xref: /linux/rust/kernel/device.rs (revision 4635406417bb842862d6322c461743c9b128c444)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Generic devices that are part of the kernel's driver model.
4 //!
5 //! C header: [`include/linux/device.h`](srctree/include/linux/device.h)
6 
7 use crate::{
8     bindings, fmt,
9     prelude::*,
10     sync::aref::ARef,
11     types::{ForeignOwnable, Opaque},
12 };
13 use core::{any::TypeId, marker::PhantomData, ptr};
14 
15 #[cfg(CONFIG_PRINTK)]
16 use crate::c_str;
17 
18 pub mod property;
19 
20 // Assert that we can `read()` / `write()` a `TypeId` instance from / into `struct driver_type`.
21 static_assert!(core::mem::size_of::<bindings::driver_type>() >= core::mem::size_of::<TypeId>());
22 
23 /// The core representation of a device in the kernel's driver model.
24 ///
25 /// This structure represents the Rust abstraction for a C `struct device`. A [`Device`] can either
26 /// exist as temporary reference (see also [`Device::from_raw`]), which is only valid within a
27 /// certain scope or as [`ARef<Device>`], owning a dedicated reference count.
28 ///
29 /// # Device Types
30 ///
31 /// A [`Device`] can represent either a bus device or a class device.
32 ///
33 /// ## Bus Devices
34 ///
35 /// A bus device is a [`Device`] that is associated with a physical or virtual bus. Examples of
36 /// buses include PCI, USB, I2C, and SPI. Devices attached to a bus are registered with a specific
37 /// bus type, which facilitates matching devices with appropriate drivers based on IDs or other
38 /// identifying information. Bus devices are visible in sysfs under `/sys/bus/<bus-name>/devices/`.
39 ///
40 /// ## Class Devices
41 ///
42 /// A class device is a [`Device`] that is associated with a logical category of functionality
43 /// rather than a physical bus. Examples of classes include block devices, network interfaces, sound
44 /// cards, and input devices. Class devices are grouped under a common class and exposed to
45 /// userspace via entries in `/sys/class/<class-name>/`.
46 ///
47 /// # Device Context
48 ///
49 /// [`Device`] references are generic over a [`DeviceContext`], which represents the type state of
50 /// a [`Device`].
51 ///
52 /// As the name indicates, this type state represents the context of the scope the [`Device`]
53 /// reference is valid in. For instance, the [`Bound`] context guarantees that the [`Device`] is
54 /// bound to a driver for the entire duration of the existence of a [`Device<Bound>`] reference.
55 ///
56 /// Other [`DeviceContext`] types besides [`Bound`] are [`Normal`], [`Core`] and [`CoreInternal`].
57 ///
58 /// Unless selected otherwise [`Device`] defaults to the [`Normal`] [`DeviceContext`], which by
59 /// itself has no additional requirements.
60 ///
61 /// It is always up to the caller of [`Device::from_raw`] to select the correct [`DeviceContext`]
62 /// type for the corresponding scope the [`Device`] reference is created in.
63 ///
64 /// All [`DeviceContext`] types other than [`Normal`] are intended to be used with
65 /// [bus devices](#bus-devices) only.
66 ///
67 /// # Implementing Bus Devices
68 ///
69 /// This section provides a guideline to implement bus specific devices, such as [`pci::Device`] or
70 /// [`platform::Device`].
71 ///
72 /// A bus specific device should be defined as follows.
73 ///
74 /// ```ignore
75 /// #[repr(transparent)]
76 /// pub struct Device<Ctx: device::DeviceContext = device::Normal>(
77 ///     Opaque<bindings::bus_device_type>,
78 ///     PhantomData<Ctx>,
79 /// );
80 /// ```
81 ///
82 /// Since devices are reference counted, [`AlwaysRefCounted`] should be implemented for `Device`
83 /// (i.e. `Device<Normal>`). Note that [`AlwaysRefCounted`] must not be implemented for any other
84 /// [`DeviceContext`], since all other device context types are only valid within a certain scope.
85 ///
86 /// In order to be able to implement the [`DeviceContext`] dereference hierarchy, bus device
87 /// implementations should call the [`impl_device_context_deref`] macro as shown below.
88 ///
89 /// ```ignore
90 /// // SAFETY: `Device` is a transparent wrapper of a type that doesn't depend on `Device`'s
91 /// // generic argument.
92 /// kernel::impl_device_context_deref!(unsafe { Device });
93 /// ```
94 ///
95 /// In order to convert from a any [`Device<Ctx>`] to [`ARef<Device>`], bus devices can implement
96 /// the following macro call.
