xref: /linux/rust/kernel/device.rs (revision 8f799b4e8cc0cf926019e40405dc3eab330ac643)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Generic devices that are part of the kernel's driver model.
4 //!
5 //! C header: [`include/linux/device.h`](srctree/include/linux/device.h)
6 
7 use crate::{
8     bindings,
9     fmt,
10     prelude::*,
11     sync::aref::ARef,
12     types::{
13         ForeignOwnable,
14         Opaque, //
15     }, //
16 };
17 use core::{
18     any::TypeId,
19     marker::PhantomData,
20     ptr, //
21 };
22 
23 pub mod property;
24 
25 // Assert that we can `read()` / `write()` a `TypeId` instance from / into `struct driver_type`.
26 static_assert!(core::mem::size_of::<bindings::driver_type>() >= core::mem::size_of::<TypeId>());
27 
28 /// The core representation of a device in the kernel's driver model.
29 ///
30 /// This structure represents the Rust abstraction for a C `struct device`. A [`Device`] can either
31 /// exist as temporary reference (see also [`Device::from_raw`]), which is only valid within a
32 /// certain scope or as [`ARef<Device>`], owning a dedicated reference count.
33 ///
34 /// # Device Types
35 ///
36 /// A [`Device`] can represent either a bus device or a class device.
37 ///
38 /// ## Bus Devices
39 ///
40 /// A bus device is a [`Device`] that is associated with a physical or virtual bus. Examples of
41 /// buses include PCI, USB, I2C, and SPI. Devices attached to a bus are registered with a specific
42 /// bus type, which facilitates matching devices with appropriate drivers based on IDs or other
43 /// identifying information. Bus devices are visible in sysfs under `/sys/bus/<bus-name>/devices/`.
44 ///
45 /// ## Class Devices
46 ///
47 /// A class device is a [`Device`] that is associated with a logical category of functionality
48 /// rather than a physical bus. Examples of classes include block devices, network interfaces, sound
49 /// cards, and input devices. Class devices are grouped under a common class and exposed to
50 /// userspace via entries in `/sys/class/<class-name>/`.
51 ///
52 /// # Device Context
53 ///
54 /// [`Device`] references are generic over a [`DeviceContext`], which represents the type state of
55 /// a [`Device`].
56 ///
57 /// As the name indicates, this type state represents the context of the scope the [`Device`]
58 /// reference is valid in. For instance, the [`Bound`] context guarantees that the [`Device`] is
59 /// bound to a driver for the entire duration of the existence of a [`Device<Bound>`] reference.
60 ///
61 /// Other [`DeviceContext`] types besides [`Bound`] are [`Normal`], [`Core`] and [`CoreInternal`].
62 ///
63 /// Unless selected otherwise [`Device`] defaults to the [`Normal`] [`DeviceContext`], which by
64 /// itself has no additional requirements.
65 ///
66 /// It is always up to the caller of [`Device::from_raw`] to select the correct [`DeviceContext`]
67 /// type for the corresponding scope the [`Device`] reference is created in.
68 ///
69 /// All [`DeviceContext`] types other than [`Normal`] are intended to be used with
70 /// [bus devices](#bus-devices) only.
71 ///
72 /// # Implementing Bus Devices
73 ///
74 /// This section provides a guideline to implement bus specific devices, such as:
75 #[cfg_attr(CONFIG_PCI, doc = "* [`pci::Device`](kernel::pci::Device)")]
76 /// * [`platform::Device`]
77 ///
78 /// A bus specific device should be defined as follows.
79 ///
80 /// ```ignore
81 /// #[repr(transparent)]
82 /// pub struct Device<Ctx: device::DeviceContext = device::Normal>(
83 ///     Opaque<bindings::bus_device_type>,
84 ///     PhantomData<Ctx>,
85 /// );
86 /// ```
87 ///
88 /// Since devices are reference counted, [`AlwaysRefCounted`] should be implemented for `Device`
89 /// (i.e. `Device<Normal>`). Note that [`AlwaysRefCounted`] must not be implemented for any other
90 /// [`DeviceContext`], since all other device context types are only valid within a certain scope.
91 ///
92 /// In order to be able to implement the [`DeviceContext`] dereference hierarchy, bus device
93 /// implementations should call the [`impl_device_context_deref`] macro as shown below.
94 ///
95 /// ```ignore
96 /// // SAFETY: `Device` is a transparent wrapper of a type that doesn't depend on `Device`'s
97 /// // generic argument.
98 /// kernel::impl_device_context_deref!(unsafe { Device });
99 /// ```
100 ///
101 /// In order to convert from a any [`Device<Ctx>`] to [`ARef<Device>`], bus devices can implement
102 /// the following macro call.
