1 // SPDX-License-Identifier: GPL-2.0 2 3 //! Generic devices that are part of the kernel's driver model. 4 //! 5 //! C header: [`include/linux/device.h`](srctree/include/linux/device.h) 6 7 use crate::{ 8 bindings, 9 fmt, 10 prelude::*, 11 sync::aref::ARef, 12 types::{ 13 ForeignOwnable, 14 Opaque, // 15 }, // 16 }; 17 use core::{ 18 any::TypeId, 19 marker::PhantomData, 20 ptr, // 21 }; 22 23 pub mod property; 24 25 // Assert that we can `read()` / `write()` a `TypeId` instance from / into `struct driver_type`. 26 static_assert!(core::mem::size_of::<bindings::driver_type>() >= core::mem::size_of::<TypeId>()); 27 28 /// The core representation of a device in the kernel's driver model. 29 /// 30 /// This structure represents the Rust abstraction for a C `struct device`. A [`Device`] can either 31 /// exist as temporary reference (see also [`Device::from_raw`]), which is only valid within a 32 /// certain scope or as [`ARef<Device>`], owning a dedicated reference count. 33 /// 34 /// # Device Types 35 /// 36 /// A [`Device`] can represent either a bus device or a class device. 37 /// 38 /// ## Bus Devices 39 /// 40 /// A bus device is a [`Device`] that is associated with a physical or virtual bus. Examples of 41 /// buses include PCI, USB, I2C, and SPI. Devices attached to a bus are registered with a specific 42 /// bus type, which facilitates matching devices with appropriate drivers based on IDs or other 43 /// identifying information. Bus devices are visible in sysfs under `/sys/bus/<bus-name>/devices/`. 44 /// 45 /// ## Class Devices 46 /// 47 /// A class device is a [`Device`] that is associated with a logical category of functionality 48 /// rather than a physical bus. Examples of classes include block devices, network interfaces, sound 49 /// cards, and input devices. Class devices are grouped under a common class and exposed to 50 /// userspace via entries in `/sys/class/<class-name>/`. 51 /// 52 /// # Device Context 53 /// 54 /// [`Device`] references are generic over a [`DeviceContext`], which represents the type state of 55 /// a [`Device`]. 56 /// 57 /// As the name indicates, this type state represents the context of the scope the [`Device`] 58 /// reference is valid in. For instance, the [`Bound`] context guarantees that the [`Device`] is 59 /// bound to a driver for the entire duration of the existence of a [`Device<Bound>`] reference. 60 /// 61 /// Other [`DeviceContext`] types besides [`Bound`] are [`Normal`], [`Core`] and [`CoreInternal`]. 62 /// 63 /// Unless selected otherwise [`Device`] defaults to the [`Normal`] [`DeviceContext`], which by 64 /// itself has no additional requirements. 65 /// 66 /// It is always up to the caller of [`Device::from_raw`] to select the correct [`DeviceContext`] 67 /// type for the corresponding scope the [`Device`] reference is created in. 68 /// 69 /// All [`DeviceContext`] types other than [`Normal`] are intended to be used with 70 /// [bus devices](#bus-devices) only. 71 /// 72 /// # Implementing Bus Devices 73 /// 74 /// This section provides a guideline to implement bus specific devices, such as: 75 #[cfg_attr(CONFIG_PCI, doc = "* [`pci::Device`](kernel::pci::Device)")] 76 /// * [`platform::Device`] 77 /// 78 /// A bus specific device should be defined as follows. 79 /// 80 /// ```ignore 81 /// #[repr(transparent)] 82 /// pub struct Device<Ctx: device::DeviceContext = device::Normal>( 83 /// Opaque<bindings::bus_device_type>, 84 /// PhantomData<Ctx>, 85 /// ); 86 /// ``` 87 /// 88 /// Since devices are reference counted, [`AlwaysRefCounted`] should be implemented for `Device` 89 /// (i.e. `Device<Normal>`). Note that [`AlwaysRefCounted`] must not be implemented for any other 90 /// [`DeviceContext`], since all other device context types are only valid within a certain scope. 91 /// 92 /// In order to be able to implement the [`DeviceContext`] dereference hierarchy, bus device 93 /// implementations should call the [`impl_device_context_deref`] macro as shown below. 94 /// 95 /// ```ignore 96 /// // SAFETY: `Device` is a transparent wrapper of a type that doesn't depend on `Device`'s 97 /// // generic argument. 98 /// kernel::impl_device_context_deref!(unsafe { Device }); 99 /// ``` 100 /// 101 /// In order to convert from a any [`Device<Ctx>`] to [`ARef<Device>`], bus devices can implement 102 /// the following macro call. 103 /// 104 /// ```ignore 105 /// kernel::impl_device_context_into_aref!