97 ///
98 /// ```ignore
99 /// kernel::impl_device_context_into_aref!(Device);
100 /// ```
101 ///
102 /// Bus devices should also implement the following [`AsRef`] implementation, such that users can
103 /// easily derive a generic [`Device`] reference.
104 ///
105 /// ```ignore
106 /// impl<Ctx: device::DeviceContext> AsRef<device::Device<Ctx>> for Device<Ctx> {
107 ///     fn as_ref(&self) -> &device::Device<Ctx> {
108 ///         ...
109 ///     }
110 /// }
111 /// ```
112 ///
113 /// # Implementing Class Devices
114 ///
115 /// Class device implementations require less infrastructure and depend slightly more on the
116 /// specific subsystem.
117 ///
118 /// An example implementation for a class device could look like this.
119 ///
120 /// ```ignore
121 /// #[repr(C)]
122 /// pub struct Device<T: class::Driver> {
123 ///     dev: Opaque<bindings::class_device_type>,
124 ///     data: T::Data,
125 /// }
126 /// ```
127 ///
128 /// This class device uses the sub-classing pattern to embed the driver's private data within the
129 /// allocation of the class device. For this to be possible the class device is generic over the
130 /// class specific `Driver` trait implementation.
131 ///
132 /// Just like any device, class devices are reference counted and should hence implement
133 /// [`AlwaysRefCounted`] for `Device`.
134 ///
135 /// Class devices should also implement the following [`AsRef`] implementation, such that users can
136 /// easily derive a generic [`Device`] reference.
137 ///
138 /// ```ignore
139 /// impl<T: class::Driver> AsRef<device::Device> for Device<T> {
140 ///     fn as_ref(&self) -> &device::Device {
141 ///         ...
142 ///     }
143 /// }
144 /// ```
145 ///
146 /// An example for a class device implementation is
147 #[cfg_attr(CONFIG_DRM = "y", doc = "[`drm::Device`](kernel::drm::Device).")]
148 #[cfg_attr(not(CONFIG_DRM = "y"), doc = "`drm::Device`.")]
149 ///
150 /// # Invariants
151 ///
152 /// A `Device` instance represents a valid `struct device` created by the C portion of the kernel.
153 ///
154 /// Instances of this type are always reference-counted, that is, a call to `get_device` ensures
155 /// that the allocation remains valid at least until the matching call to `put_device`.
156 ///
157 /// `bindings::device::release` is valid to be called from any thread, hence `ARef<Device>` can be
158 /// dropped from any thread.
159 ///
160 /// [`AlwaysRefCounted`]: kernel::types::AlwaysRefCounted
161 /// [`impl_device_context_deref`]: kernel::impl_device_context_deref
162 /// [`pci::Device`]: kernel::pci::Device
163 /// [`platform::Device`]: kernel::platform::Device
164 #[repr(transparent)]
165 pub struct Device<Ctx: DeviceContext = Normal>(Opaque<bindings::device>, PhantomData<Ctx>);
166 
167 impl Device {
168     /// Creates a new reference-counted abstraction instance of an existing `struct device` pointer.
169     ///
170     /// # Safety
171     ///
172     /// Callers must ensure that `ptr` is valid, non-null, and has a non-zero reference count,
173     /// i.e. it must be ensured that the reference count of the C `struct device` `ptr` points to
174     /// can't drop to zero, for the duration of this function call.
175     ///
176     /// It must also be ensured that `bindings::device::release` can be called from any thread.
177     /// While not officially documented, this should be the case for any `struct device`.
178     pub unsafe fn get_device(ptr: *mut bindings::device) -> ARef<Self> {
179         // SAFETY: By the safety requirements ptr is valid
180         unsafe { Self::from_raw(ptr) }.into()
181     }
182 
183     /// Convert a [`&Device`](Device) into a [`&Device<Bound>`](Device<Bound>).
184     ///
185     /// # Safety
186     ///
187     /// The caller is responsible to ensure that the returned [`&Device<Bound>`](Device<Bound>)
188     /// only lives as long as it can be guaranteed that the [`Device`] is actually bound.
189     pub unsafe fn as_bound(&self) -> &Device<Bound> {
190         let ptr = core::ptr::from_ref(self);
191 
192         // CAST: By the safety requirements the caller is responsible to guarantee that the
193         // returned reference only lives as long as the device is actually bound.
194         let ptr = ptr.cast();
195 
196         // SAFETY:
197         // - `ptr` comes from `from_ref(self)` above, hence it's guaranteed to be valid.
198         // - Any valid `Device` pointer is also a valid pointer for `Device<Bound>`.