103 ///
104 /// ```ignore
105 /// kernel::impl_device_context_into_aref!(Device);
106 /// ```
107 ///
108 /// Bus devices should also implement the following [`AsRef`] implementation, such that users can
109 /// easily derive a generic [`Device`] reference.
110 ///
111 /// ```ignore
112 /// impl<Ctx: device::DeviceContext> AsRef<device::Device<Ctx>> for Device<Ctx> {
113 ///     fn as_ref(&self) -> &device::Device<Ctx> {
114 ///         ...
115 ///     }
116 /// }
117 /// ```
118 ///
119 /// # Implementing Class Devices
120 ///
121 /// Class device implementations require less infrastructure and depend slightly more on the
122 /// specific subsystem.
123 ///
124 /// An example implementation for a class device could look like this.
125 ///
126 /// ```ignore
127 /// #[repr(C)]
128 /// pub struct Device<T: class::Driver> {
129 ///     dev: Opaque<bindings::class_device_type>,
130 ///     data: T::Data,
131 /// }
132 /// ```
133 ///
134 /// This class device uses the sub-classing pattern to embed the driver's private data within the
135 /// allocation of the class device. For this to be possible the class device is generic over the
136 /// class specific `Driver` trait implementation.
137 ///
138 /// Just like any device, class devices are reference counted and should hence implement
139 /// [`AlwaysRefCounted`] for `Device`.
140 ///
141 /// Class devices should also implement the following [`AsRef`] implementation, such that users can
142 /// easily derive a generic [`Device`] reference.
143 ///
144 /// ```ignore
145 /// impl<T: class::Driver> AsRef<device::Device> for Device<T> {
146 ///     fn as_ref(&self) -> &device::Device {
147 ///         ...
148 ///     }
149 /// }
150 /// ```
151 ///
152 /// An example for a class device implementation is
153 #[cfg_attr(CONFIG_DRM = "y", doc = "[`drm::Device`](kernel::drm::Device).")]
154 #[cfg_attr(not(CONFIG_DRM = "y"), doc = "`drm::Device`.")]
155 ///
156 /// # Invariants
157 ///
158 /// A `Device` instance represents a valid `struct device` created by the C portion of the kernel.
159 ///
160 /// Instances of this type are always reference-counted, that is, a call to `get_device` ensures
161 /// that the allocation remains valid at least until the matching call to `put_device`.
162 ///
163 /// `bindings::device::release` is valid to be called from any thread, hence `ARef<Device>` can be
164 /// dropped from any thread.
165 ///
166 /// [`AlwaysRefCounted`]: kernel::sync::aref::AlwaysRefCounted
167 /// [`impl_device_context_deref`]: kernel::impl_device_context_deref
168 /// [`platform::Device`]: kernel::platform::Device
169 #[repr(transparent)]
170 pub struct Device<Ctx: DeviceContext = Normal>(Opaque<bindings::device>, PhantomData<Ctx>);
171 
172 impl Device {
173     /// Creates a new reference-counted abstraction instance of an existing `struct device` pointer.
174     ///
175     /// # Safety
176     ///
177     /// Callers must ensure that `ptr` is valid, non-null, and has a non-zero reference count,
178     /// i.e. it must be ensured that the reference count of the C `struct device` `ptr` points to
179     /// can't drop to zero, for the duration of this function call.
180     ///
181     /// It must also be ensured that `bindings::device::release` can be called from any thread.
182     /// While not officially documented, this should be the case for any `struct device`.
183     pub unsafe fn get_device(ptr: *mut bindings::device) -> ARef<Self> {
184         // SAFETY: By the safety requirements ptr is valid
185         unsafe { Self::from_raw(ptr) }.into()
186     }
187 
188     /// Convert a [`&Device`](Device) into a [`&Device<Bound>`](Device<Bound>).
189     ///
190     /// # Safety
191     ///
192     /// The caller is responsible to ensure that the returned [`&Device<Bound>`](Device<Bound>)
193     /// only lives as long as it can be guaranteed that the [`Device`] is actually bound.
194     pub unsafe fn as_bound(&self) -> &Device<Bound> {
195         let ptr = core::ptr::from_ref(self);
196 
197         // CAST: By the safety requirements the caller is responsible to guarantee that the
198         // returned reference only lives as long as the device is actually bound.
199         let ptr = ptr.cast();
200 
201         // SAFETY:
202         // - `ptr` comes from `from_ref(self)` above, hence it's guaranteed to be valid.
203         // - Any valid `Device` pointer is also a valid pointer for `Device<Bound>`.