(Device); 106 /// ``` 107 /// 108 /// Bus devices should also implement the following [`AsRef`] implementation, such that users can 109 /// easily derive a generic [`Device`] reference. 110 /// 111 /// ```ignore 112 /// impl<Ctx: device::DeviceContext> AsRef<device::Device<Ctx>> for Device<Ctx> { 113 /// fn as_ref(&self) -> &device::Device<Ctx> { 114 /// ... 115 /// } 116 /// } 117 /// ``` 118 /// 119 /// # Implementing Class Devices 120 /// 121 /// Class device implementations require less infrastructure and depend slightly more on the 122 /// specific subsystem. 123 /// 124 /// An example implementation for a class device could look like this. 125 /// 126 /// ```ignore 127 /// #[repr(C)] 128 /// pub struct Device<T: class::Driver> { 129 /// dev: Opaque<bindings::class_device_type>, 130 /// data: T::Data, 131 /// } 132 /// ``` 133 /// 134 /// This class device uses the sub-classing pattern to embed the driver's private data within the 135 /// allocation of the class device. For this to be possible the class device is generic over the 136 /// class specific `Driver` trait implementation. 137 /// 138 /// Just like any device, class devices are reference counted and should hence implement 139 /// [`AlwaysRefCounted`] for `Device`. 140 /// 141 /// Class devices should also implement the following [`AsRef`] implementation, such that users can 142 /// easily derive a generic [`Device`] reference. 143 /// 144 /// ```ignore 145 /// impl<T: class::Driver> AsRef<device::Device> for Device<T> { 146 /// fn as_ref(&self) -> &device::Device { 147 /// ... 148 /// } 149 /// } 150 /// ``` 151 /// 152 /// An example for a class device implementation is 153 #[cfg_attr(CONFIG_DRM = "y", doc = "[`drm::Device`](kernel::drm::Device).")] 154 #[cfg_attr(not(CONFIG_DRM = "y"), doc = "`drm::Device`.")] 155 /// 156 /// # Invariants 157 /// 158 /// A `Device` instance represents a valid `struct device` created by the C portion of the kernel. 159 /// 160 /// Instances of this type are always reference-counted, that is, a call to `get_device` ensures 161 /// that the allocation remains valid at least until the matching call to `put_device`. 162 /// 163 /// `bindings::device::release` is valid to be called from any thread, hence `ARef<Device>` can be 164 /// dropped from any thread. 165 /// 166 /// [`AlwaysRefCounted`]: kernel::sync::aref::AlwaysRefCounted 167 /// [`impl_device_context_deref`]: kernel::impl_device_context_deref 168 /// [`platform::Device`]: kernel::platform::Device 169 #[repr(transparent)] 170 pub struct Device<Ctx: DeviceContext = Normal>(Opaque<bindings::device>, PhantomData<Ctx>); 171 172 impl Device { 173 /// Creates a new reference-counted abstraction instance of an existing `struct device` pointer. 174 /// 175 /// # Safety 176 /// 177 /// Callers must ensure that `ptr` is valid, non-null, and has a non-zero reference count, 178 /// i.e. it must be ensured that the reference count of the C `struct device` `ptr` points to 179 /// can't drop to zero, for the duration of this function call. 180 /// 181 /// It must also be ensured that `bindings::device::release` can be called from any thread. 182 /// While not officially documented, this should be the case for any `struct device`. 183 pub unsafe fn get_device(ptr: *mut bindings::device) -> ARef<Self> { 184 // SAFETY: By the safety requirements ptr is valid 185 unsafe { Self::from_raw(ptr) }.into() 186 } 187 188 /// Convert a [`&Device`](Device) into a [`&Device<Bound>`](Device<Bound>). 189 /// 190 /// # Safety 191 /// 192 /// The caller is responsible to ensure that the returned [`&Device<Bound>`](Device<Bound>) 193 /// only lives as long as it can be guaranteed that the [`Device`] is actually bound. 194 pub unsafe fn as_bound(&self) -> &Device<Bound> { 195 let ptr = core::ptr::from_ref(self); 196 197 // CAST: By the safety requirements the caller is responsible to guarantee that the 198 // returned reference only lives as long as the device is actually bound. 199 let ptr = ptr.cast(); 200 201 // SAFETY: 202 // - `ptr` comes from `from_ref(self)` above, hence it's guaranteed to be valid. 203 // - Any valid `Device` pointer is also a valid pointer for `Device<Bound>`. 204 unsafe { &*ptr } 205 } 206 } 207 208 impl Device<CoreInternal> { 209 fn set_type_id<T: 'static>(&self) { 210 // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`. 