199         unsafe { &*ptr }
200     }
201 }
202 
203 impl Device<CoreInternal> {
204     fn set_type_id<T: 'static>(&self) {
205         // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
206         let private = unsafe { (*self.as_raw()).p };
207 
208         // SAFETY: For a bound device (implied by the `CoreInternal` device context), `private` is
209         // guaranteed to be a valid pointer to a `struct device_private`.
210         let driver_type = unsafe { &raw mut (*private).driver_type };
211 
212         // SAFETY: `driver_type` is valid for (unaligned) writes of a `TypeId`.
213         unsafe {
214             driver_type
215                 .cast::<TypeId>()
216                 .write_unaligned(TypeId::of::<T>())
217         };
218     }
219 
220     /// Store a pointer to the bound driver's private data.
221     pub fn set_drvdata<T: 'static>(&self, data: impl PinInit<T, Error>) -> Result {
222         let data = KBox::pin_init(data, GFP_KERNEL)?;
223 
224         // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
225         unsafe { bindings::dev_set_drvdata(self.as_raw(), data.into_foreign().cast()) };
226         self.set_type_id::<T>();
227 
228         Ok(())
229     }
230 
231     /// Take ownership of the private data stored in this [`Device`].
232     ///
233     /// # Safety
234     ///
235     /// - Must only be called once after a preceding call to [`Device::set_drvdata`].
236     /// - The type `T` must match the type of the `ForeignOwnable` previously stored by
237     ///   [`Device::set_drvdata`].
238     pub unsafe fn drvdata_obtain<T: 'static>(&self) -> Pin<KBox<T>> {
239         // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
240         let ptr = unsafe { bindings::dev_get_drvdata(self.as_raw()) };
241 
242         // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
243         unsafe { bindings::dev_set_drvdata(self.as_raw(), core::ptr::null_mut()) };
244 
245         // SAFETY:
246         // - By the safety requirements of this function, `ptr` comes from a previous call to
247         //   `into_foreign()`.
248         // - `dev_get_drvdata()` guarantees to return the same pointer given to `dev_set_drvdata()`
249         //   in `into_foreign()`.
250         unsafe { Pin::<KBox<T>>::from_foreign(ptr.cast()) }
251     }
252 
253     /// Borrow the driver's private data bound to this [`Device`].
254     ///
255     /// # Safety
256     ///
257     /// - Must only be called after a preceding call to [`Device::set_drvdata`] and before
258     ///   [`Device::drvdata_obtain`].
259     /// - The type `T` must match the type of the `ForeignOwnable` previously stored by
260     ///   [`Device::set_drvdata`].
261     pub unsafe fn drvdata_borrow<T: 'static>(&self) -> Pin<&T> {
262         // SAFETY: `drvdata_unchecked()` has the exact same safety requirements as the ones
263         // required by this method.
264         unsafe { self.drvdata_unchecked() }
265     }
266 }
267 
268 impl Device<Bound> {
269     /// Borrow the driver's private data bound to this [`Device`].
270     ///
271     /// # Safety
272     ///
273     /// - Must only be called after a preceding call to [`Device::set_drvdata`] and before
274     ///   [`Device::drvdata_obtain`].
275     /// - The type `T` must match the type of the `ForeignOwnable` previously stored by
276     ///   [`Device::set_drvdata`].
277     unsafe fn drvdata_unchecked<T: 'static>(&self) -> Pin<&T> {
278         // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
279         let ptr = unsafe { bindings::dev_get_drvdata(self.as_raw()) };
280 
281         // SAFETY:
282         // - By the safety requirements of this function, `ptr` comes from a previous call to
283         //   `into_foreign()`.
284         // - `dev_get_drvdata()` guarantees to return the same pointer given to `dev_set_drvdata()`
285         //   in `into_foreign()`.
286         unsafe { Pin::<KBox<T>>::borrow(ptr.cast()) }
287     }
288 
289     fn match_type_id<T: 'static>(&self) -> Result {
290         // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
291         let private = unsafe { (*self.as_raw()).p };
292 
293         // SAFETY: For a bound device, `private` is guaranteed to be a valid pointer to a
294         // `struct device_private`.
295         let driver_type = unsafe { &raw mut (*private).driver_type };
296 
297         // SAFETY:
298         // - `driver_type` is valid for (unaligned) reads of a `TypeId`.
299         // - A bound device guarantees that `driver_type` contains a valid `TypeId` value.
300         let type_id = unsafe { driver_type.cast::<TypeId>().read_unaligned() };
301 
302         if type_id != TypeId::of::<T>() {
303             return Err(EINVAL);
304         }
305 
306         Ok(())
307     }
308 
309     /// Access a driver's private data.
310     ///
311     /// Returns a pinned reference to the driver's private data or [`EINVAL`] if it doesn't match
312     /// the asserted type `T`.
