a debug-level message (level 7) prefixed with device information.
445     ///
446     /// More details are available from [`dev_dbg`].
447     ///
448     /// [`dev_dbg`]: crate::dev_dbg
449     pub fn pr_dbg(&self, args: fmt::Arguments<'_>) {
450         if cfg!(debug_assertions) {
451             // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
452             unsafe { self.printk(bindings::KERN_DEBUG, args) };
453         }
454     }
455 
456     /// Prints the provided message to the console.
457     ///
458     /// # Safety
459     ///
460     /// Callers must ensure that `klevel` is null-terminated; in particular, one of the
461     /// `KERN_*`constants, for example, `KERN_CRIT`, `KERN_ALERT`, etc.
462     #[cfg_attr(not(CONFIG_PRINTK), allow(unused_variables))]
463     unsafe fn printk(&self, klevel: &[u8], msg: fmt::Arguments<'_>) {
464         // SAFETY: `klevel` is null-terminated and one of the kernel constants. `self.as_raw`
465         // is valid because `self` is valid. The "%pA" format string expects a pointer to
466         // `fmt::Arguments`, which is what we're passing as the last argument.
467         #[cfg(CONFIG_PRINTK)]
468         unsafe {
469             bindings::_dev_printk(
470                 klevel.as_ptr().cast::<crate::ffi::c_char>(),
471                 self.as_raw(),
472                 c"%pA".as_char_ptr(),
473                 core::ptr::from_ref(&msg).cast::<crate::ffi::c_void>(),
474             )
475         };
476     }
477 
478     /// Obtain the [`FwNode`](property::FwNode) corresponding to this [`Device`].
479     pub fn fwnode(&self) -> Option<&property::FwNode> {
480         // SAFETY: `self` is valid.
481         let fwnode_handle = unsafe { bindings::__dev_fwnode(self.as_raw()) };
482         if fwnode_handle.is_null() {
483             return None;
484         }
485         // SAFETY: `fwnode_handle` is valid. Its lifetime is tied to `&self`. We
486         // return a reference instead of an `ARef<FwNode>` because `dev_fwnode()`
487         // doesn't increment the refcount. It is safe to cast from a
488         // `struct fwnode_handle*` to a `*const FwNode` because `FwNode` is
489         // defined as a `#[repr(transparent)]` wrapper around `fwnode_handle`.
490         Some(unsafe { &*fwnode_handle.cast() })
491     }
492 }
493 
494 // SAFETY: `Device` is a transparent wrapper of a type that doesn't depend on `Device`'s generic
495 // argument.
496 kernel::impl_device_context_deref!(unsafe { Device });
497 kernel::impl_device_context_into_aref!(Device);
498 
499 // SAFETY: Instances of `Device` are always reference-counted.
500 unsafe impl crate::sync::aref::AlwaysRefCounted for Device {
501     fn inc_ref(&self) {
502         // SAFETY: The existence of a shared reference guarantees that the refcount is non-zero.
503         unsafe { bindings::get_device(self.as_raw()) };
504     }
505 
506     unsafe fn dec_ref(obj: ptr::NonNull<Self>) {
507         // SAFETY: The safety requirements guarantee that the refcount is non-zero.
508         unsafe { bindings::put_device(obj.cast().as_ptr()) }
509     }
510 }
511 
512 // SAFETY: As by the type invariant `Device` can be sent to any thread.
513 unsafe impl Send for Device {}
514 
515 // SAFETY: `Device` can be shared among threads because all immutable methods are protected by the
516 // synchronization in `struct device`.
517 unsafe impl Sync for Device {}
518 
519 /// Marker trait for the context or scope of a bus specific device.
520 ///
521 /// [`DeviceContext`] is a marker trait for types representing the context of a bus specific
522 /// [`Device`].
523 ///
524 /// The specific device context types are: [`CoreInternal`], [`Core`], [`Bound`] and [`Normal`].
525 ///
526 /// [`DeviceContext`] types are hierarchical, which means that there is a strict hierarchy that
527 /// defines which [`DeviceContext`] type can be derived from another. For instance, any
528 /// [`Device<Core>`] can dereference to a [`Device<Bound>`].
529 ///
530 /// The following enumeration illustrates the dereference hierarchy of [`DeviceContext`] types.
531 ///
532 /// - [`CoreInternal`] => [`Core`] => [`Bound`] => [`Normal`]
533 ///
534 /// Bus devices can automatically implement the dereference hierarchy by using
535 /// [`impl_device_context_deref`].
536 ///
537 /// Note that the guarantee for a [`Device`] reference to have a certain [`DeviceContext`] comes
538 /// from the specific scope the [`Device`] reference is valid in.
