xref: /linux/rust/kernel/device.rs (revision 644672e93a1aa6bfc3ebc102cbf9b8efad16e786)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Generic devices that are part of the kernel's driver model.
4 //!
5 //! C header: [`include/linux/device.h`](srctree/include/linux/device.h)
6 
7 use crate::{
8     bindings, fmt,
9     prelude::*,
10     sync::aref::ARef,
11     types::{ForeignOwnable, Opaque},
12 };
13 use core::{any::TypeId, marker::PhantomData, ptr};
14 
15 use crate::str::CStrExt as _;
16 
17 pub mod property;
18 
19 // Assert that we can `read()` / `write()` a `TypeId` instance from / into `struct driver_type`.
20 static_assert!(core::mem::size_of::<bindings::driver_type>() >= core::mem::size_of::<TypeId>());
21 
22 /// The core representation of a device in the kernel's driver model.
23 ///
24 /// This structure represents the Rust abstraction for a C `struct device`. A [`Device`] can either
25 /// exist as temporary reference (see also [`Device::from_raw`]), which is only valid within a
26 /// certain scope or as [`ARef<Device>`], owning a dedicated reference count.
27 ///
28 /// # Device Types
29 ///
30 /// A [`Device`] can represent either a bus device or a class device.
31 ///
32 /// ## Bus Devices
33 ///
34 /// A bus device is a [`Device`] that is associated with a physical or virtual bus. Examples of
35 /// buses include PCI, USB, I2C, and SPI. Devices attached to a bus are registered with a specific
36 /// bus type, which facilitates matching devices with appropriate drivers based on IDs or other
37 /// identifying information. Bus devices are visible in sysfs under `/sys/bus/<bus-name>/devices/`.
38 ///
39 /// ## Class Devices
40 ///
41 /// A class device is a [`Device`] that is associated with a logical category of functionality
42 /// rather than a physical bus. Examples of classes include block devices, network interfaces, sound
43 /// cards, and input devices. Class devices are grouped under a common class and exposed to
44 /// userspace via entries in `/sys/class/<class-name>/`.
45 ///
46 /// # Device Context
47 ///
48 /// [`Device`] references are generic over a [`DeviceContext`], which represents the type state of
49 /// a [`Device`].
50 ///
51 /// As the name indicates, this type state represents the context of the scope the [`Device`]
52 /// reference is valid in. For instance, the [`Bound`] context guarantees that the [`Device`] is
53 /// bound to a driver for the entire duration of the existence of a [`Device<Bound>`] reference.
54 ///
55 /// Other [`DeviceContext`] types besides [`Bound`] are [`Normal`], [`Core`] and [`CoreInternal`].
56 ///
57 /// Unless selected otherwise [`Device`] defaults to the [`Normal`] [`DeviceContext`], which by
58 /// itself has no additional requirements.
59 ///
60 /// It is always up to the caller of [`Device::from_raw`] to select the correct [`DeviceContext`]
61 /// type for the corresponding scope the [`Device`] reference is created in.
62 ///
63 /// All [`DeviceContext`] types other than [`Normal`] are intended to be used with
64 /// [bus devices](#bus-devices) only.
65 ///
66 /// # Implementing Bus Devices
67 ///
68 /// This section provides a guideline to implement bus specific devices, such as [`pci::Device`] or
69 /// [`platform::Device`].
70 ///
71 /// A bus specific device should be defined as follows.
72 ///
73 /// ```ignore
74 /// #[repr(transparent)]
75 /// pub struct Device<Ctx: device::DeviceContext = device::Normal>(
76 ///     Opaque<bindings::bus_device_type>,
77 ///     PhantomData<Ctx>,
78 /// );
79 /// ```
80 ///
81 /// Since devices are reference counted, [`AlwaysRefCounted`] should be implemented for `Device`
82 /// (i.e. `Device<Normal>`). Note that [`AlwaysRefCounted`] must not be implemented for any other
83 /// [`DeviceContext`], since all other device context types are only valid within a certain scope.
84 ///
85 /// In order to be able to implement the [`DeviceContext`] dereference hierarchy, bus device
86 /// implementations should call the [`impl_device_context_deref`] macro as shown below.
87 ///
88 /// ```ignore
89 /// // SAFETY: `Device` is a transparent wrapper of a type that doesn't depend on `Device`'s
90 /// // generic argument.
91 /// kernel::impl_device_context_deref!(unsafe { Device });
92 /// ```
93 ///
94 /// In order to convert from a any [`Device<Ctx>`] to [`ARef<Device>`], bus devices can implement
95 /// the following macro call.