313     pub fn drvdata<T: 'static>(&self) -> Result<Pin<&T>> {
314         // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
315         if unsafe { bindings::dev_get_drvdata(self.as_raw()) }.is_null() {
316             return Err(ENOENT);
317         }
318 
319         self.match_type_id::<T>()?;
320 
321         // SAFETY:
322         // - The above check of `dev_get_drvdata()` guarantees that we are called after
323         //   `set_drvdata()` and before `drvdata_obtain()`.
324         // - We've just checked that the type of the driver's private data is in fact `T`.
325         Ok(unsafe { self.drvdata_unchecked() })
326     }
327 }
328 
329 impl<Ctx: DeviceContext> Device<Ctx> {
330     /// Obtain the raw `struct device *`.
331     pub(crate) fn as_raw(&self) -> *mut bindings::device {
332         self.0.get()
333     }
334 
335     /// Returns a reference to the parent device, if any.
336     #[cfg_attr(not(CONFIG_AUXILIARY_BUS), expect(dead_code))]
337     pub(crate) fn parent(&self) -> Option<&Device> {
338         // SAFETY:
339         // - By the type invariant `self.as_raw()` is always valid.
340         // - The parent device is only ever set at device creation.
341         let parent = unsafe { (*self.as_raw()).parent };
342 
343         if parent.is_null() {
344             None
345         } else {
346             // SAFETY:
347             // - Since `parent` is not NULL, it must be a valid pointer to a `struct device`.
348             // - `parent` is valid for the lifetime of `self`, since a `struct device` holds a
349             //   reference count of its parent.
350             Some(unsafe { Device::from_raw(parent) })
351         }
352     }
353 
354     /// Convert a raw C `struct device` pointer to a `&'a Device`.
355     ///
356     /// # Safety
357     ///
358     /// Callers must ensure that `ptr` is valid, non-null, and has a non-zero reference count,
359     /// i.e. it must be ensured that the reference count of the C `struct device` `ptr` points to
360     /// can't drop to zero, for the duration of this function call and the entire duration when the
361     /// returned reference exists.
362     pub unsafe fn from_raw<'a>(ptr: *mut bindings::device) -> &'a Self {
363         // SAFETY: Guaranteed by the safety requirements of the function.
364         unsafe { &*ptr.cast() }
365     }
366 
367     /// Prints an emergency-level message (level 0) prefixed with device information.
368     ///
369     /// More details are available from [`dev_emerg`].
370     ///
371     /// [`dev_emerg`]: crate::dev_emerg
372     pub fn pr_emerg(&self, args: fmt::Arguments<'_>) {
373         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
374         unsafe { self.printk(bindings::KERN_EMERG, args) };
375     }
376 
377     /// Prints an alert-level message (level 1) prefixed with device information.
378     ///
379     /// More details are available from [`dev_alert`].
380     ///
381     /// [`dev_alert`]: crate::dev_alert
382     pub fn pr_alert(&self, args: fmt::Arguments<'_>) {
383         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
384         unsafe { self.printk(bindings::KERN_ALERT, args) };
385     }
386 
387     /// Prints a critical-level message (level 2) prefixed with device information.
388     ///
389     /// More details are available from [`dev_crit`].
390     ///
391     /// [`dev_crit`]: crate::dev_crit
392     pub fn pr_crit(&self, args: fmt::Arguments<'_>) {
393         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
394         unsafe { self.printk(bindings::KERN_CRIT, args) };
395     }
396 
397     /// Prints an error-level message (level 3) prefixed with device information.
398     ///
399     /// More details are available from [`dev_err`].
400     ///
401     /// [`dev_err`]: crate::dev_err
402     pub fn pr_err(&self, args: fmt::Arguments<'_>) {
403         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
404         unsafe { self.printk(bindings::KERN_ERR, args) };
405     }
406 
407     /// Prints a warning-level message (level 4) prefixed with device information.
408     ///
409     /// More details are available from [`dev_warn`].
410     ///
411     /// [`dev_warn`]: crate::dev_warn
412     pub fn pr_warn(&self, args: fmt::Arguments<'_>) {
413         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
414         unsafe { self.printk(bindings::KERN_WARNING, args) };
415     }
416 
417     /// Prints a notice-level message (level 5) prefixed with device information.
418     ///
419     /// More details are available from [`dev_notice`].
420     ///
421     /// [`dev_notice`]: crate::dev_notice
422     pub fn pr_notice(&self, args: fmt::Arguments<'_>) {
423         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
424         unsafe { self.printk(bindings::KERN_NOTICE, args) };
425     }
426 
427     /// Prints an info-level message (level 6) prefixed with device information.
428     ///
429     /// More details are available from [`dev_info`].