211 let private = unsafe { (*self.as_raw()).p }; 212 213 // SAFETY: For a bound device (implied by the `CoreInternal` device context), `private` is 214 // guaranteed to be a valid pointer to a `struct device_private`. 215 let driver_type = unsafe { &raw mut (*private).driver_type }; 216 217 // SAFETY: `driver_type` is valid for (unaligned) writes of a `TypeId`. 218 unsafe { 219 driver_type 220 .cast::<TypeId>() 221 .write_unaligned(TypeId::of::<T>()) 222 }; 223 } 224 225 /// Store a pointer to the bound driver's private data. 226 pub fn set_drvdata<T: 'static>(&self, data: impl PinInit<T, Error>) -> Result { 227 let data = KBox::pin_init(data, GFP_KERNEL)?; 228 229 // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`. 230 unsafe { bindings::dev_set_drvdata(self.as_raw(), data.into_foreign().cast()) }; 231 self.set_type_id::<T>(); 232 233 Ok(()) 234 } 235 236 /// Take ownership of the private data stored in this [`Device`]. 237 /// 238 /// # Safety 239 /// 240 /// - Must only be called once after a preceding call to [`Device::set_drvdata`]. 241 /// - The type `T` must match the type of the `ForeignOwnable` previously stored by 242 /// [`Device::set_drvdata`]. 243 pub unsafe fn drvdata_obtain<T: 'static>(&self) -> Pin<KBox<T>> { 244 // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`. 245 let ptr = unsafe { bindings::dev_get_drvdata(self.as_raw()) }; 246 247 // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`. 248 unsafe { bindings::dev_set_drvdata(self.as_raw(), core::ptr::null_mut()) }; 249 250 // SAFETY: 251 // - By the safety requirements of this function, `ptr` comes from a previous call to 252 // `into_foreign()`. 253 // - `dev_get_drvdata()` guarantees to return the same pointer given to `dev_set_drvdata()` 254 // in `into_foreign()`. 255 unsafe { Pin::<KBox<T>>::from_foreign(ptr.cast()) } 256 } 257 258 /// Borrow the driver's private data bound to this [`Device`]. 259 /// 260 /// # Safety 261 /// 262 /// - Must only be called after a preceding call to [`Device::set_drvdata`] and before 263 /// [`Device::drvdata_obtain`]. 264 /// - The type `T` must match the type of the `ForeignOwnable` previously stored by 265 /// [`Device::set_drvdata`]. 266 pub unsafe fn drvdata_borrow<T: 'static>(&self) -> Pin<&T> { 267 // SAFETY: `drvdata_unchecked()` has the exact same safety requirements as the ones 268 // required by this method. 269 unsafe { self.drvdata_unchecked() } 270 } 271 } 272 273 impl Device<Bound> { 274 /// Borrow the driver's private data bound to this [`Device`]. 275 /// 276 /// # Safety 277 /// 278 /// - Must only be called after a preceding call to [`Device::set_drvdata`] and before 279 /// [`Device::drvdata_obtain`]. 280 /// - The type `T` must match the type of the `ForeignOwnable` previously stored by 281 /// [`Device::set_drvdata`]. 282 unsafe fn drvdata_unchecked<T: 'static>(&self) -> Pin<&T> { 283 // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`. 284 let ptr = unsafe { bindings::dev_get_drvdata(self.as_raw()) }; 285 286 // SAFETY: 287 // - By the safety requirements of this function, `ptr` comes from a previous call to 288 // `into_foreign()`. 289 // - `dev_get_drvdata()` guarantees to return the same pointer given to `dev_set_drvdata()` 290 // in `into_foreign()`. 291 unsafe { Pin::<KBox<T>>::borrow(ptr.cast()) } 292 } 293 294 fn match_type_id<T: 'static>(&self) -> Result { 295 // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`. 296 let private = unsafe { (*self.as_raw()).p }; 297 298 // SAFETY: For a bound device, `private` is guaranteed to be a valid pointer to a 299 // `struct device_private`. 300 let driver_type = unsafe { &raw mut (*private).driver_type }; 301 302 // SAFETY: 303 // - `driver_type` is valid for (unaligned) reads of a `TypeId`. 304 // - A bound device guarantees that `driver_type` contains a valid `TypeId` value. 305 let type_id = unsafe { driver_type.cast::<TypeId>().read_unaligned() }; 306 307 if type_id != TypeId::of::<T>() { 308 return Err(EINVAL); 309 } 310 311 Ok(()) 312 } 313 314 /// Access a driver's private data. 315 /// 316 /// Returns a pinned reference to the driver's private data or [`EINVAL`] if it doesn't match 317 /// the asserted type `T`. 318 pub fn drvdata<T: 'static>(&self) -> Result<Pin<&T>> { 319 // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`. 