539 ///
540 /// [`impl_device_context_deref`]: kernel::impl_device_context_deref
541 pub trait DeviceContext: private::Sealed {}
542 
543 /// The [`Normal`] context is the default [`DeviceContext`] of any [`Device`].
544 ///
545 /// The normal context does not indicate any specific context. Any `Device<Ctx>` is also a valid
546 /// [`Device<Normal>`]. It is the only [`DeviceContext`] for which it is valid to implement
547 /// [`AlwaysRefCounted`] for.
548 ///
549 /// [`AlwaysRefCounted`]: kernel::sync::aref::AlwaysRefCounted
550 pub struct Normal;
551 
552 /// The [`Core`] context is the context of a bus specific device when it appears as argument of
553 /// any bus specific callback, such as `probe()`.
554 ///
555 /// The core context indicates that the [`Device<Core>`] reference's scope is limited to the bus
556 /// callback it appears in. It is intended to be used for synchronization purposes. Bus device
557 /// implementations can implement methods for [`Device<Core>`], such that they can only be called
558 /// from bus callbacks.
559 pub struct Core;
560 
561 /// Semantically the same as [`Core`], but reserved for internal usage of the corresponding bus
562 /// abstraction.
563 ///
564 /// The internal core context is intended to be used in exactly the same way as the [`Core`]
565 /// context, with the difference that this [`DeviceContext`] is internal to the corresponding bus
566 /// abstraction.
567 ///
568 /// This context mainly exists to share generic [`Device`] infrastructure that should only be called
569 /// from bus callbacks with bus abstractions, but without making them accessible for drivers.
570 pub struct CoreInternal;
571 
572 /// The [`Bound`] context is the [`DeviceContext`] of a bus specific device when it is guaranteed to
573 /// be bound to a driver.
574 ///
575 /// The bound context indicates that for the entire duration of the lifetime of a [`Device<Bound>`]
576 /// reference, the [`Device`] is guaranteed to be bound to a driver.
577 ///
578 /// Some APIs, such as [`dma::CoherentAllocation`] or [`Devres`] rely on the [`Device`] to be bound,
579 /// which can be proven with the [`Bound`] device context.
580 ///
581 /// Any abstraction that can guarantee a scope where the corresponding bus device is bound, should
582 /// provide a [`Device<Bound>`] reference to its users for this scope. This allows users to benefit
583 /// from optimizations for accessing device resources, see also [`Devres::access`].
584 ///
585 /// [`Devres`]: kernel::devres::Devres
586 /// [`Devres::access`]: kernel::devres::Devres::access
587 /// [`dma::CoherentAllocation`]: kernel::dma::CoherentAllocation
588 pub struct Bound;
589 
590 mod private {
591     pub trait Sealed {}
592 
593     impl Sealed for super::Bound {}
594     impl Sealed for super::Core {}
595     impl Sealed for super::CoreInternal {}
596     impl Sealed for super::Normal {}
597 }
598 
599 impl DeviceContext for Bound {}
600 impl DeviceContext for Core {}
601 impl DeviceContext for CoreInternal {}
602 impl DeviceContext for Normal {}
603 
604 impl<Ctx: DeviceContext> AsRef<Device<Ctx>> for Device<Ctx> {
605     #[inline]
606     fn as_ref(&self) -> &Device<Ctx> {
607         self
608     }
609 }
610 
611 /// Convert device references to bus device references.
612 ///
613 /// Bus devices can implement this trait to allow abstractions to provide the bus device in
614 /// class device callbacks.
615 ///
616 /// This must not be used by drivers and is intended for bus and class device abstractions only.
617 ///
618 /// # Safety
619 ///
620 /// `AsBusDevice::OFFSET` must be the offset of the embedded base `struct device` field within a
621 /// bus device structure.
622 pub unsafe trait AsBusDevice<Ctx: DeviceContext>: AsRef<Device<Ctx>> {
623     /// The relative offset to the device field.
624     ///
625     /// Use `offset_of!(bindings, field)` macro to avoid breakage.
626     const OFFSET: usize;
627 
628     /// Convert a reference to [`Device`] into `Self`.
629     ///
630     /// # Safety
631     ///
632     /// `dev` must be contained in `Self`.
633     unsafe fn from_device(dev: &Device<Ctx>) -> &Self
634     where
635         Self: Sized,
636     {
637         let raw = dev.as_raw();
638         // SAFETY: `raw - Self::OFFSET` is guaranteed by the safety requirements
639         // to be a valid pointer to `Self`.
640         unsafe { &*raw.byte_sub(Self::OFFSET).cast::<Self>() }
641     }
642 }
643 
644 /// # Safety
645 ///
646 /// The type given as `$device` must be a transparent wrapper of a type that doesn't depend on the
647 /// generic argument of `$device`.