204         unsafe { &*ptr }
205     }
206 }
207 
208 impl Device<CoreInternal> {
209     fn set_type_id<T: 'static>(&self) {
210         // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
211         let private = unsafe { (*self.as_raw()).p };
212 
213         // SAFETY: For a bound device (implied by the `CoreInternal` device context), `private` is
214         // guaranteed to be a valid pointer to a `struct device_private`.
215         let driver_type = unsafe { &raw mut (*private).driver_type };
216 
217         // SAFETY: `driver_type` is valid for (unaligned) writes of a `TypeId`.
218         unsafe {
219             driver_type
220                 .cast::<TypeId>()
221                 .write_unaligned(TypeId::of::<T>())
222         };
223     }
224 
225     /// Store a pointer to the bound driver's private data.
226     pub fn set_drvdata<T: 'static>(&self, data: impl PinInit<T, Error>) -> Result {
227         let data = KBox::pin_init(data, GFP_KERNEL)?;
228 
229         // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
230         unsafe { bindings::dev_set_drvdata(self.as_raw(), data.into_foreign().cast()) };
231         self.set_type_id::<T>();
232 
233         Ok(())
234     }
235 
236     /// Take ownership of the private data stored in this [`Device`].
237     ///
238     /// # Safety
239     ///
240     /// - Must only be called once after a preceding call to [`Device::set_drvdata`].
241     /// - The type `T` must match the type of the `ForeignOwnable` previously stored by
242     ///   [`Device::set_drvdata`].
243     pub unsafe fn drvdata_obtain<T: 'static>(&self) -> Pin<KBox<T>> {
244         // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
245         let ptr = unsafe { bindings::dev_get_drvdata(self.as_raw()) };
246 
247         // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
248         unsafe { bindings::dev_set_drvdata(self.as_raw(), core::ptr::null_mut()) };
249 
250         // SAFETY:
251         // - By the safety requirements of this function, `ptr` comes from a previous call to
252         //   `into_foreign()`.
253         // - `dev_get_drvdata()` guarantees to return the same pointer given to `dev_set_drvdata()`
254         //   in `into_foreign()`.
255         unsafe { Pin::<KBox<T>>::from_foreign(ptr.cast()) }
256     }
257 
258     /// Borrow the driver's private data bound to this [`Device`].
259     ///
260     /// # Safety
261     ///
262     /// - Must only be called after a preceding call to [`Device::set_drvdata`] and before
263     ///   [`Device::drvdata_obtain`].
264     /// - The type `T` must match the type of the `ForeignOwnable` previously stored by
265     ///   [`Device::set_drvdata`].
266     pub unsafe fn drvdata_borrow<T: 'static>(&self) -> Pin<&T> {
267         // SAFETY: `drvdata_unchecked()` has the exact same safety requirements as the ones
268         // required by this method.
269         unsafe { self.drvdata_unchecked() }
270     }
271 }
272 
273 impl Device<Bound> {
274     /// Borrow the driver's private data bound to this [`Device`].
275     ///
276     /// # Safety
277     ///
278     /// - Must only be called after a preceding call to [`Device::set_drvdata`] and before
279     ///   [`Device::drvdata_obtain`].
280     /// - The type `T` must match the type of the `ForeignOwnable` previously stored by
281     ///   [`Device::set_drvdata`].
282     unsafe fn drvdata_unchecked<T: 'static>(&self) -> Pin<&T> {
283         // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
284         let ptr = unsafe { bindings::dev_get_drvdata(self.as_raw()) };
285 
286         // SAFETY:
287         // - By the safety requirements of this function, `ptr` comes from a previous call to
288         //   `into_foreign()`.
289         // - `dev_get_drvdata()` guarantees to return the same pointer given to `dev_set_drvdata()`
290         //   in `into_foreign()`.
291         unsafe { Pin::<KBox<T>>::borrow(ptr.cast()) }
292     }
293 
294     fn match_type_id<T: 'static>(&self) -> Result {
295         // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
296         let private = unsafe { (*self.as_raw()).p };
297 
298         // SAFETY: For a bound device, `private` is guaranteed to be a valid pointer to a
299         // `struct device_private`.
300         let driver_type = unsafe { &raw mut (*private).driver_type };
301 
302         // SAFETY:
303         // - `driver_type` is valid for (unaligned) reads of a `TypeId`.
304         // - A bound device guarantees that `driver_type` contains a valid `TypeId` value.
305         let type_id = unsafe { driver_type.cast::<TypeId>().read_unaligned() };
306 
307         if type_id != TypeId::of::<T>() {
308             return Err(EINVAL);
309         }
310 
311         Ok(())
312     }
313 
314     /// Access a driver's private data.
315     ///
316     /// Returns a pinned reference to the driver's private data or [`EINVAL`] if it doesn't match
317     /// the asserted type `T`.