430     ///
431     /// [`dev_info`]: crate::dev_info
432     pub fn pr_info(&self, args: fmt::Arguments<'_>) {
433         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
434         unsafe { self.printk(bindings::KERN_INFO, args) };
435     }
436 
437     /// Prints a debug-level message (level 7) prefixed with device information.
438     ///
439     /// More details are available from [`dev_dbg`].
440     ///
441     /// [`dev_dbg`]: crate::dev_dbg
442     pub fn pr_dbg(&self, args: fmt::Arguments<'_>) {
443         if cfg!(debug_assertions) {
444             // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
445             unsafe { self.printk(bindings::KERN_DEBUG, args) };
446         }
447     }
448 
449     /// Prints the provided message to the console.
450     ///
451     /// # Safety
452     ///
453     /// Callers must ensure that `klevel` is null-terminated; in particular, one of the
454     /// `KERN_*`constants, for example, `KERN_CRIT`, `KERN_ALERT`, etc.
455     #[cfg_attr(not(CONFIG_PRINTK), allow(unused_variables))]
456     unsafe fn printk(&self, klevel: &[u8], msg: fmt::Arguments<'_>) {
457         // SAFETY: `klevel` is null-terminated and one of the kernel constants. `self.as_raw`
458         // is valid because `self` is valid. The "%pA" format string expects a pointer to
459         // `fmt::Arguments`, which is what we're passing as the last argument.
460         #[cfg(CONFIG_PRINTK)]
461         unsafe {
462             bindings::_dev_printk(
463                 klevel.as_ptr().cast::<crate::ffi::c_char>(),
464                 self.as_raw(),
465                 c_str!("%pA").as_char_ptr(),
466                 core::ptr::from_ref(&msg).cast::<crate::ffi::c_void>(),
467             )
468         };
469     }
470 
471     /// Obtain the [`FwNode`](property::FwNode) corresponding to this [`Device`].
472     pub fn fwnode(&self) -> Option<&property::FwNode> {
473         // SAFETY: `self` is valid.
474         let fwnode_handle = unsafe { bindings::__dev_fwnode(self.as_raw()) };
475         if fwnode_handle.is_null() {
476             return None;
477         }
478         // SAFETY: `fwnode_handle` is valid. Its lifetime is tied to `&self`. We
479         // return a reference instead of an `ARef<FwNode>` because `dev_fwnode()`
480         // doesn't increment the refcount. It is safe to cast from a
481         // `struct fwnode_handle*` to a `*const FwNode` because `FwNode` is
482         // defined as a `#[repr(transparent)]` wrapper around `fwnode_handle`.
483         Some(unsafe { &*fwnode_handle.cast() })
484     }
485 }
486 
487 // SAFETY: `Device` is a transparent wrapper of a type that doesn't depend on `Device`'s generic
488 // argument.
489 kernel::impl_device_context_deref!(unsafe { Device });
490 kernel::impl_device_context_into_aref!(Device);
491 
492 // SAFETY: Instances of `Device` are always reference-counted.
493 unsafe impl crate::sync::aref::AlwaysRefCounted for Device {
494     fn inc_ref(&self) {
495         // SAFETY: The existence of a shared reference guarantees that the refcount is non-zero.
496         unsafe { bindings::get_device(self.as_raw()) };
497     }
498 
499     unsafe fn dec_ref(obj: ptr::NonNull<Self>) {
500         // SAFETY: The safety requirements guarantee that the refcount is non-zero.
501         unsafe { bindings::put_device(obj.cast().as_ptr()) }
502     }
503 }
504 
505 // SAFETY: As by the type invariant `Device` can be sent to any thread.
506 unsafe impl Send for Device {}
507 
508 // SAFETY: `Device` can be shared among threads because all immutable methods are protected by the
509 // synchronization in `struct device`.
510 unsafe impl Sync for Device {}
511 
512 /// Marker trait for the context or scope of a bus specific device.
513 ///
514 /// [`DeviceContext`] is a marker trait for types representing the context of a bus specific
515 /// [`Device`].
516 ///
517 /// The specific device context types are: [`CoreInternal`], [`Core`], [`Bound`] and [`Normal`].
518 ///
519 /// [`DeviceContext`] types are hierarchical, which means that there is a strict hierarchy that
520 /// defines which [`DeviceContext`] type can be derived from another. For instance, any
521 /// [`Device<Core>`] can dereference to a [`Device<Bound>`].
522 ///
523 /// The following enumeration illustrates the dereference hierarchy of [`DeviceContext`] types.
524 ///
525 /// - [`CoreInternal`] => [`Core`] => [`Bound`] => [`Normal`]
526 ///
527 /// Bus devices can automatically implement the dereference hierarchy by using
528 /// [`impl_device_context_deref`].