320 if unsafe { bindings::dev_get_drvdata(self.as_raw()) }.is_null() { 321 return Err(ENOENT); 322 } 323 324 self.match_type_id::<T>()?; 325 326 // SAFETY: 327 // - The above check of `dev_get_drvdata()` guarantees that we are called after 328 // `set_drvdata()` and before `drvdata_obtain()`. 329 // - We've just checked that the type of the driver's private data is in fact `T`. 330 Ok(unsafe { self.drvdata_unchecked() }) 331 } 332 } 333 334 impl<Ctx: DeviceContext> Device<Ctx> { 335 /// Obtain the raw `struct device *`. 336 pub(crate) fn as_raw(&self) -> *mut bindings::device { 337 self.0.get() 338 } 339 340 /// Returns a reference to the parent device, if any. 341 #[cfg_attr(not(CONFIG_AUXILIARY_BUS), expect(dead_code))] 342 pub(crate) fn parent(&self) -> Option<&Device> { 343 // SAFETY: 344 // - By the type invariant `self.as_raw()` is always valid. 345 // - The parent device is only ever set at device creation. 346 let parent = unsafe { (*self.as_raw()).parent }; 347 348 if parent.is_null() { 349 None 350 } else { 351 // SAFETY: 352 // - Since `parent` is not NULL, it must be a valid pointer to a `struct device`. 353 // - `parent` is valid for the lifetime of `self`, since a `struct device` holds a 354 // reference count of its parent. 355 Some(unsafe { Device::from_raw(parent) }) 356 } 357 } 358 359 /// Convert a raw C `struct device` pointer to a `&'a Device`. 360 /// 361 /// # Safety 362 /// 363 /// Callers must ensure that `ptr` is valid, non-null, and has a non-zero reference count, 364 /// i.e. it must be ensured that the reference count of the C `struct device` `ptr` points to 365 /// can't drop to zero, for the duration of this function call and the entire duration when the 366 /// returned reference exists. 367 pub unsafe fn from_raw<'a>(ptr: *mut bindings::device) -> &'a Self { 368 // SAFETY: Guaranteed by the safety requirements of the function. 369 unsafe { &*ptr.cast() } 370 } 371 372 /// Prints an emergency-level message (level 0) prefixed with device information. 373 /// 374 /// More details are available from [`dev_emerg`]. 375 /// 376 /// [`dev_emerg`]: crate::dev_emerg 377 pub fn pr_emerg(&self, args: fmt::Arguments<'_>) { 378 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. 379 unsafe { self.printk(bindings::KERN_EMERG, args) }; 380 } 381 382 /// Prints an alert-level message (level 1) prefixed with device information. 383 /// 384 /// More details are available from [`dev_alert`]. 385 /// 386 /// [`dev_alert`]: crate::dev_alert 387 pub fn pr_alert(&self, args: fmt::Arguments<'_>) { 388 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. 389 unsafe { self.printk(bindings::KERN_ALERT, args) }; 390 } 391 392 /// Prints a critical-level message (level 2) prefixed with device information. 393 /// 394 /// More details are available from [`dev_crit`]. 395 /// 396 /// [`dev_crit`]: crate::dev_crit 397 pub fn pr_crit(&self, args: fmt::Arguments<'_>) { 398 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. 399 unsafe { self.printk(bindings::KERN_CRIT, args) }; 400 } 401 402 /// Prints an error-level message (level 3) prefixed with device information. 403 /// 404 /// More details are available from [`dev_err`]. 405 /// 406 /// [`dev_err`]: crate::dev_err 407 pub fn pr_err(&self, args: fmt::Arguments<'_>) { 408 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. 409 unsafe { self.printk(bindings::KERN_ERR, args) }; 410 } 411 412 /// Prints a warning-level message (level 4) prefixed with device information. 413 /// 414 /// More details are available from [`dev_warn`]. 415 /// 416 /// [`dev_warn`]: crate::dev_warn 417 pub fn pr_warn(&self, args: fmt::Arguments<'_>) { 418 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. 419 unsafe { self.printk(bindings::KERN_WARNING, args) }; 420 } 421 422 /// Prints a notice-level message (level 5) prefixed with device information. 423 /// 424 /// More details are available from [`dev_notice`]. 425 /// 426 /// [`dev_notice`]: crate::dev_notice 427 pub fn pr_notice(&self, args: fmt::Arguments<'_>) { 428 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. 429 unsafe { self.printk(bindings::KERN_NOTICE, args) }; 430 } 431 432 /// Prints an info-level message (level 6) prefixed with device information. 433 /// 434 /// More details are available from [`dev_info`]. 435 /// 436 /// [`dev_info`]: crate::dev_info 437 pub fn pr_info(&self, args: fmt::Arguments<'_>) { 438 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. 