318     pub fn drvdata<T: 'static>(&self) -> Result<Pin<&T>> {
319         // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
320         if unsafe { bindings::dev_get_drvdata(self.as_raw()) }.is_null() {
321             return Err(ENOENT);
322         }
323 
324         self.match_type_id::<T>()?;
325 
326         // SAFETY:
327         // - The above check of `dev_get_drvdata()` guarantees that we are called after
328         //   `set_drvdata()` and before `drvdata_obtain()`.
329         // - We've just checked that the type of the driver's private data is in fact `T`.
330         Ok(unsafe { self.drvdata_unchecked() })
331     }
332 }
333 
334 impl<Ctx: DeviceContext> Device<Ctx> {
335     /// Obtain the raw `struct device *`.
336     pub(crate) fn as_raw(&self) -> *mut bindings::device {
337         self.0.get()
338     }
339 
340     /// Returns a reference to the parent device, if any.
341     #[cfg_attr(not(CONFIG_AUXILIARY_BUS), expect(dead_code))]
342     pub(crate) fn parent(&self) -> Option<&Device> {
343         // SAFETY:
344         // - By the type invariant `self.as_raw()` is always valid.
345         // - The parent device is only ever set at device creation.
346         let parent = unsafe { (*self.as_raw()).parent };
347 
348         if parent.is_null() {
349             None
350         } else {
351             // SAFETY:
352             // - Since `parent` is not NULL, it must be a valid pointer to a `struct device`.
353             // - `parent` is valid for the lifetime of `self`, since a `struct device` holds a
354             //   reference count of its parent.
355             Some(unsafe { Device::from_raw(parent) })
356         }
357     }
358 
359     /// Convert a raw C `struct device` pointer to a `&'a Device`.
360     ///
361     /// # Safety
362     ///
363     /// Callers must ensure that `ptr` is valid, non-null, and has a non-zero reference count,
364     /// i.e. it must be ensured that the reference count of the C `struct device` `ptr` points to
365     /// can't drop to zero, for the duration of this function call and the entire duration when the
366     /// returned reference exists.
367     pub unsafe fn from_raw<'a>(ptr: *mut bindings::device) -> &'a Self {
368         // SAFETY: Guaranteed by the safety requirements of the function.
369         unsafe { &*ptr.cast() }
370     }
371 
372     /// Prints an emergency-level message (level 0) prefixed with device information.
373     ///
374     /// More details are available from [`dev_emerg`].
375     ///
376     /// [`dev_emerg`]: crate::dev_emerg
377     pub fn pr_emerg(&self, args: fmt::Arguments<'_>) {
378         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
379         unsafe { self.printk(bindings::KERN_EMERG, args) };
380     }
381 
382     /// Prints an alert-level message (level 1) prefixed with device information.
383     ///
384     /// More details are available from [`dev_alert`].
385     ///
386     /// [`dev_alert`]: crate::dev_alert
387     pub fn pr_alert(&self, args: fmt::Arguments<'_>) {
388         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
389         unsafe { self.printk(bindings::KERN_ALERT, args) };
390     }
391 
392     /// Prints a critical-level message (level 2) prefixed with device information.
393     ///
394     /// More details are available from [`dev_crit`].
395     ///
396     /// [`dev_crit`]: crate::dev_crit
397     pub fn pr_crit(&self, args: fmt::Arguments<'_>) {
398         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
399         unsafe { self.printk(bindings::KERN_CRIT, args) };
400     }
401 
402     /// Prints an error-level message (level 3) prefixed with device information.
403     ///
404     /// More details are available from [`dev_err`].
405     ///
406     /// [`dev_err`]: crate::dev_err
407     pub fn pr_err(&self, args: fmt::Arguments<'_>) {
408         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
409         unsafe { self.printk(bindings::KERN_ERR, args) };
410     }
411 
412     /// Prints a warning-level message (level 4) prefixed with device information.
413     ///
414     /// More details are available from [`dev_warn`].
415     ///
416     /// [`dev_warn`]: crate::dev_warn
417     pub fn pr_warn(&self, args: fmt::Arguments<'_>) {
418         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
419         unsafe { self.printk(bindings::KERN_WARNING, args) };
420     }
421 
422     /// Prints a notice-level message (level 5) prefixed with device information.
423     ///
424     /// More details are available from [`dev_notice`].
425     ///
426     /// [`dev_notice`]: crate::dev_notice
427     pub fn pr_notice(&self, args: fmt::Arguments<'_>) {
428         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
429         unsafe { self.printk(bindings::KERN_NOTICE, args) };
430     }
431 
432     /// Prints an info-level message (level 6) prefixed with device information.
433     ///
434     /// More details are available from [`dev_info`].