96 ///
97 /// ```ignore
98 /// kernel::impl_device_context_into_aref!(Device);
99 /// ```
100 ///
101 /// Bus devices should also implement the following [`AsRef`] implementation, such that users can
102 /// easily derive a generic [`Device`] reference.
103 ///
104 /// ```ignore
105 /// impl<Ctx: device::DeviceContext> AsRef<device::Device<Ctx>> for Device<Ctx> {
106 ///     fn as_ref(&self) -> &device::Device<Ctx> {
107 ///         ...
108 ///     }
109 /// }
110 /// ```
111 ///
112 /// # Implementing Class Devices
113 ///
114 /// Class device implementations require less infrastructure and depend slightly more on the
115 /// specific subsystem.
116 ///
117 /// An example implementation for a class device could look like this.
118 ///
119 /// ```ignore
120 /// #[repr(C)]
121 /// pub struct Device<T: class::Driver> {
122 ///     dev: Opaque<bindings::class_device_type>,
123 ///     data: T::Data,
124 /// }
125 /// ```
126 ///
127 /// This class device uses the sub-classing pattern to embed the driver's private data within the
128 /// allocation of the class device. For this to be possible the class device is generic over the
129 /// class specific `Driver` trait implementation.
130 ///
131 /// Just like any device, class devices are reference counted and should hence implement
132 /// [`AlwaysRefCounted`] for `Device`.
133 ///
134 /// Class devices should also implement the following [`AsRef`] implementation, such that users can
135 /// easily derive a generic [`Device`] reference.
136 ///
137 /// ```ignore
138 /// impl<T: class::Driver> AsRef<device::Device> for Device<T> {
139 ///     fn as_ref(&self) -> &device::Device {
140 ///         ...
141 ///     }
142 /// }
143 /// ```
144 ///
145 /// An example for a class device implementation is
146 #[cfg_attr(CONFIG_DRM = "y", doc = "[`drm::Device`](kernel::drm::Device).")]
147 #[cfg_attr(not(CONFIG_DRM = "y"), doc = "`drm::Device`.")]
148 ///
149 /// # Invariants
150 ///
151 /// A `Device` instance represents a valid `struct device` created by the C portion of the kernel.
152 ///
153 /// Instances of this type are always reference-counted, that is, a call to `get_device` ensures
154 /// that the allocation remains valid at least until the matching call to `put_device`.
155 ///
156 /// `bindings::device::release` is valid to be called from any thread, hence `ARef<Device>` can be
157 /// dropped from any thread.
158 ///
159 /// [`AlwaysRefCounted`]: kernel::sync::aref::AlwaysRefCounted
160 /// [`impl_device_context_deref`]: kernel::impl_device_context_deref
161 /// [`pci::Device`]: kernel::pci::Device
162 /// [`platform::Device`]: kernel::platform::Device
163 #[repr(transparent)]
164 pub struct Device<Ctx: DeviceContext = Normal>(Opaque<bindings::device>, PhantomData<Ctx>);
165 
166 impl Device {
167     /// Creates a new reference-counted abstraction instance of an existing `struct device` pointer.
168     ///
169     /// # Safety
170     ///
171     /// Callers must ensure that `ptr` is valid, non-null, and has a non-zero reference count,
172     /// i.e. it must be ensured that the reference count of the C `struct device` `ptr` points to
173     /// can't drop to zero, for the duration of this function call.
174     ///
175     /// It must also be ensured that `bindings::device::release` can be called from any thread.
176     /// While not officially documented, this should be the case for any `struct device`.
177     pub unsafe fn get_device(ptr: *mut bindings::device) -> ARef<Self> {
178         // SAFETY: By the safety requirements ptr is valid
179         unsafe { Self::from_raw(ptr) }.into()
180     }
181 
182     /// Convert a [`&Device`](Device) into a [`&Device<Bound>`](Device<Bound>).
183     ///
184     /// # Safety
185     ///
186     /// The caller is responsible to ensure that the returned [`&Device<Bound>`](Device<Bound>)
187     /// only lives as long as it can be guaranteed that the [`Device`] is actually bound.
188     pub unsafe fn as_bound(&self) -> &Device<Bound> {
189         let ptr = core::ptr::from_ref(self);
190 
191         // CAST: By the safety requirements the caller is responsible to guarantee that the
192         // returned reference only lives as long as the device is actually bound.
193         let ptr = ptr.cast();
194 
195         // SAFETY:
196         // - `ptr` comes from `from_ref(self)` above, hence it's guaranteed to be valid.
197         // - Any valid `Device` pointer is also a valid pointer for `Device<Bound>`.