439 unsafe { self.printk(bindings::KERN_INFO, args) }; 440 } 441 442 /// Prints a debug-level message (level 7) prefixed with device information. 443 /// 444 /// More details are available from [`dev_dbg`]. 445 /// 446 /// [`dev_dbg`]: crate::dev_dbg 447 pub fn pr_dbg(&self, args: fmt::Arguments<'_>) { 448 if cfg!(debug_assertions) { 449 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. 450 unsafe { self.printk(bindings::KERN_DEBUG, args) }; 451 } 452 } 453 454 /// Prints the provided message to the console. 455 /// 456 /// # Safety 457 /// 458 /// Callers must ensure that `klevel` is null-terminated; in particular, one of the 459 /// `KERN_*`constants, for example, `KERN_CRIT`, `KERN_ALERT`, etc. 460 #[cfg_attr(not(CONFIG_PRINTK), allow(unused_variables))] 461 unsafe fn printk(&self, klevel: &[u8], msg: fmt::Arguments<'_>) { 462 // SAFETY: `klevel` is null-terminated and one of the kernel constants. `self.as_raw` 463 // is valid because `self` is valid. The "%pA" format string expects a pointer to 464 // `fmt::Arguments`, which is what we're passing as the last argument. 465 #[cfg(CONFIG_PRINTK)] 466 unsafe { 467 bindings::_dev_printk( 468 klevel.as_ptr().cast::<crate::ffi::c_char>(), 469 self.as_raw(), 470 c"%pA".as_char_ptr(), 471 core::ptr::from_ref(&msg).cast::<crate::ffi::c_void>(), 472 ) 473 }; 474 } 475 476 /// Obtain the [`FwNode`](property::FwNode) corresponding to this [`Device`]. 477 pub fn fwnode(&self) -> Option<&property::FwNode> { 478 // SAFETY: `self` is valid. 479 let fwnode_handle = unsafe { bindings::__dev_fwnode(self.as_raw()) }; 480 if fwnode_handle.is_null() { 481 return None; 482 } 483 // SAFETY: `fwnode_handle` is valid. Its lifetime is tied to `&self`. We 484 // return a reference instead of an `ARef<FwNode>` because `dev_fwnode()` 485 // doesn't increment the refcount. It is safe to cast from a 486 // `struct fwnode_handle*` to a `*const FwNode` because `FwNode` is 487 // defined as a `#[repr(transparent)]` wrapper around `fwnode_handle`. 488 Some(unsafe { &*fwnode_handle.cast() }) 489 } 490 } 491 492 // SAFETY: `Device` is a transparent wrapper of a type that doesn't depend on `Device`'s generic 493 // argument. 494 kernel::impl_device_context_deref!(unsafe { Device }); 495 kernel::impl_device_context_into_aref!(Device); 496 497 // SAFETY: Instances of `Device` are always reference-counted. 498 unsafe impl crate::sync::aref::AlwaysRefCounted for Device { 499 fn inc_ref(&self) { 500 // SAFETY: The existence of a shared reference guarantees that the refcount is non-zero. 501 unsafe { bindings::get_device(self.as_raw()) }; 502 } 503 504 unsafe fn dec_ref(obj: ptr::NonNull<Self>) { 505 // SAFETY: The safety requirements guarantee that the refcount is non-zero. 506 unsafe { bindings::put_device(obj.cast().as_ptr()) } 507 } 508 } 509 510 // SAFETY: As by the type invariant `Device` can be sent to any thread. 511 unsafe impl Send for Device {} 512 513 // SAFETY: `Device` can be shared among threads because all immutable methods are protected by the 514 // synchronization in `struct device`. 515 unsafe impl Sync for Device {} 516 517 /// Marker trait for the context or scope of a bus specific device. 518 /// 519 /// [`DeviceContext`] is a marker trait for types representing the context of a bus specific 520 /// [`Device`]. 521 /// 522 /// The specific device context types are: [`CoreInternal`], [`Core`], [`Bound`] and [`Normal`]. 523 /// 524 /// [`DeviceContext`] types are hierarchical, which means that there is a strict hierarchy that 525 /// defines which [`DeviceContext`] type can be derived from another. For instance, any 526 /// [`Device<Core>`] can dereference to a [`Device<Bound>`]. 527 /// 528 /// The following enumeration illustrates the dereference hierarchy of [`DeviceContext`] types. 529 /// 530 /// - [`CoreInternal`] => [`Core`] => [`Bound`] => [`Normal`] 531 /// 532 /// Bus devices can automatically implement the dereference hierarchy by using 533 /// [`impl_device_context_deref`]. 534 /// 535 /// Note that the guarantee for a [`Device`] reference to have a certain [`DeviceContext`] comes 536 /// from the specific scope the [`Device`] reference is valid in. 537 /// 538 /// [`impl_device_context_deref`]: kernel::impl_device_context_deref 539 pub trait DeviceContext: private::Sealed {} 540 541 /// The [`Normal`] context is the default [`DeviceContext`] of any [`Device`]. 