529 ///
530 /// Note that the guarantee for a [`Device`] reference to have a certain [`DeviceContext`] comes
531 /// from the specific scope the [`Device`] reference is valid in.
532 ///
533 /// [`impl_device_context_deref`]: kernel::impl_device_context_deref
534 pub trait DeviceContext: private::Sealed {}
535 
536 /// The [`Normal`] context is the default [`DeviceContext`] of any [`Device`].
537 ///
538 /// The normal context does not indicate any specific context. Any `Device<Ctx>` is also a valid
539 /// [`Device<Normal>`]. It is the only [`DeviceContext`] for which it is valid to implement
540 /// [`AlwaysRefCounted`] for.
541 ///
542 /// [`AlwaysRefCounted`]: kernel::types::AlwaysRefCounted
543 pub struct Normal;
544 
545 /// The [`Core`] context is the context of a bus specific device when it appears as argument of
546 /// any bus specific callback, such as `probe()`.
547 ///
548 /// The core context indicates that the [`Device<Core>`] reference's scope is limited to the bus
549 /// callback it appears in. It is intended to be used for synchronization purposes. Bus device
550 /// implementations can implement methods for [`Device<Core>`], such that they can only be called
551 /// from bus callbacks.
552 pub struct Core;
553 
554 /// Semantically the same as [`Core`], but reserved for internal usage of the corresponding bus
555 /// abstraction.
556 ///
557 /// The internal core context is intended to be used in exactly the same way as the [`Core`]
558 /// context, with the difference that this [`DeviceContext`] is internal to the corresponding bus
559 /// abstraction.
560 ///
561 /// This context mainly exists to share generic [`Device`] infrastructure that should only be called
562 /// from bus callbacks with bus abstractions, but without making them accessible for drivers.
563 pub struct CoreInternal;
564 
565 /// The [`Bound`] context is the [`DeviceContext`] of a bus specific device when it is guaranteed to
566 /// be bound to a driver.
567 ///
568 /// The bound context indicates that for the entire duration of the lifetime of a [`Device<Bound>`]
569 /// reference, the [`Device`] is guaranteed to be bound to a driver.
570 ///
571 /// Some APIs, such as [`dma::CoherentAllocation`] or [`Devres`] rely on the [`Device`] to be bound,
572 /// which can be proven with the [`Bound`] device context.
573 ///
574 /// Any abstraction that can guarantee a scope where the corresponding bus device is bound, should
575 /// provide a [`Device<Bound>`] reference to its users for this scope. This allows users to benefit
576 /// from optimizations for accessing device resources, see also [`Devres::access`].
577 ///
578 /// [`Devres`]: kernel::devres::Devres
579 /// [`Devres::access`]: kernel::devres::Devres::access
580 /// [`dma::CoherentAllocation`]: kernel::dma::CoherentAllocation
581 pub struct Bound;
582 
583 mod private {
584     pub trait Sealed {}
585 
586     impl Sealed for super::Bound {}
587     impl Sealed for super::Core {}
588     impl Sealed for super::CoreInternal {}
589     impl Sealed for super::Normal {}
590 }
591 
592 impl DeviceContext for Bound {}
593 impl DeviceContext for Core {}
594 impl DeviceContext for CoreInternal {}
595 impl DeviceContext for Normal {}
596 
597 /// Convert device references to bus device references.
598 ///
599 /// Bus devices can implement this trait to allow abstractions to provide the bus device in
600 /// class device callbacks.
601 ///
602 /// This must not be used by drivers and is intended for bus and class device abstractions only.
603 ///
604 /// # Safety
605 ///
606 /// `AsBusDevice::OFFSET` must be the offset of the embedded base `struct device` field within a
607 /// bus device structure.
608 pub unsafe trait AsBusDevice<Ctx: DeviceContext>: AsRef<Device<Ctx>> {
609     /// The relative offset to the device field.
610     ///
611     /// Use `offset_of!(bindings, field)` macro to avoid breakage.
612     const OFFSET: usize;
613 
614     /// Convert a reference to [`Device`] into `Self`.
615     ///
616     /// # Safety
617     ///
618     /// `dev` must be contained in `Self`.
619     unsafe fn from_device(dev: &Device<Ctx>) -> &Self
620     where
621         Self: Sized,
622     {
623         let raw = dev.as_raw();
624         // SAFETY: `raw - Self::OFFSET` is guaranteed by the safety requirements
625         // to be a valid pointer to `Self`.
626         unsafe { &*raw.byte_sub(Self::OFFSET).cast::<Self>() }
627     }
628 }
629 
630 /// # Safety
631 ///
632 /// The type given as `$device` must be a transparent wrapper of a type that doesn't depend on the
633 /// generic argument of `$device`.
