1 // SPDX-License-Identifier: GPL-2.0 2 3 //! Generic devices that are part of the kernel's driver model. 4 //! 5 //! C header: [`include/linux/device.h`](srctree/include/linux/device.h) 6 7 use crate::{ 8 bindings, fmt, 9 sync::aref::ARef, 10 types::{ForeignOwnable, Opaque}, 11 }; 12 use core::{marker::PhantomData, ptr}; 13 14 #[cfg(CONFIG_PRINTK)] 15 use crate::c_str; 16 17 pub mod property; 18 19 /// The core representation of a device in the kernel's driver model. 20 /// 21 /// This structure represents the Rust abstraction for a C `struct device`. A [`Device`] can either 22 /// exist as temporary reference (see also [`Device::from_raw`]), which is only valid within a 23 /// certain scope or as [`ARef<Device>`], owning a dedicated reference count. 24 /// 25 /// # Device Types 26 /// 27 /// A [`Device`] can represent either a bus device or a class device. 28 /// 29 /// ## Bus Devices 30 /// 31 /// A bus device is a [`Device`] that is associated with a physical or virtual bus. Examples of 32 /// buses include PCI, USB, I2C, and SPI. Devices attached to a bus are registered with a specific 33 /// bus type, which facilitates matching devices with appropriate drivers based on IDs or other 34 /// identifying information. Bus devices are visible in sysfs under `/sys/bus/<bus-name>/devices/`. 35 /// 36 /// ## Class Devices 37 /// 38 /// A class device is a [`Device`] that is associated with a logical category of functionality 39 /// rather than a physical bus. Examples of classes include block devices, network interfaces, sound 40 /// cards, and input devices. Class devices are grouped under a common class and exposed to 41 /// userspace via entries in `/sys/class/<class-name>/`. 42 /// 43 /// # Device Context 44 /// 45 /// [`Device`] references are generic over a [`DeviceContext`], which represents the type state of 46 /// a [`Device`]. 47 /// 48 /// As the name indicates, this type state represents the context of the scope the [`Device`] 49 /// reference is valid in. For instance, the [`Bound`] context guarantees that the [`Device`] is 50 /// bound to a driver for the entire duration of the existence of a [`Device<Bound>`] reference. 51 /// 52 /// Other [`DeviceContext`] types besides [`Bound`] are [`Normal`], [`Core`] and [`CoreInternal`]. 53 /// 54 /// Unless selected otherwise [`Device`] defaults to the [`Normal`] [`DeviceContext`], which by 55 /// itself has no additional requirements. 56 /// 57 /// It is always up to the caller of [`Device::from_raw`] to select the correct [`DeviceContext`] 58 /// type for the corresponding scope the [`Device`] reference is created in. 59 /// 60 /// All [`DeviceContext`] types other than [`Normal`] are intended to be used with 61 /// [bus devices](#bus-devices) only. 62 /// 63 /// # Implementing Bus Devices 64 /// 65 /// This section provides a guideline to implement bus specific devices, such as [`pci::Device`] or 66 /// [`platform::Device`]. 67 /// 68 /// A bus specific device should be defined as follows. 69 /// 70 /// ```ignore 71 /// #[repr(transparent)] 72 /// pub struct Device<Ctx: device::DeviceContext = device::Normal>( 73 /// Opaque<bindings::bus_device_type>, 74 /// PhantomData<Ctx>, 75 /// ); 76 /// ``` 77 /// 78 /// Since devices are reference counted, [`AlwaysRefCounted`] should be implemented for `Device` 79 /// (i.e. `Device<Normal>`). Note that [`AlwaysRefCounted`] must not be implemented for any other 80 /// [`DeviceContext`], since all other device context types are only valid within a certain scope. 81 /// 82 /// In order to be able to implement the [`DeviceContext`] dereference hierarchy, bus device 83 /// implementations should call the [`impl_device_context_deref`] macro as shown below. 84 /// 85 /// ```ignore 86 /// // SAFETY: `Device` is a transparent wrapper of a type that doesn't depend on `Device`'s 87 /// // generic argument. 