198         unsafe { &*ptr }
199     }
200 }
201 
202 impl Device<CoreInternal> {
203     fn set_type_id<T: 'static>(&self) {
204         // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
205         let private = unsafe { (*self.as_raw()).p };
206 
207         // SAFETY: For a bound device (implied by the `CoreInternal` device context), `private` is
208         // guaranteed to be a valid pointer to a `struct device_private`.
209         let driver_type = unsafe { &raw mut (*private).driver_type };
210 
211         // SAFETY: `driver_type` is valid for (unaligned) writes of a `TypeId`.
212         unsafe {
213             driver_type
214                 .cast::<TypeId>()
215                 .write_unaligned(TypeId::of::<T>())
216         };
217     }
218 
219     /// Store a pointer to the bound driver's private data.
220     pub fn set_drvdata<T: 'static>(&self, data: impl PinInit<T, Error>) -> Result {
221         let data = KBox::pin_init(data, GFP_KERNEL)?;
222 
223         // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
224         unsafe { bindings::dev_set_drvdata(self.as_raw(), data.into_foreign().cast()) };
225         self.set_type_id::<T>();
226 
227         Ok(())
228     }
229 
230     /// Take ownership of the private data stored in this [`Device`].
231     ///
232     /// # Safety
233     ///
234     /// - Must only be called once after a preceding call to [`Device::set_drvdata`].
235     /// - The type `T` must match the type of the `ForeignOwnable` previously stored by
236     ///   [`Device::set_drvdata`].
237     pub unsafe fn drvdata_obtain<T: 'static>(&self) -> Pin<KBox<T>> {
238         // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
239         let ptr = unsafe { bindings::dev_get_drvdata(self.as_raw()) };
240 
241         // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
242         unsafe { bindings::dev_set_drvdata(self.as_raw(), core::ptr::null_mut()) };
243 
244         // SAFETY:
245         // - By the safety requirements of this function, `ptr` comes from a previous call to
246         //   `into_foreign()`.
247         // - `dev_get_drvdata()` guarantees to return the same pointer given to `dev_set_drvdata()`
248         //   in `into_foreign()`.
249         unsafe { Pin::<KBox<T>>::from_foreign(ptr.cast()) }
250     }
251 
252     /// Borrow the driver's private data bound to this [`Device`].
253     ///
254     /// # Safety
255     ///
256     /// - Must only be called after a preceding call to [`Device::set_drvdata`] and before
257     ///   [`Device::drvdata_obtain`].
258     /// - The type `T` must match the type of the `ForeignOwnable` previously stored by
259     ///   [`Device::set_drvdata`].
260     pub unsafe fn drvdata_borrow<T: 'static>(&self) -> Pin<&T> {
261         // SAFETY: `drvdata_unchecked()` has the exact same safety requirements as the ones
262         // required by this method.
263         unsafe { self.drvdata_unchecked() }
264     }
265 }
266 
267 impl Device<Bound> {
268     /// Borrow the driver's private data bound to this [`Device`].
269     ///
270     /// # Safety
271     ///
272     /// - Must only be called after a preceding call to [`Device::set_drvdata`] and before
273     ///   [`Device::drvdata_obtain`].
274     /// - The type `T` must match the type of the `ForeignOwnable` previously stored by
275     ///   [`Device::set_drvdata`].
276     unsafe fn drvdata_unchecked<T: 'static>(&self) -> Pin<&T> {
277         // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
278         let ptr = unsafe { bindings::dev_get_drvdata(self.as_raw()) };
279 
280         // SAFETY:
281         // - By the safety requirements of this function, `ptr` comes from a previous call to
282         //   `into_foreign()`.
283         // - `dev_get_drvdata()` guarantees to return the same pointer given to `dev_set_drvdata()`
284         //   in `into_foreign()`.
285         unsafe { Pin::<KBox<T>>::borrow(ptr.cast()) }
286     }
287 
288     fn match_type_id<T: 'static>(&self) -> Result {
289         // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
290         let private = unsafe { (*self.as_raw()).p };
291 
292         // SAFETY: For a bound device, `private` is guaranteed to be a valid pointer to a
293         // `struct device_private`.
294         let driver_type = unsafe { &raw mut (*private).driver_type };
295 
296         // SAFETY:
297         // - `driver_type` is valid for (unaligned) reads of a `TypeId`.
298         // - A bound device guarantees that `driver_type` contains a valid `TypeId` value.
299         let type_id = unsafe { driver_type.cast::<TypeId>().read_unaligned() };
300 
301         if type_id != TypeId::of::<T>() {
302             return Err(EINVAL);
303         }
304 
305         Ok(())
306     }
307 
308     /// Access a driver's private data.
309     ///
310     /// Returns a pinned reference to the driver's private data or [`EINVAL`] if it doesn't match
311     /// the asserted type `T`.