435     ///
436     /// [`dev_info`]: crate::dev_info
437     pub fn pr_info(&self, args: fmt::Arguments<'_>) {
438         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
439         unsafe { self.printk(bindings::KERN_INFO, args) };
440     }
441 
442     /// Prints a debug-level message (level 7) prefixed with device information.
443     ///
444     /// More details are available from [`dev_dbg`].
445     ///
446     /// [`dev_dbg`]: crate::dev_dbg
447     pub fn pr_dbg(&self, args: fmt::Arguments<'_>) {
448         if cfg!(debug_assertions) {
449             // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
450             unsafe { self.printk(bindings::KERN_DEBUG, args) };
451         }
452     }
453 
454     /// Prints the provided message to the console.
455     ///
456     /// # Safety
457     ///
458     /// Callers must ensure that `klevel` is null-terminated; in particular, one of the
459     /// `KERN_*`constants, for example, `KERN_CRIT`, `KERN_ALERT`, etc.
460     #[cfg_attr(not(CONFIG_PRINTK), allow(unused_variables))]
461     unsafe fn printk(&self, klevel: &[u8], msg: fmt::Arguments<'_>) {
462         // SAFETY: `klevel` is null-terminated and one of the kernel constants. `self.as_raw`
463         // is valid because `self` is valid. The "%pA" format string expects a pointer to
464         // `fmt::Arguments`, which is what we're passing as the last argument.
465         #[cfg(CONFIG_PRINTK)]
466         unsafe {
467             bindings::_dev_printk(
468                 klevel.as_ptr().cast::<crate::ffi::c_char>(),
469                 self.as_raw(),
470                 c"%pA".as_char_ptr(),
471                 core::ptr::from_ref(&msg).cast::<crate::ffi::c_void>(),
472             )
473         };
474     }
475 
476     /// Obtain the [`FwNode`](property::FwNode) corresponding to this [`Device`].
477     pub fn fwnode(&self) -> Option<&property::FwNode> {
478         // SAFETY: `self` is valid.
479         let fwnode_handle = unsafe { bindings::__dev_fwnode(self.as_raw()) };
480         if fwnode_handle.is_null() {
481             return None;
482         }
483         // SAFETY: `fwnode_handle` is valid. Its lifetime is tied to `&self`. We
484         // return a reference instead of an `ARef<FwNode>` because `dev_fwnode()`
485         // doesn't increment the refcount. It is safe to cast from a
486         // `struct fwnode_handle*` to a `*const FwNode` because `FwNode` is
487         // defined as a `#[repr(transparent)]` wrapper around `fwnode_handle`.
488         Some(unsafe { &*fwnode_handle.cast() })
489     }
490 }
491 
492 // SAFETY: `Device` is a transparent wrapper of a type that doesn't depend on `Device`'s generic
493 // argument.
494 kernel::impl_device_context_deref!(unsafe { Device });
495 kernel::impl_device_context_into_aref!(Device);
496 
497 // SAFETY: Instances of `Device` are always reference-counted.
498 unsafe impl crate::sync::aref::AlwaysRefCounted for Device {
499     fn inc_ref(&self) {
500         // SAFETY: The existence of a shared reference guarantees that the refcount is non-zero.
501         unsafe { bindings::get_device(self.as_raw()) };
502     }
503 
504     unsafe fn dec_ref(obj: ptr::NonNull<Self>) {
505         // SAFETY: The safety requirements guarantee that the refcount is non-zero.
506         unsafe { bindings::put_device(obj.cast().as_ptr()) }
507     }
508 }
509 
510 // SAFETY: As by the type invariant `Device` can be sent to any thread.
511 unsafe impl Send for Device {}
512 
513 // SAFETY: `Device` can be shared among threads because all immutable methods are protected by the
514 // synchronization in `struct device`.
515 unsafe impl Sync for Device {}
516 
517 /// Marker trait for the context or scope of a bus specific device.
518 ///
519 /// [`DeviceContext`] is a marker trait for types representing the context of a bus specific
520 /// [`Device`].
521 ///
522 /// The specific device context types are: [`CoreInternal`], [`Core`], [`Bound`] and [`Normal`].
523 ///
524 /// [`DeviceContext`] types are hierarchical, which means that there is a strict hierarchy that
525 /// defines which [`DeviceContext`] type can be derived from another. For instance, any
526 /// [`Device<Core>`] can dereference to a [`Device<Bound>`].
527 ///
528 /// The following enumeration illustrates the dereference hierarchy of [`DeviceContext`] types.
529 ///
530 /// - [`CoreInternal`] => [`Core`] => [`Bound`] => [`Normal`]
531 ///
532 /// Bus devices can automatically implement the dereference hierarchy by using
533 /// [`impl_device_context_deref`].