634 #[doc(hidden)]
635 #[macro_export]
636 macro_rules! __impl_device_context_deref {
637     (unsafe { $device:ident, $src:ty => $dst:ty }) => {
638         impl ::core::ops::Deref for $device<$src> {
639             type Target = $device<$dst>;
640 
641             fn deref(&self) -> &Self::Target {
642                 let ptr: *const Self = self;
643 
644                 // CAST: `$device<$src>` and `$device<$dst>` transparently wrap the same type by the
645                 // safety requirement of the macro.
646                 let ptr = ptr.cast::<Self::Target>();
647 
648                 // SAFETY: `ptr` was derived from `&self`.
649                 unsafe { &*ptr }
650             }
651         }
652     };
653 }
654 
655 /// Implement [`core::ops::Deref`] traits for allowed [`DeviceContext`] conversions of a (bus
656 /// specific) device.
657 ///
658 /// # Safety
659 ///
660 /// The type given as `$device` must be a transparent wrapper of a type that doesn't depend on the
661 /// generic argument of `$device`.
662 #[macro_export]
663 macro_rules! impl_device_context_deref {
664     (unsafe { $device:ident }) => {
665         // SAFETY: This macro has the exact same safety requirement as
666         // `__impl_device_context_deref!`.
667         ::kernel::__impl_device_context_deref!(unsafe {
668             $device,
669             $crate::device::CoreInternal => $crate::device::Core
670         });
671 
672         // SAFETY: This macro has the exact same safety requirement as
673         // `__impl_device_context_deref!`.
674         ::kernel::__impl_device_context_deref!(unsafe {
675             $device,
676             $crate::device::Core => $crate::device::Bound
677         });
678 
679         // SAFETY: This macro has the exact same safety requirement as
680         // `__impl_device_context_deref!`.
681         ::kernel::__impl_device_context_deref!(unsafe {
682             $device,
683             $crate::device::Bound => $crate::device::Normal
684         });
685     };
686 }
687 
688 #[doc(hidden)]
689 #[macro_export]
690 macro_rules! __impl_device_context_into_aref {
691     ($src:ty, $device:tt) => {
692         impl ::core::convert::From<&$device<$src>> for $crate::sync::aref::ARef<$device> {
693             fn from(dev: &$device<$src>) -> Self {
694                 (&**dev).into()
695             }
696         }
697     };
698 }
699 
700 /// Implement [`core::convert::From`], such that all `&Device<Ctx>` can be converted to an
701 /// `ARef<Device>`.
702 #[macro_export]
703 macro_rules! impl_device_context_into_aref {
704     ($device:tt) => {
705         ::kernel::__impl_device_context_into_aref!($crate::device::CoreInternal, $device);
706         ::kernel::__impl_device_context_into_aref!($crate::device::Core, $device);
707         ::kernel::__impl_device_context_into_aref!($crate::device::Bound, $device);
708     };
709 }
710 
711 #[doc(hidden)]
712 #[macro_export]
713 macro_rules! dev_printk {
714     ($method:ident, $dev:expr, $($f:tt)*) => {
715         {
716             ($dev).$method($crate::prelude::fmt!($($f)*));
717         }
718     }
719 }
720 
721 /// Prints an emergency-level message (level 0) prefixed with device information.
722 ///
723 /// This level should be used if the system is unusable.
724 ///
725 /// Equivalent to the kernel's `dev_emerg` macro.
726 ///
727 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
728 /// [`core::fmt`] and [`std::format!`].
729 ///
730 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
731 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
732 ///
733 /// # Examples
734 ///
735 /// ```
736 /// # use kernel::device::Device;
737 ///
738 /// fn example(dev: &Device) {
739 ///     dev_emerg!(dev, "hello {}\n", "there");
740 /// }
741 /// ```
742 #[macro_export]
743 macro_rules! dev_emerg {
744     ($($f:tt)*) => { $crate::dev_printk!(pr_emerg, $($f)*); }
745 }
746 
747 /// Prints an alert-level message (level 1) prefixed with device information.
748 ///
749 /// This level should be used if action must be taken immediately.
750 ///
751 /// Equivalent to the kernel's `dev_alert` macro.
752 ///
753 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
754 /// [`core::fmt`] and [`std::format!`].
755 ///
756 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
757 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
758 ///
759 /// # Examples
760 ///
761 /// ```
762 /// # use kernel::device::Device;
763 ///
764 /// fn example(dev: &Device) {
765 ///     dev_alert!(dev, "hello {}\n", "there");
766 /// }
767 /// ```
768 #[macro_export]
769 macro_rules! dev_alert {
770     ($($f:tt)*) => { $crate::dev_printk!(pr_alert, $($f)*); }
771 }
772 
773 /// Prints a critical-level message (level 2) prefixed with device information.