312     pub fn drvdata<T: 'static>(&self) -> Result<Pin<&T>> {
313         // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
314         if unsafe { bindings::dev_get_drvdata(self.as_raw()) }.is_null() {
315             return Err(ENOENT);
316         }
317 
318         self.match_type_id::<T>()?;
319 
320         // SAFETY:
321         // - The above check of `dev_get_drvdata()` guarantees that we are called after
322         //   `set_drvdata()` and before `drvdata_obtain()`.
323         // - We've just checked that the type of the driver's private data is in fact `T`.
324         Ok(unsafe { self.drvdata_unchecked() })
325     }
326 }
327 
328 impl<Ctx: DeviceContext> Device<Ctx> {
329     /// Obtain the raw `struct device *`.
330     pub(crate) fn as_raw(&self) -> *mut bindings::device {
331         self.0.get()
332     }
333 
334     /// Returns a reference to the parent device, if any.
335     #[cfg_attr(not(CONFIG_AUXILIARY_BUS), expect(dead_code))]
336     pub(crate) fn parent(&self) -> Option<&Device> {
337         // SAFETY:
338         // - By the type invariant `self.as_raw()` is always valid.
339         // - The parent device is only ever set at device creation.
340         let parent = unsafe { (*self.as_raw()).parent };
341 
342         if parent.is_null() {
343             None
344         } else {
345             // SAFETY:
346             // - Since `parent` is not NULL, it must be a valid pointer to a `struct device`.
347             // - `parent` is valid for the lifetime of `self`, since a `struct device` holds a
348             //   reference count of its parent.
349             Some(unsafe { Device::from_raw(parent) })
350         }
351     }
352 
353     /// Convert a raw C `struct device` pointer to a `&'a Device`.
354     ///
355     /// # Safety
356     ///
357     /// Callers must ensure that `ptr` is valid, non-null, and has a non-zero reference count,
358     /// i.e. it must be ensured that the reference count of the C `struct device` `ptr` points to
359     /// can't drop to zero, for the duration of this function call and the entire duration when the
360     /// returned reference exists.
361     pub unsafe fn from_raw<'a>(ptr: *mut bindings::device) -> &'a Self {
362         // SAFETY: Guaranteed by the safety requirements of the function.
363         unsafe { &*ptr.cast() }
364     }
365 
366     /// Prints an emergency-level message (level 0) prefixed with device information.
367     ///
368     /// More details are available from [`dev_emerg`].
369     ///
370     /// [`dev_emerg`]: crate::dev_emerg
371     pub fn pr_emerg(&self, args: fmt::Arguments<'_>) {
372         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
373         unsafe { self.printk(bindings::KERN_EMERG, args) };
374     }
375 
376     /// Prints an alert-level message (level 1) prefixed with device information.
377     ///
378     /// More details are available from [`dev_alert`].
379     ///
380     /// [`dev_alert`]: crate::dev_alert
381     pub fn pr_alert(&self, args: fmt::Arguments<'_>) {
382         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
383         unsafe { self.printk(bindings::KERN_ALERT, args) };
384     }
385 
386     /// Prints a critical-level message (level 2) prefixed with device information.
387     ///
388     /// More details are available from [`dev_crit`].
389     ///
390     /// [`dev_crit`]: crate::dev_crit
391     pub fn pr_crit(&self, args: fmt::Arguments<'_>) {
392         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
393         unsafe { self.printk(bindings::KERN_CRIT, args) };
394     }
395 
396     /// Prints an error-level message (level 3) prefixed with device information.
397     ///
398     /// More details are available from [`dev_err`].
399     ///
400     /// [`dev_err`]: crate::dev_err
401     pub fn pr_err(&self, args: fmt::Arguments<'_>) {
402         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
403         unsafe { self.printk(bindings::KERN_ERR, args) };
404     }
405 
406     /// Prints a warning-level message (level 4) prefixed with device information.
407     ///
408     /// More details are available from [`dev_warn`].
409     ///
410     /// [`dev_warn`]: crate::dev_warn
411     pub fn pr_warn(&self, args: fmt::Arguments<'_>) {
412         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
413         unsafe { self.printk(bindings::KERN_WARNING, args) };
414     }
415 
416     /// Prints a notice-level message (level 5) prefixed with device information.
417     ///
418     /// More details are available from [`dev_notice`].
419     ///
420     /// [`dev_notice`]: crate::dev_notice
421     pub fn pr_notice(&self, args: fmt::Arguments<'_>) {
422         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
423         unsafe { self.printk(bindings::KERN_NOTICE, args) };
424     }
425 
426     /// Prints an info-level message (level 6) prefixed with device information.
427     ///
428     /// More details are available from [`dev_info`].