542 /// 543 /// The normal context does not indicate any specific context. Any `Device<Ctx>` is also a valid 544 /// [`Device<Normal>`]. It is the only [`DeviceContext`] for which it is valid to implement 545 /// [`AlwaysRefCounted`] for. 546 /// 547 /// [`AlwaysRefCounted`]: kernel::sync::aref::AlwaysRefCounted 548 pub struct Normal; 549 550 /// The [`Core`] context is the context of a bus specific device when it appears as argument of 551 /// any bus specific callback, such as `probe()`. 552 /// 553 /// The core context indicates that the [`Device<Core>`] reference's scope is limited to the bus 554 /// callback it appears in. It is intended to be used for synchronization purposes. Bus device 555 /// implementations can implement methods for [`Device<Core>`], such that they can only be called 556 /// from bus callbacks. 557 pub struct Core; 558 559 /// Semantically the same as [`Core`], but reserved for internal usage of the corresponding bus 560 /// abstraction. 561 /// 562 /// The internal core context is intended to be used in exactly the same way as the [`Core`] 563 /// context, with the difference that this [`DeviceContext`] is internal to the corresponding bus 564 /// abstraction. 565 /// 566 /// This context mainly exists to share generic [`Device`] infrastructure that should only be called 567 /// from bus callbacks with bus abstractions, but without making them accessible for drivers. 568 pub struct CoreInternal; 569 570 /// The [`Bound`] context is the [`DeviceContext`] of a bus specific device when it is guaranteed to 571 /// be bound to a driver. 572 /// 573 /// The bound context indicates that for the entire duration of the lifetime of a [`Device<Bound>`] 574 /// reference, the [`Device`] is guaranteed to be bound to a driver. 575 /// 576 /// Some APIs, such as [`dma::CoherentAllocation`] or [`Devres`] rely on the [`Device`] to be bound, 577 /// which can be proven with the [`Bound`] device context. 578 /// 579 /// Any abstraction that can guarantee a scope where the corresponding bus device is bound, should 580 /// provide a [`Device<Bound>`] reference to its users for this scope. This allows users to benefit 581 /// from optimizations for accessing device resources, see also [`Devres::access`]. 582 /// 583 /// [`Devres`]: kernel::devres::Devres 584 /// [`Devres::access`]: kernel::devres::Devres::access 585 /// [`dma::CoherentAllocation`]: kernel::dma::CoherentAllocation 586 pub struct Bound; 587 588 mod private { 589 pub trait Sealed {} 590 591 impl Sealed for super::Bound {} 592 impl Sealed for super::Core {} 593 impl Sealed for super::CoreInternal {} 594 impl Sealed for super::Normal {} 595 } 596 597 impl DeviceContext for Bound {} 598 impl DeviceContext for Core {} 599 impl DeviceContext for CoreInternal {} 600 impl DeviceContext for Normal {} 601 602 /// Convert device references to bus device references. 603 /// 604 /// Bus devices can implement this trait to allow abstractions to provide the bus device in 605 /// class device callbacks. 606 /// 607 /// This must not be used by drivers and is intended for bus and class device abstractions only. 608 /// 609 /// # Safety 610 /// 611 /// `AsBusDevice::OFFSET` must be the offset of the embedded base `struct device` field within a 612 /// bus device structure. 613 pub unsafe trait AsBusDevice<Ctx: DeviceContext>: AsRef<Device<Ctx>> { 614 /// The relative offset to the device field. 615 /// 616 /// Use `offset_of!(bindings, field)` macro to avoid breakage. 617 const OFFSET: usize; 618 619 /// Convert a reference to [`Device`] into `Self`. 620 /// 621 /// # Safety 622 /// 623 /// `dev` must be contained in `Self`. 624 unsafe fn from_device(dev: &Device<Ctx>) -> &Self 625 where 626 Self: Sized, 627 { 628 let raw = dev.as_raw(); 629 // SAFETY: `raw - Self::OFFSET` is guaranteed by the safety requirements 630 // to be a valid pointer to `Self`. 631 unsafe { &*raw.byte_sub(Self::OFFSET).cast::<Self>() } 632 } 633 } 634 635 /// # Safety 636 /// 637 /// The type given as `$device` must be a transparent wrapper of a type that doesn't depend on the 638 /// generic argument of `$device`. 