534 ///
535 /// Note that the guarantee for a [`Device`] reference to have a certain [`DeviceContext`] comes
536 /// from the specific scope the [`Device`] reference is valid in.
537 ///
538 /// [`impl_device_context_deref`]: kernel::impl_device_context_deref
539 pub trait DeviceContext: private::Sealed {}
540 
541 /// The [`Normal`] context is the default [`DeviceContext`] of any [`Device`].
542 ///
543 /// The normal context does not indicate any specific context. Any `Device<Ctx>` is also a valid
544 /// [`Device<Normal>`]. It is the only [`DeviceContext`] for which it is valid to implement
545 /// [`AlwaysRefCounted`] for.
546 ///
547 /// [`AlwaysRefCounted`]: kernel::sync::aref::AlwaysRefCounted
548 pub struct Normal;
549 
550 /// The [`Core`] context is the context of a bus specific device when it appears as argument of
551 /// any bus specific callback, such as `probe()`.
552 ///
553 /// The core context indicates that the [`Device<Core>`] reference's scope is limited to the bus
554 /// callback it appears in. It is intended to be used for synchronization purposes. Bus device
555 /// implementations can implement methods for [`Device<Core>`], such that they can only be called
556 /// from bus callbacks.
557 pub struct Core;
558 
559 /// Semantically the same as [`Core`], but reserved for internal usage of the corresponding bus
560 /// abstraction.
561 ///
562 /// The internal core context is intended to be used in exactly the same way as the [`Core`]
563 /// context, with the difference that this [`DeviceContext`] is internal to the corresponding bus
564 /// abstraction.
565 ///
566 /// This context mainly exists to share generic [`Device`] infrastructure that should only be called
567 /// from bus callbacks with bus abstractions, but without making them accessible for drivers.
568 pub struct CoreInternal;
569 
570 /// The [`Bound`] context is the [`DeviceContext`] of a bus specific device when it is guaranteed to
571 /// be bound to a driver.
572 ///
573 /// The bound context indicates that for the entire duration of the lifetime of a [`Device<Bound>`]
574 /// reference, the [`Device`] is guaranteed to be bound to a driver.
575 ///
576 /// Some APIs, such as [`dma::CoherentAllocation`] or [`Devres`] rely on the [`Device`] to be bound,
577 /// which can be proven with the [`Bound`] device context.
578 ///
579 /// Any abstraction that can guarantee a scope where the corresponding bus device is bound, should
580 /// provide a [`Device<Bound>`] reference to its users for this scope. This allows users to benefit
581 /// from optimizations for accessing device resources, see also [`Devres::access`].
582 ///
583 /// [`Devres`]: kernel::devres::Devres
584 /// [`Devres::access`]: kernel::devres::Devres::access
585 /// [`dma::CoherentAllocation`]: kernel::dma::CoherentAllocation
586 pub struct Bound;
587 
588 mod private {
589     pub trait Sealed {}
590 
591     impl Sealed for super::Bound {}
592     impl Sealed for super::Core {}
593     impl Sealed for super::CoreInternal {}
594     impl Sealed for super::Normal {}
595 }
596 
597 impl DeviceContext for Bound {}
598 impl DeviceContext for Core {}
599 impl DeviceContext for CoreInternal {}
600 impl DeviceContext for Normal {}
601 
602 /// Convert device references to bus device references.
603 ///
604 /// Bus devices can implement this trait to allow abstractions to provide the bus device in
605 /// class device callbacks.
606 ///
607 /// This must not be used by drivers and is intended for bus and class device abstractions only.
608 ///
609 /// # Safety
610 ///
611 /// `AsBusDevice::OFFSET` must be the offset of the embedded base `struct device` field within a
612 /// bus device structure.
613 pub unsafe trait AsBusDevice<Ctx: DeviceContext>: AsRef<Device<Ctx>> {
614     /// The relative offset to the device field.
615     ///
616     /// Use `offset_of!(bindings, field)` macro to avoid breakage.
617     const OFFSET: usize;
618 
619     /// Convert a reference to [`Device`] into `Self`.
620     ///
621     /// # Safety
622     ///
623     /// `dev` must be contained in `Self`.
624     unsafe fn from_device(dev: &Device<Ctx>) -> &Self
625     where
626         Self: Sized,
627     {
628         let raw = dev.as_raw();
629         // SAFETY: `raw - Self::OFFSET` is guaranteed by the safety requirements
630         // to be a valid pointer to `Self`.
631         unsafe { &*raw.byte_sub(Self::OFFSET).cast::<Self>() }
632     }
633 }
634 
635 /// # Safety
636 ///
637 /// The type given as `$device` must be a transparent wrapper of a type that doesn't depend on the
638 /// generic argument of `$device`.