429     ///
430     /// [`dev_info`]: crate::dev_info
431     pub fn pr_info(&self, args: fmt::Arguments<'_>) {
432         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
433         unsafe { self.printk(bindings::KERN_INFO, args) };
434     }
435 
436     /// Prints a debug-level message (level 7) prefixed with device information.
437     ///
438     /// More details are available from [`dev_dbg`].
439     ///
440     /// [`dev_dbg`]: crate::dev_dbg
441     pub fn pr_dbg(&self, args: fmt::Arguments<'_>) {
442         if cfg!(debug_assertions) {
443             // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
444             unsafe { self.printk(bindings::KERN_DEBUG, args) };
445         }
446     }
447 
448     /// Prints the provided message to the console.
449     ///
450     /// # Safety
451     ///
452     /// Callers must ensure that `klevel` is null-terminated; in particular, one of the
453     /// `KERN_*`constants, for example, `KERN_CRIT`, `KERN_ALERT`, etc.
454     #[cfg_attr(not(CONFIG_PRINTK), allow(unused_variables))]
455     unsafe fn printk(&self, klevel: &[u8], msg: fmt::Arguments<'_>) {
456         // SAFETY: `klevel` is null-terminated and one of the kernel constants. `self.as_raw`
457         // is valid because `self` is valid. The "%pA" format string expects a pointer to
458         // `fmt::Arguments`, which is what we're passing as the last argument.
459         #[cfg(CONFIG_PRINTK)]
460         unsafe {
461             bindings::_dev_printk(
462                 klevel.as_ptr().cast::<crate::ffi::c_char>(),
463                 self.as_raw(),
464                 c"%pA".as_char_ptr(),
465                 core::ptr::from_ref(&msg).cast::<crate::ffi::c_void>(),
466             )
467         };
468     }
469 
470     /// Obtain the [`FwNode`](property::FwNode) corresponding to this [`Device`].
471     pub fn fwnode(&self) -> Option<&property::FwNode> {
472         // SAFETY: `self` is valid.
473         let fwnode_handle = unsafe { bindings::__dev_fwnode(self.as_raw()) };
474         if fwnode_handle.is_null() {
475             return None;
476         }
477         // SAFETY: `fwnode_handle` is valid. Its lifetime is tied to `&self`. We
478         // return a reference instead of an `ARef<FwNode>` because `dev_fwnode()`
479         // doesn't increment the refcount. It is safe to cast from a
480         // `struct fwnode_handle*` to a `*const FwNode` because `FwNode` is
481         // defined as a `#[repr(transparent)]` wrapper around `fwnode_handle`.
482         Some(unsafe { &*fwnode_handle.cast() })
483     }
484 }
485 
486 // SAFETY: `Device` is a transparent wrapper of a type that doesn't depend on `Device`'s generic
487 // argument.
488 kernel::impl_device_context_deref!(unsafe { Device });
489 kernel::impl_device_context_into_aref!(Device);
490 
491 // SAFETY: Instances of `Device` are always reference-counted.
492 unsafe impl crate::sync::aref::AlwaysRefCounted for Device {
493     fn inc_ref(&self) {
494         // SAFETY: The existence of a shared reference guarantees that the refcount is non-zero.
495         unsafe { bindings::get_device(self.as_raw()) };
496     }
497 
498     unsafe fn dec_ref(obj: ptr::NonNull<Self>) {
499         // SAFETY: The safety requirements guarantee that the refcount is non-zero.
500         unsafe { bindings::put_device(obj.cast().as_ptr()) }
501     }
502 }
503 
504 // SAFETY: As by the type invariant `Device` can be sent to any thread.
505 unsafe impl Send for Device {}
506 
507 // SAFETY: `Device` can be shared among threads because all immutable methods are protected by the
508 // synchronization in `struct device`.
509 unsafe impl Sync for Device {}
510 
511 /// Marker trait for the context or scope of a bus specific device.
512 ///
513 /// [`DeviceContext`] is a marker trait for types representing the context of a bus specific
514 /// [`Device`].
515 ///
516 /// The specific device context types are: [`CoreInternal`], [`Core`], [`Bound`] and [`Normal`].
517 ///
518 /// [`DeviceContext`] types are hierarchical, which means that there is a strict hierarchy that
519 /// defines which [`DeviceContext`] type can be derived from another. For instance, any
520 /// [`Device<Core>`] can dereference to a [`Device<Bound>`].
521 ///
522 /// The following enumeration illustrates the dereference hierarchy of [`DeviceContext`] types.
523 ///
524 /// - [`CoreInternal`] => [`Core`] => [`Bound`] => [`Normal`]
525 ///
526 /// Bus devices can automatically implement the dereference hierarchy by using
527 /// [`impl_device_context_deref`].