774 ///
775 /// This level should be used in critical conditions.
776 ///
777 /// Equivalent to the kernel's `dev_crit` macro.
778 ///
779 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
780 /// [`core::fmt`] and [`std::format!`].
781 ///
782 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
783 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
784 ///
785 /// # Examples
786 ///
787 /// ```
788 /// # use kernel::device::Device;
789 ///
790 /// fn example(dev: &Device) {
791 ///     dev_crit!(dev, "hello {}\n", "there");
792 /// }
793 /// ```
794 #[macro_export]
795 macro_rules! dev_crit {
796     ($($f:tt)*) => { $crate::dev_printk!(pr_crit, $($f)*); }
797 }
798 
799 /// Prints an error-level message (level 3) prefixed with device information.
800 ///
801 /// This level should be used in error conditions.
802 ///
803 /// Equivalent to the kernel's `dev_err` macro.
804 ///
805 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
806 /// [`core::fmt`] and [`std::format!`].
807 ///
808 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
809 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
810 ///
811 /// # Examples
812 ///
813 /// ```
814 /// # use kernel::device::Device;
815 ///
816 /// fn example(dev: &Device) {
817 ///     dev_err!(dev, "hello {}\n", "there");
818 /// }
819 /// ```
820 #[macro_export]
821 macro_rules! dev_err {
822     ($($f:tt)*) => { $crate::dev_printk!(pr_err, $($f)*); }
823 }
824 
825 /// Prints a warning-level message (level 4) prefixed with device information.
826 ///
827 /// This level should be used in warning conditions.
828 ///
829 /// Equivalent to the kernel's `dev_warn` macro.
830 ///
831 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
832 /// [`core::fmt`] and [`std::format!`].
833 ///
834 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
835 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
836 ///
837 /// # Examples
838 ///
839 /// ```
840 /// # use kernel::device::Device;
841 ///
842 /// fn example(dev: &Device) {
843 ///     dev_warn!(dev, "hello {}\n", "there");
844 /// }
845 /// ```
846 #[macro_export]
847 macro_rules! dev_warn {
848     ($($f:tt)*) => { $crate::dev_printk!(pr_warn, $($f)*); }
849 }
850 
851 /// Prints a notice-level message (level 5) prefixed with device information.
852 ///
853 /// This level should be used in normal but significant conditions.
854 ///
855 /// Equivalent to the kernel's `dev_notice` macro.
856 ///
857 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
858 /// [`core::fmt`] and [`std::format!`].
859 ///
860 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
861 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
862 ///
863 /// # Examples
864 ///
865 /// ```
866 /// # use kernel::device::Device;
867 ///
868 /// fn example(dev: &Device) {
869 ///     dev_notice!(dev, "hello {}\n", "there");
870 /// }
871 /// ```
872 #[macro_export]
873 macro_rules! dev_notice {
874     ($($f:tt)*) => { $crate::dev_printk!(pr_notice, $($f)*); }
875 }
876 
877 /// Prints an info-level message (level 6) prefixed with device information.
878 ///
879 /// This level should be used for informational messages.
880 ///
881 /// Equivalent to the kernel's `dev_info` macro.
882 ///
883 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
884 /// [`core::fmt`] and [`std::format!`].
885 ///
886 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
887 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
888 ///
889 /// # Examples
890 ///
891 /// ```
892 /// # use kernel::device::Device;
893 ///
894 /// fn example(dev: &Device) {
895 ///     dev_info!(dev, "hello {}\n", "there");
896 /// }
897 /// ```
898 #[macro_export]
899 macro_rules! dev_info {
900     ($($f:tt)*) => { $crate::dev_printk!(pr_info, $($f)*); }
901 }
902 
903 /// Prints a debug-level message (level 7) prefixed with device information.
904 ///
905 /// This level should be used for debug messages.
906 ///
907 /// Equivalent to the kernel's `dev_dbg` macro, except that it doesn't support dynamic debug yet.
908 ///
909 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
910 /// [`core::fmt`] and [`std::format!`].
911 ///
912 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
913 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
914 ///
915 /// # Examples
916 ///
917 /// ```
918 /// # use kernel::device::Device;
919 ///
920 /// fn example(dev: &Device) {
921 ///     dev_dbg!(dev, "hello {}\n", "there");
922 /// }
923 /// ```
924 #[macro_export]
925 macro_rules! dev_dbg {
926     ($($f:tt)*) => { $crate::dev_printk!(pr_dbg, $($f)*); }
927 }
928