648 #[doc(hidden)]
649 #[macro_export]
650 macro_rules! __impl_device_context_deref {
651     (unsafe { $device:ident, $src:ty => $dst:ty }) => {
652         impl ::core::ops::Deref for $device<$src> {
653             type Target = $device<$dst>;
654 
655             fn deref(&self) -> &Self::Target {
656                 let ptr: *const Self = self;
657 
658                 // CAST: `$device<$src>` and `$device<$dst>` transparently wrap the same type by the
659                 // safety requirement of the macro.
660                 let ptr = ptr.cast::<Self::Target>();
661 
662                 // SAFETY: `ptr` was derived from `&self`.
663                 unsafe { &*ptr }
664             }
665         }
666     };
667 }
668 
669 /// Implement [`core::ops::Deref`] traits for allowed [`DeviceContext`] conversions of a (bus
670 /// specific) device.
671 ///
672 /// # Safety
673 ///
674 /// The type given as `$device` must be a transparent wrapper of a type that doesn't depend on the
675 /// generic argument of `$device`.
676 #[macro_export]
677 macro_rules! impl_device_context_deref {
678     (unsafe { $device:ident }) => {
679         // SAFETY: This macro has the exact same safety requirement as
680         // `__impl_device_context_deref!`.
681         ::kernel::__impl_device_context_deref!(unsafe {
682             $device,
683             $crate::device::CoreInternal => $crate::device::Core
684         });
685 
686         // SAFETY: This macro has the exact same safety requirement as
687         // `__impl_device_context_deref!`.
688         ::kernel::__impl_device_context_deref!(unsafe {
689             $device,
690             $crate::device::Core => $crate::device::Bound
691         });
692 
693         // SAFETY: This macro has the exact same safety requirement as
694         // `__impl_device_context_deref!`.
695         ::kernel::__impl_device_context_deref!(unsafe {
696             $device,
697             $crate::device::Bound => $crate::device::Normal
698         });
699     };
700 }
701 
702 #[doc(hidden)]
703 #[macro_export]
704 macro_rules! __impl_device_context_into_aref {
705     ($src:ty, $device:tt) => {
706         impl ::core::convert::From<&$device<$src>> for $crate::sync::aref::ARef<$device> {
707             fn from(dev: &$device<$src>) -> Self {
708                 (&**dev).into()
709             }
710         }
711     };
712 }
713 
714 /// Implement [`core::convert::From`], such that all `&Device<Ctx>` can be converted to an
715 /// `ARef<Device>`.
716 #[macro_export]
717 macro_rules! impl_device_context_into_aref {
718     ($device:tt) => {
719         ::kernel::__impl_device_context_into_aref!($crate::device::CoreInternal, $device);
720         ::kernel::__impl_device_context_into_aref!($crate::device::Core, $device);
721         ::kernel::__impl_device_context_into_aref!($crate::device::Bound, $device);
722     };
723 }
724 
725 #[doc(hidden)]
726 #[macro_export]
727 macro_rules! dev_printk {
728     ($method:ident, $dev:expr, $($f:tt)*) => {
729         {
730             $crate::device::Device::$method($dev.as_ref(), $crate::prelude::fmt!($($f)*))
731         }
732     }
733 }
734 
735 /// Prints an emergency-level message (level 0) prefixed with device information.
736 ///
737 /// This level should be used if the system is unusable.
738 ///
739 /// Equivalent to the kernel's `dev_emerg` macro.
740 ///
741 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
742 /// [`core::fmt`] and [`std::format!`].
743 ///
744 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
745 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
746 ///
747 /// # Examples
748 ///
749 /// ```
750 /// # use kernel::device::Device;
751 ///
752 /// fn example(dev: &Device) {
753 ///     dev_emerg!(dev, "hello {}\n", "there");
754 /// }
755 /// ```
756 #[macro_export]
757 macro_rules! dev_emerg {
758     ($($f:tt)*) => { $crate::dev_printk!(pr_emerg, $($f)*); }
759 }
760 
761 /// Prints an alert-level message (level 1) prefixed with device information.
762 ///
763 /// This level should be used if action must be taken immediately.
764 ///
765 /// Equivalent to the kernel's `dev_alert` macro.
766 ///
767 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
768 /// [`core::fmt`] and [`std::format!`].
769 ///
770 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
771 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
772 ///
773 /// # Examples
774 ///
775 /// ```
776 /// # use kernel::device::Device;
777 ///
778 /// fn example(dev: &Device) {
779 ///     dev_alert!(dev, "hello {}\n", "there");
780 /// }
781 /// ```
782 #[macro_export]
783 macro_rules! dev_alert {
784     ($($f:tt)*) => { $crate::dev_printk!(pr_alert, $($f)*); }
785 }
786 
787 /// Prints a critical-level message (level 2) prefixed with device information.