528 ///
529 /// Note that the guarantee for a [`Device`] reference to have a certain [`DeviceContext`] comes
530 /// from the specific scope the [`Device`] reference is valid in.
531 ///
532 /// [`impl_device_context_deref`]: kernel::impl_device_context_deref
533 pub trait DeviceContext: private::Sealed {}
534 
535 /// The [`Normal`] context is the default [`DeviceContext`] of any [`Device`].
536 ///
537 /// The normal context does not indicate any specific context. Any `Device<Ctx>` is also a valid
538 /// [`Device<Normal>`]. It is the only [`DeviceContext`] for which it is valid to implement
539 /// [`AlwaysRefCounted`] for.
540 ///
541 /// [`AlwaysRefCounted`]: kernel::sync::aref::AlwaysRefCounted
542 pub struct Normal;
543 
544 /// The [`Core`] context is the context of a bus specific device when it appears as argument of
545 /// any bus specific callback, such as `probe()`.
546 ///
547 /// The core context indicates that the [`Device<Core>`] reference's scope is limited to the bus
548 /// callback it appears in. It is intended to be used for synchronization purposes. Bus device
549 /// implementations can implement methods for [`Device<Core>`], such that they can only be called
550 /// from bus callbacks.
551 pub struct Core;
552 
553 /// Semantically the same as [`Core`], but reserved for internal usage of the corresponding bus
554 /// abstraction.
555 ///
556 /// The internal core context is intended to be used in exactly the same way as the [`Core`]
557 /// context, with the difference that this [`DeviceContext`] is internal to the corresponding bus
558 /// abstraction.
559 ///
560 /// This context mainly exists to share generic [`Device`] infrastructure that should only be called
561 /// from bus callbacks with bus abstractions, but without making them accessible for drivers.
562 pub struct CoreInternal;
563 
564 /// The [`Bound`] context is the [`DeviceContext`] of a bus specific device when it is guaranteed to
565 /// be bound to a driver.
566 ///
567 /// The bound context indicates that for the entire duration of the lifetime of a [`Device<Bound>`]
568 /// reference, the [`Device`] is guaranteed to be bound to a driver.
569 ///
570 /// Some APIs, such as [`dma::CoherentAllocation`] or [`Devres`] rely on the [`Device`] to be bound,
571 /// which can be proven with the [`Bound`] device context.
572 ///
573 /// Any abstraction that can guarantee a scope where the corresponding bus device is bound, should
574 /// provide a [`Device<Bound>`] reference to its users for this scope. This allows users to benefit
575 /// from optimizations for accessing device resources, see also [`Devres::access`].
576 ///
577 /// [`Devres`]: kernel::devres::Devres
578 /// [`Devres::access`]: kernel::devres::Devres::access
579 /// [`dma::CoherentAllocation`]: kernel::dma::CoherentAllocation
580 pub struct Bound;
581 
582 mod private {
583     pub trait Sealed {}
584 
585     impl Sealed for super::Bound {}
586     impl Sealed for super::Core {}
587     impl Sealed for super::CoreInternal {}
588     impl Sealed for super::Normal {}
589 }
590 
591 impl DeviceContext for Bound {}
592 impl DeviceContext for Core {}
593 impl DeviceContext for CoreInternal {}
594 impl DeviceContext for Normal {}
595 
596 /// Convert device references to bus device references.
597 ///
598 /// Bus devices can implement this trait to allow abstractions to provide the bus device in
599 /// class device callbacks.
600 ///
601 /// This must not be used by drivers and is intended for bus and class device abstractions only.
602 ///
603 /// # Safety
604 ///
605 /// `AsBusDevice::OFFSET` must be the offset of the embedded base `struct device` field within a
606 /// bus device structure.
607 pub unsafe trait AsBusDevice<Ctx: DeviceContext>: AsRef<Device<Ctx>> {
608     /// The relative offset to the device field.
609     ///
610     /// Use `offset_of!(bindings, field)` macro to avoid breakage.
611     const OFFSET: usize;
612 
613     /// Convert a reference to [`Device`] into `Self`.
614     ///
615     /// # Safety
616     ///
617     /// `dev` must be contained in `Self`.
618     unsafe fn from_device(dev: &Device<Ctx>) -> &Self
619     where
620         Self: Sized,
621     {
622         let raw = dev.as_raw();
623         // SAFETY: `raw - Self::OFFSET` is guaranteed by the safety requirements
624         // to be a valid pointer to `Self`.
625         unsafe { &*raw.byte_sub(Self::OFFSET).cast::<Self>() }
626     }
627 }
628 
629 /// # Safety
630 ///
631 /// The type given as `$device` must be a transparent wrapper of a type that doesn't depend on the
632 /// generic argument of `$device`.