639 #[doc(hidden)] 640 #[macro_export] 641 macro_rules! __impl_device_context_deref { 642 (unsafe { $device:ident, $src:ty => $dst:ty }) => { 643 impl ::core::ops::Deref for $device<$src> { 644 type Target = $device<$dst>; 645 646 fn deref(&self) -> &Self::Target { 647 let ptr: *const Self = self; 648 649 // CAST: `$device<$src>` and `$device<$dst>` transparently wrap the same type by the 650 // safety requirement of the macro. 651 let ptr = ptr.cast::<Self::Target>(); 652 653 // SAFETY: `ptr` was derived from `&self`. 654 unsafe { &*ptr } 655 } 656 } 657 }; 658 } 659 660 /// Implement [`core::ops::Deref`] traits for allowed [`DeviceContext`] conversions of a (bus 661 /// specific) device. 662 /// 663 /// # Safety 664 /// 665 /// The type given as `$device` must be a transparent wrapper of a type that doesn't depend on the 666 /// generic argument of `$device`. 667 #[macro_export] 668 macro_rules! impl_device_context_deref { 669 (unsafe { $device:ident }) => { 670 // SAFETY: This macro has the exact same safety requirement as 671 // `__impl_device_context_deref!`. 672 ::kernel::__impl_device_context_deref!(unsafe { 673 $device, 674 $crate::device::CoreInternal => $crate::device::Core 675 }); 676 677 // SAFETY: This macro has the exact same safety requirement as 678 // `__impl_device_context_deref!`. 679 ::kernel::__impl_device_context_deref!(unsafe { 680 $device, 681 $crate::device::Core => $crate::device::Bound 682 }); 683 684 // SAFETY: This macro has the exact same safety requirement as 685 // `__impl_device_context_deref!`. 686 ::kernel::__impl_device_context_deref!(unsafe { 687 $device, 688 $crate::device::Bound => $crate::device::Normal 689 }); 690 }; 691 } 692 693 #[doc(hidden)] 694 #[macro_export] 695 macro_rules! __impl_device_context_into_aref { 696 ($src:ty, $device:tt) => { 697 impl ::core::convert::From<&$device<$src>> for $crate::sync::aref::ARef<$device> { 698 fn from(dev: &$device<$src>) -> Self { 699 (&**dev).into() 700 } 701 } 702 }; 703 } 704 705 /// Implement [`core::convert::From`], such that all `&Device<Ctx>` can be converted to an 706 /// `ARef<Device>`. 707 #[macro_export] 708 macro_rules! impl_device_context_into_aref { 709 ($device:tt) => { 710 ::kernel::__impl_device_context_into_aref!($crate::device::CoreInternal, $device); 711 ::kernel::__impl_device_context_into_aref!($crate::device::Core, $device); 712 ::kernel::__impl_device_context_into_aref!($crate::device::Bound, $device); 713 }; 714 } 715 716 #[doc(hidden)] 717 #[macro_export] 718 macro_rules! dev_printk { 719 ($method:ident, $dev:expr, $($f:tt)*) => { 720 { 721 ($dev).$method($crate::prelude::fmt!($($f)*)); 722 } 723 } 724 } 725 726 /// Prints an emergency-level message (level 0) prefixed with device information. 727 /// 728 /// This level should be used if the system is unusable. 729 /// 730 /// Equivalent to the kernel's `dev_emerg` macro. 731 /// 732 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from 733 /// [`core::fmt`] and [`std::format!`]. 734 /// 735 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html 736 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html 737 /// 738 /// # Examples 739 /// 740 /// ``` 741 /// # use kernel::device::Device; 742 /// 743 /// fn example(dev: &Device) { 744 /// dev_emerg!(dev, "hello {}\n", "there"); 745 /// } 746 /// ``` 747 #[macro_export] 748 macro_rules! dev_emerg { 749 ($($f:tt)*) => { $crate::dev_printk!(pr_emerg, $($f)*); } 750 } 751 752 /// Prints an alert-level message (level 1) prefixed with device information. 753 /// 754 /// This level should be used if action must be taken immediately. 755 /// 756 /// Equivalent to the kernel's `dev_alert` macro. 757 /// 758 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from 759 /// [`core::fmt`] and [`std::format!`]. 760 /// 761 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html 762 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html 763 /// 764 /// # Examples 765 /// 766 /// ``` 767 /// # use kernel::device::Device; 768 /// 769 /// fn example(dev: &Device) { 770 /// dev_alert!(dev, "hello {}\n", "there"); 771 /// } 772 /// ``` 773 #[macro_export] 774 macro_rules! dev_alert { 775 ($($f:tt)*) => { $crate::dev_printk!(pr_alert, $($f)*); } 776 } 777 778 /// Prints a critical-level message (level 2) prefixed with device information. 779 /// 780 /// This level should be used in critical conditions. 781 /// 782 /// Equivalent to the kernel's `dev_crit` macro. 783 /// 784 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from 785 /// [`core::fmt`] and [`std::format!