788 ///
789 /// This level should be used in critical conditions.
790 ///
791 /// Equivalent to the kernel's `dev_crit` macro.
792 ///
793 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
794 /// [`core::fmt`] and [`std::format!`].
795 ///
796 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
797 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
798 ///
799 /// # Examples
800 ///
801 /// ```
802 /// # use kernel::device::Device;
803 ///
804 /// fn example(dev: &Device) {
805 ///     dev_crit!(dev, "hello {}\n", "there");
806 /// }
807 /// ```
808 #[macro_export]
809 macro_rules! dev_crit {
810     ($($f:tt)*) => { $crate::dev_printk!(pr_crit, $($f)*); }
811 }
812 
813 /// Prints an error-level message (level 3) prefixed with device information.
814 ///
815 /// This level should be used in error conditions.
816 ///
817 /// Equivalent to the kernel's `dev_err` macro.
818 ///
819 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
820 /// [`core::fmt`] and [`std::format!`].
821 ///
822 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
823 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
824 ///
825 /// # Examples
826 ///
827 /// ```
828 /// # use kernel::device::Device;
829 ///
830 /// fn example(dev: &Device) {
831 ///     dev_err!(dev, "hello {}\n", "there");
832 /// }
833 /// ```
834 #[macro_export]
835 macro_rules! dev_err {
836     ($($f:tt)*) => { $crate::dev_printk!(pr_err, $($f)*); }
837 }
838 
839 /// Prints a warning-level message (level 4) prefixed with device information.
840 ///
841 /// This level should be used in warning conditions.
842 ///
843 /// Equivalent to the kernel's `dev_warn` macro.
844 ///
845 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
846 /// [`core::fmt`] and [`std::format!`].
847 ///
848 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
849 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
850 ///
851 /// # Examples
852 ///
853 /// ```
854 /// # use kernel::device::Device;
855 ///
856 /// fn example(dev: &Device) {
857 ///     dev_warn!(dev, "hello {}\n", "there");
858 /// }
859 /// ```
860 #[macro_export]
861 macro_rules! dev_warn {
862     ($($f:tt)*) => { $crate::dev_printk!(pr_warn, $($f)*); }
863 }
864 
865 /// Prints a notice-level message (level 5) prefixed with device information.
866 ///
867 /// This level should be used in normal but significant conditions.
868 ///
869 /// Equivalent to the kernel's `dev_notice` macro.
870 ///
871 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
872 /// [`core::fmt`] and [`std::format!`].
873 ///
874 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
875 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
876 ///
877 /// # Examples
878 ///
879 /// ```
880 /// # use kernel::device::Device;
881 ///
882 /// fn example(dev: &Device) {
883 ///     dev_notice!(dev, "hello {}\n", "there");
884 /// }
885 /// ```
886 #[macro_export]
887 macro_rules! dev_notice {
888     ($($f:tt)*) => { $crate::dev_printk!(pr_notice, $($f)*); }
889 }
890 
891 /// Prints an info-level message (level 6) prefixed with device information.
892 ///
893 /// This level should be used for informational messages.
894 ///
895 /// Equivalent to the kernel's `dev_info` macro.
896 ///
897 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
898 /// [`core::fmt`] and [`std::format!`].
899 ///
900 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
901 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
902 ///
903 /// # Examples
904 ///
905 /// ```
906 /// # use kernel::device::Device;
907 ///
908 /// fn example(dev: &Device) {
909 ///     dev_info!(dev, "hello {}\n", "there");
910 /// }
911 /// ```
912 #[macro_export]
913 macro_rules! dev_info {
914     ($($f:tt)*) => { $crate::dev_printk!(pr_info, $($f)*); }
915 }
916 
917 /// Prints a debug-level message (level 7) prefixed with device information.
918 ///
919 /// This level should be used for debug messages.
920 ///
921 /// Equivalent to the kernel's `dev_dbg` macro, except that it doesn't support dynamic debug yet.
922 ///
923 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
924 /// [`core::fmt`] and [`std::format!`].
925 ///
926 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
927 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
928 ///
929 /// # Examples
930 ///
931 /// ```
932 /// # use kernel::device::Device;
933 ///
934 /// fn example(dev: &Device) {
935 ///     dev_dbg!(dev, "hello {}\n", "there");
936 /// }
937 /// ```
938 #[macro_export]
939 macro_rules! dev_dbg {
940     ($($f:tt)*) => { $crate::dev_printk!(pr_dbg, $($f)*); }
941 }
942