633 #[doc(hidden)]
634 #[macro_export]
635 macro_rules! __impl_device_context_deref {
636     (unsafe { $device:ident, $src:ty => $dst:ty }) => {
637         impl ::core::ops::Deref for $device<$src> {
638             type Target = $device<$dst>;
639 
640             fn deref(&self) -> &Self::Target {
641                 let ptr: *const Self = self;
642 
643                 // CAST: `$device<$src>` and `$device<$dst>` transparently wrap the same type by the
644                 // safety requirement of the macro.
645                 let ptr = ptr.cast::<Self::Target>();
646 
647                 // SAFETY: `ptr` was derived from `&self`.
648                 unsafe { &*ptr }
649             }
650         }
651     };
652 }
653 
654 /// Implement [`core::ops::Deref`] traits for allowed [`DeviceContext`] conversions of a (bus
655 /// specific) device.
656 ///
657 /// # Safety
658 ///
659 /// The type given as `$device` must be a transparent wrapper of a type that doesn't depend on the
660 /// generic argument of `$device`.
661 #[macro_export]
662 macro_rules! impl_device_context_deref {
663     (unsafe { $device:ident }) => {
664         // SAFETY: This macro has the exact same safety requirement as
665         // `__impl_device_context_deref!`.
666         ::kernel::__impl_device_context_deref!(unsafe {
667             $device,
668             $crate::device::CoreInternal => $crate::device::Core
669         });
670 
671         // SAFETY: This macro has the exact same safety requirement as
672         // `__impl_device_context_deref!`.
673         ::kernel::__impl_device_context_deref!(unsafe {
674             $device,
675             $crate::device::Core => $crate::device::Bound
676         });
677 
678         // SAFETY: This macro has the exact same safety requirement as
679         // `__impl_device_context_deref!`.
680         ::kernel::__impl_device_context_deref!(unsafe {
681             $device,
682             $crate::device::Bound => $crate::device::Normal
683         });
684     };
685 }
686 
687 #[doc(hidden)]
688 #[macro_export]
689 macro_rules! __impl_device_context_into_aref {
690     ($src:ty, $device:tt) => {
691         impl ::core::convert::From<&$device<$src>> for $crate::sync::aref::ARef<$device> {
692             fn from(dev: &$device<$src>) -> Self {
693                 (&**dev).into()
694             }
695         }
696     };
697 }
698 
699 /// Implement [`core::convert::From`], such that all `&Device<Ctx>` can be converted to an
700 /// `ARef<Device>`.
701 #[macro_export]
702 macro_rules! impl_device_context_into_aref {
703     ($device:tt) => {
704         ::kernel::__impl_device_context_into_aref!($crate::device::CoreInternal, $device);
705         ::kernel::__impl_device_context_into_aref!($crate::device::Core, $device);
706         ::kernel::__impl_device_context_into_aref!($crate::device::Bound, $device);
707     };
708 }
709 
710 #[doc(hidden)]
711 #[macro_export]
712 macro_rules! dev_printk {
713     ($method:ident, $dev:expr, $($f:tt)*) => {
714         {
715             ($dev).$method($crate::prelude::fmt!($($f)*));
716         }
717     }
718 }
719 
720 /// Prints an emergency-level message (level 0) prefixed with device information.
721 ///
722 /// This level should be used if the system is unusable.
723 ///
724 /// Equivalent to the kernel's `dev_emerg` macro.
725 ///
726 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
727 /// [`core::fmt`] and [`std::format!`].
728 ///
729 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
730 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
731 ///
732 /// # Examples
733 ///
734 /// ```
735 /// # use kernel::device::Device;
736 ///
737 /// fn example(dev: &Device) {
738 ///     dev_emerg!(dev, "hello {}\n", "there");
739 /// }
740 /// ```
741 #[macro_export]
742 macro_rules! dev_emerg {
743     ($($f:tt)*) => { $crate::dev_printk!(pr_emerg, $($f)*); }
744 }
745 
746 /// Prints an alert-level message (level 1) prefixed with device information.
747 ///
748 /// This level should be used if action must be taken immediately.
749 ///
750 /// Equivalent to the kernel's `dev_alert` macro.
751 ///
752 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
753 /// [`core::fmt`] and [`std::format!`].
754 ///
755 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
756 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
757 ///
758 /// # Examples
759 ///
760 /// ```
761 /// # use kernel::device::Device;
762 ///
763 /// fn example(dev: &Device) {
764 ///     dev_alert!(dev, "hello {}\n", "there");
765 /// }
766 /// ```
767 #[macro_export]
768 macro_rules! dev_alert {
769     ($($f:tt)*) => { $crate::dev_printk!(pr_alert, $($f)*); }
770 }
771 
772 /// Prints a critical-level message (level 2) prefixed with device information.