`]. 786 /// 787 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html 788 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html 789 /// 790 /// # Examples 791 /// 792 /// ``` 793 /// # use kernel::device::Device; 794 /// 795 /// fn example(dev: &Device) { 796 /// dev_crit!(dev, "hello {}\n", "there"); 797 /// } 798 /// ``` 799 #[macro_export] 800 macro_rules! dev_crit { 801 ($($f:tt)*) => { $crate::dev_printk!(pr_crit, $($f)*); } 802 } 803 804 /// Prints an error-level message (level 3) prefixed with device information. 805 /// 806 /// This level should be used in error conditions. 807 /// 808 /// Equivalent to the kernel's `dev_err` macro. 809 /// 810 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from 811 /// [`core::fmt`] and [`std::format!`]. 812 /// 813 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html 814 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html 815 /// 816 /// # Examples 817 /// 818 /// ``` 819 /// # use kernel::device::Device; 820 /// 821 /// fn example(dev: &Device) { 822 /// dev_err!(dev, "hello {}\n", "there"); 823 /// } 824 /// ``` 825 #[macro_export] 826 macro_rules! dev_err { 827 ($($f:tt)*) => { $crate::dev_printk!(pr_err, $($f)*); } 828 } 829 830 /// Prints a warning-level message (level 4) prefixed with device information. 831 /// 832 /// This level should be used in warning conditions. 833 /// 834 /// Equivalent to the kernel's `dev_warn` macro. 835 /// 836 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from 837 /// [`core::fmt`] and [`std::format!`]. 838 /// 839 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html 840 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html 841 /// 842 /// # Examples 843 /// 844 /// ``` 845 /// # use kernel::device::Device; 846 /// 847 /// fn example(dev: &Device) { 848 /// dev_warn!(dev, "hello {}\n", "there"); 849 /// } 850 /// ``` 851 #[macro_export] 852 macro_rules! dev_warn { 853 ($($f:tt)*) => { $crate::dev_printk!(pr_warn, $($f)*); } 854 } 855 856 /// Prints a notice-level message (level 5) prefixed with device information. 857 /// 858 /// This level should be used in normal but significant conditions. 859 /// 860 /// Equivalent to the kernel's `dev_notice` macro. 861 /// 862 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from 863 /// [`core::fmt`] and [`std::format!`]. 864 /// 865 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html 866 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html 867 /// 868 /// # Examples 869 /// 870 /// ``` 871 /// # use kernel::device::Device; 872 /// 873 /// fn example(dev: &Device) { 874 /// dev_notice!(dev, "hello {}\n", "there"); 875 /// } 876 /// ``` 877 #[macro_export] 878 macro_rules! dev_notice { 879 ($($f:tt)*) => { $crate::dev_printk!(pr_notice, $($f)*); } 880 } 881 882 /// Prints an info-level message (level 6) prefixed with device information. 883 /// 884 /// This level should be used for informational messages. 885 /// 886 /// Equivalent to the kernel's `dev_info` macro. 887 /// 888 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from 889 /// [`core::fmt`] and [`std::format!`]. 890 /// 891 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html 892 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html 893 /// 894 /// # Examples 895 /// 896 /// ``` 897 /// # use kernel::device::Device; 898 /// 899 /// fn example(dev: &Device) { 900 /// dev_info!(dev, "hello {}\n", "there"); 901 /// } 902 /// ``` 903 #[macro_export] 904 macro_rules! dev_info { 905 ($($f:tt)*) => { $crate::dev_printk!(pr_info, $($f)*); } 906 } 907 908 /// Prints a debug-level message (level 7) prefixed with device information. 909 /// 910 /// This level should be used for debug messages. 911 /// 912 /// Equivalent to the kernel's `dev_dbg` macro, except that it doesn't support dynamic debug yet. 913 /// 914 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from 915 /// [`core::fmt`] and [`std::format!`]. 916 /// 917 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html 918 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html 919 /// 920 /// # Examples 921 /// 922 /// ``` 923 /// # use kernel::device::Device; 924 /// 925 /// fn example(dev: &Device) { 926 /// dev_dbg!(dev, "hello {}\n", "there"); 927 /// } 928 /// ``` 929 #[macro_export] 930 macro_rules! dev_dbg { 931 ($($f:tt)*) => { $crate::dev_printk!(pr_dbg, $($f)*); } 932 } 933