639 #[doc(hidden)]
640 #[macro_export]
641 macro_rules! __impl_device_context_deref {
642     (unsafe { $device:ident, $src:ty => $dst:ty }) => {
643         impl ::core::ops::Deref for $device<$src> {
644             type Target = $device<$dst>;
645 
646             fn deref(&self) -> &Self::Target {
647                 let ptr: *const Self = self;
648 
649                 // CAST: `$device<$src>` and `$device<$dst>` transparently wrap the same type by the
650                 // safety requirement of the macro.
651                 let ptr = ptr.cast::<Self::Target>();
652 
653                 // SAFETY: `ptr` was derived from `&self`.
654                 unsafe { &*ptr }
655             }
656         }
657     };
658 }
659 
660 /// Implement [`core::ops::Deref`] traits for allowed [`DeviceContext`] conversions of a (bus
661 /// specific) device.
662 ///
663 /// # Safety
664 ///
665 /// The type given as `$device` must be a transparent wrapper of a type that doesn't depend on the
666 /// generic argument of `$device`.
667 #[macro_export]
668 macro_rules! impl_device_context_deref {
669     (unsafe { $device:ident }) => {
670         // SAFETY: This macro has the exact same safety requirement as
671         // `__impl_device_context_deref!`.
672         ::kernel::__impl_device_context_deref!(unsafe {
673             $device,
674             $crate::device::CoreInternal => $crate::device::Core
675         });
676 
677         // SAFETY: This macro has the exact same safety requirement as
678         // `__impl_device_context_deref!`.
679         ::kernel::__impl_device_context_deref!(unsafe {
680             $device,
681             $crate::device::Core => $crate::device::Bound
682         });
683 
684         // SAFETY: This macro has the exact same safety requirement as
685         // `__impl_device_context_deref!`.
686         ::kernel::__impl_device_context_deref!(unsafe {
687             $device,
688             $crate::device::Bound => $crate::device::Normal
689         });
690     };
691 }
692 
693 #[doc(hidden)]
694 #[macro_export]
695 macro_rules! __impl_device_context_into_aref {
696     ($src:ty, $device:tt) => {
697         impl ::core::convert::From<&$device<$src>> for $crate::sync::aref::ARef<$device> {
698             fn from(dev: &$device<$src>) -> Self {
699                 (&**dev).into()
700             }
701         }
702     };
703 }
704 
705 /// Implement [`core::convert::From`], such that all `&Device<Ctx>` can be converted to an
706 /// `ARef<Device>`.
707 #[macro_export]
708 macro_rules! impl_device_context_into_aref {
709     ($device:tt) => {
710         ::kernel::__impl_device_context_into_aref!($crate::device::CoreInternal, $device);
711         ::kernel::__impl_device_context_into_aref!($crate::device::Core, $device);
712         ::kernel::__impl_device_context_into_aref!($crate::device::Bound, $device);
713     };
714 }
715 
716 #[doc(hidden)]
717 #[macro_export]
718 macro_rules! dev_printk {
719     ($method:ident, $dev:expr, $($f:tt)*) => {
720         {
721             ($dev).$method($crate::prelude::fmt!($($f)*));
722         }
723     }
724 }
725 
726 /// Prints an emergency-level message (level 0) prefixed with device information.
727 ///
728 /// This level should be used if the system is unusable.
729 ///
730 /// Equivalent to the kernel's `dev_emerg` macro.
731 ///
732 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
733 /// [`core::fmt`] and [`std::format!`].
734 ///
735 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
736 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
737 ///
738 /// # Examples
739 ///
740 /// ```
741 /// # use kernel::device::Device;
742 ///
743 /// fn example(dev: &Device) {
744 ///     dev_emerg!(dev, "hello {}\n", "there");
745 /// }
746 /// ```
747 #[macro_export]
748 macro_rules! dev_emerg {
749     ($($f:tt)*) => { $crate::dev_printk!(pr_emerg, $($f)*); }
750 }
751 
752 /// Prints an alert-level message (level 1) prefixed with device information.
753 ///
754 /// This level should be used if action must be taken immediately.
755 ///
756 /// Equivalent to the kernel's `dev_alert` macro.
757 ///
758 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
759 /// [`core::fmt`] and [`std::format!`].
760 ///
761 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
762 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
763 ///
764 /// # Examples
765 ///
766 /// ```
767 /// # use kernel::device::Device;
768 ///
769 /// fn example(dev: &Device) {
770 ///     dev_alert!(dev, "hello {}\n", "there");
771 /// }
772 /// ```
773 #[macro_export]
774 macro_rules! dev_alert {
775     ($($f:tt)*) => { $crate::dev_printk!(pr_alert, $($f)*); }
776 }
777 
778 /// Prints a critical-level message (level 2) prefixed with device information.