773 ///
774 /// This level should be used in critical conditions.
775 ///
776 /// Equivalent to the kernel's `dev_crit` macro.
777 ///
778 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
779 /// [`core::fmt`] and [`std::format!`].
780 ///
781 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
782 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
783 ///
784 /// # Examples
785 ///
786 /// ```
787 /// # use kernel::device::Device;
788 ///
789 /// fn example(dev: &Device) {
790 ///     dev_crit!(dev, "hello {}\n", "there");
791 /// }
792 /// ```
793 #[macro_export]
794 macro_rules! dev_crit {
795     ($($f:tt)*) => { $crate::dev_printk!(pr_crit, $($f)*); }
796 }
797 
798 /// Prints an error-level message (level 3) prefixed with device information.
799 ///
800 /// This level should be used in error conditions.
801 ///
802 /// Equivalent to the kernel's `dev_err` macro.
803 ///
804 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
805 /// [`core::fmt`] and [`std::format!`].
806 ///
807 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
808 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
809 ///
810 /// # Examples
811 ///
812 /// ```
813 /// # use kernel::device::Device;
814 ///
815 /// fn example(dev: &Device) {
816 ///     dev_err!(dev, "hello {}\n", "there");
817 /// }
818 /// ```
819 #[macro_export]
820 macro_rules! dev_err {
821     ($($f:tt)*) => { $crate::dev_printk!(pr_err, $($f)*); }
822 }
823 
824 /// Prints a warning-level message (level 4) prefixed with device information.
825 ///
826 /// This level should be used in warning conditions.
827 ///
828 /// Equivalent to the kernel's `dev_warn` macro.
829 ///
830 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
831 /// [`core::fmt`] and [`std::format!`].
832 ///
833 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
834 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
835 ///
836 /// # Examples
837 ///
838 /// ```
839 /// # use kernel::device::Device;
840 ///
841 /// fn example(dev: &Device) {
842 ///     dev_warn!(dev, "hello {}\n", "there");
843 /// }
844 /// ```
845 #[macro_export]
846 macro_rules! dev_warn {
847     ($($f:tt)*) => { $crate::dev_printk!(pr_warn, $($f)*); }
848 }
849 
850 /// Prints a notice-level message (level 5) prefixed with device information.
851 ///
852 /// This level should be used in normal but significant conditions.
853 ///
854 /// Equivalent to the kernel's `dev_notice` macro.
855 ///
856 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
857 /// [`core::fmt`] and [`std::format!`].
858 ///
859 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
860 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
861 ///
862 /// # Examples
863 ///
864 /// ```
865 /// # use kernel::device::Device;
866 ///
867 /// fn example(dev: &Device) {
868 ///     dev_notice!(dev, "hello {}\n", "there");
869 /// }
870 /// ```
871 #[macro_export]
872 macro_rules! dev_notice {
873     ($($f:tt)*) => { $crate::dev_printk!(pr_notice, $($f)*); }
874 }
875 
876 /// Prints an info-level message (level 6) prefixed with device information.
877 ///
878 /// This level should be used for informational messages.
879 ///
880 /// Equivalent to the kernel's `dev_info` macro.
881 ///
882 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
883 /// [`core::fmt`] and [`std::format!`].
884 ///
885 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
886 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
887 ///
888 /// # Examples
889 ///
890 /// ```
891 /// # use kernel::device::Device;
892 ///
893 /// fn example(dev: &Device) {
894 ///     dev_info!(dev, "hello {}\n", "there");
895 /// }
896 /// ```
897 #[macro_export]
898 macro_rules! dev_info {
899     ($($f:tt)*) => { $crate::dev_printk!(pr_info, $($f)*); }
900 }
901 
902 /// Prints a debug-level message (level 7) prefixed with device information.
903 ///
904 /// This level should be used for debug messages.
905 ///
906 /// Equivalent to the kernel's `dev_dbg` macro, except that it doesn't support dynamic debug yet.
907 ///
908 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
909 /// [`core::fmt`] and [`std::format!`].
910 ///
911 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
912 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
913 ///
914 /// # Examples
915 ///
916 /// ```
917 /// # use kernel::device::Device;
918 ///
919 /// fn example(dev: &Device) {
920 ///     dev_dbg!(dev, "hello {}\n", "there");
921 /// }
922 /// ```
923 #[macro_export]
924 macro_rules! dev_dbg {
925     ($($f:tt)*) => { $crate::dev_printk!(pr_dbg, $($f)*); }
926 }
927