779 ///
780 /// This level should be used in critical conditions.
781 ///
782 /// Equivalent to the kernel's `dev_crit` macro.
783 ///
784 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
785 /// [`core::fmt`] and [`std::format!`].
786 ///
787 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
788 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
789 ///
790 /// # Examples
791 ///
792 /// ```
793 /// # use kernel::device::Device;
794 ///
795 /// fn example(dev: &Device) {
796 ///     dev_crit!(dev, "hello {}\n", "there");
797 /// }
798 /// ```
799 #[macro_export]
800 macro_rules! dev_crit {
801     ($($f:tt)*) => { $crate::dev_printk!(pr_crit, $($f)*); }
802 }
803 
804 /// Prints an error-level message (level 3) prefixed with device information.
805 ///
806 /// This level should be used in error conditions.
807 ///
808 /// Equivalent to the kernel's `dev_err` macro.
809 ///
810 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
811 /// [`core::fmt`] and [`std::format!`].
812 ///
813 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
814 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
815 ///
816 /// # Examples
817 ///
818 /// ```
819 /// # use kernel::device::Device;
820 ///
821 /// fn example(dev: &Device) {
822 ///     dev_err!(dev, "hello {}\n", "there");
823 /// }
824 /// ```
825 #[macro_export]
826 macro_rules! dev_err {
827     ($($f:tt)*) => { $crate::dev_printk!(pr_err, $($f)*); }
828 }
829 
830 /// Prints a warning-level message (level 4) prefixed with device information.
831 ///
832 /// This level should be used in warning conditions.
833 ///
834 /// Equivalent to the kernel's `dev_warn` macro.
835 ///
836 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
837 /// [`core::fmt`] and [`std::format!`].
838 ///
839 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
840 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
841 ///
842 /// # Examples
843 ///
844 /// ```
845 /// # use kernel::device::Device;
846 ///
847 /// fn example(dev: &Device) {
848 ///     dev_warn!(dev, "hello {}\n", "there");
849 /// }
850 /// ```
851 #[macro_export]
852 macro_rules! dev_warn {
853     ($($f:tt)*) => { $crate::dev_printk!(pr_warn, $($f)*); }
854 }
855 
856 /// Prints a notice-level message (level 5) prefixed with device information.
857 ///
858 /// This level should be used in normal but significant conditions.
859 ///
860 /// Equivalent to the kernel's `dev_notice` macro.
861 ///
862 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
863 /// [`core::fmt`] and [`std::format!`].
864 ///
865 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
866 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
867 ///
868 /// # Examples
869 ///
870 /// ```
871 /// # use kernel::device::Device;
872 ///
873 /// fn example(dev: &Device) {
874 ///     dev_notice!(dev, "hello {}\n", "there");
875 /// }
876 /// ```
877 #[macro_export]
878 macro_rules! dev_notice {
879     ($($f:tt)*) => { $crate::dev_printk!(pr_notice, $($f)*); }
880 }
881 
882 /// Prints an info-level message (level 6) prefixed with device information.
883 ///
884 /// This level should be used for informational messages.
885 ///
886 /// Equivalent to the kernel's `dev_info` macro.
887 ///
888 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
889 /// [`core::fmt`] and [`std::format!`].
890 ///
891 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
892 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
893 ///
894 /// # Examples
895 ///
896 /// ```
897 /// # use kernel::device::Device;
898 ///
899 /// fn example(dev: &Device) {
900 ///     dev_info!(dev, "hello {}\n", "there");
901 /// }
902 /// ```
903 #[macro_export]
904 macro_rules! dev_info {
905     ($($f:tt)*) => { $crate::dev_printk!(pr_info, $($f)*); }
906 }
907 
908 /// Prints a debug-level message (level 7) prefixed with device information.
909 ///
910 /// This level should be used for debug messages.
911 ///
912 /// Equivalent to the kernel's `dev_dbg` macro, except that it doesn't support dynamic debug yet.
913 ///
914 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
915 /// [`core::fmt`] and [`std::format!`].
916 ///
917 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
918 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
919 ///
920 /// # Examples
921 ///
922 /// ```
923 /// # use kernel::device::Device;
924 ///
925 /// fn example(dev: &Device) {
926 ///     dev_dbg!(dev, "hello {}\n", "there");
927 /// }
928 /// ```
929 #[macro_export]
930 macro_rules! dev_dbg {
931     ($($f:tt)*) => { $crate::dev_printk!(pr_dbg, $($f)*); }
932 }
933