88 /// kernel::impl_device_context_deref!(unsafe { Device }); 89 /// ``` 90 /// 91 /// In order to convert from a any [`Device<Ctx>`] to [`ARef<Device>`], bus devices can implement 92 /// the following macro call. 93 /// 94 /// ```ignore 95 /// kernel::impl_device_context_into_aref!(Device); 96 /// ``` 97 /// 98 /// Bus devices should also implement the following [`AsRef`] implementation, such that users can 99 /// easily derive a generic [`Device`] reference. 100 /// 101 /// ```ignore 102 /// impl<Ctx: device::DeviceContext> AsRef<device::Device<Ctx>> for Device<Ctx> { 103 /// fn as_ref(&self) -> &device::Device<Ctx> { 104 /// ... 105 /// } 106 /// } 107 /// ``` 108 /// 109 /// # Implementing Class Devices 110 /// 111 /// Class device implementations require less infrastructure and depend slightly more on the 112 /// specific subsystem. 113 /// 114 /// An example implementation for a class device could look like this. 115 /// 116 /// ```ignore 117 /// #[repr(C)] 118 /// pub struct Device<T: class::Driver> { 119 /// dev: Opaque<bindings::class_device_type>, 120 /// data: T::Data, 121 /// } 122 /// ``` 123 /// 124 /// This class device uses the sub-classing pattern to embed the driver's private data within the 125 /// allocation of the class device. For this to be possible the class device is generic over the 126 /// class specific `Driver` trait implementation. 127 /// 128 /// Just like any device, class devices are reference counted and should hence implement 129 /// [`AlwaysRefCounted`] for `Device`. 130 /// 131 /// Class devices should also implement the following [`AsRef`] implementation, such that users can 132 /// easily derive a generic [`Device`] reference. 133 /// 134 /// ```ignore 135 /// impl<T: class::Driver> AsRef<device::Device> for Device<T> { 136 /// fn as_ref(&self) -> &device::Device { 137 /// ... 138 /// } 139 /// } 140 /// ``` 141 /// 142 /// An example for a class device implementation is 143 #[cfg_attr(CONFIG_DRM = "y", doc = "[`drm::Device`](kernel::drm::Device).")] 144 #[cfg_attr(not(CONFIG_DRM = "y"), doc = "`drm::Device`.")] 145 /// 146 /// # Invariants 147 /// 148 /// A `Device` instance represents a valid `struct device` created by the C portion of the kernel. 149 /// 150 /// Instances of this type are always reference-counted, that is, a call to `get_device` ensures 151 /// that the allocation remains valid at least until the matching call to `put_device`. 152 /// 153 /// `bindings::device::release` is valid to be called from any thread, hence `ARef<Device>` can be 154 /// dropped from any thread. 155 /// 156 /// [`AlwaysRefCounted`]: kernel::types::AlwaysRefCounted 157 /// [`impl_device_context_deref`]: kernel::impl_device_context_deref 158 /// [`pci::Device`]: kernel::pci::Device 159 /// [`platform::Device`]: kernel::platform::Device 160 #[repr(transparent)] 161 pub struct Device<Ctx: DeviceContext = Normal>(Opaque<bindings::device>, PhantomData<Ctx>); 162 163 impl Device { 164 /// Creates a new reference-counted abstraction instance of an existing `struct device` pointer. 165 /// 166 /// # Safety 167 /// 168 /// Callers must ensure that `ptr` is valid, non-null, and has a non-zero reference count, 169 /// i.e. it must be ensured that the reference count of the C `struct device` `ptr` points to 170 /// can't drop to zero, for the duration of this function call. 171 /// 172 /// It must also be ensured that `bindings::device::release` can be called from any thread. 173 /// While not officially documented, this should be the case for any `struct device`. 174 pub unsafe fn get_device(ptr: *mut bindings::device) -> ARef<Self> { 175 // SAFETY: By the safety requirements ptr is valid 176 unsafe { Self::from_raw(ptr) }.into() 177 } 178 179 /// Convert a [`&Device`](Device) into a [`&Device<Bound>`](Device<Bound>). 180 /// 181 /// # Safety 182 /// 183 /// The caller is responsible to ensure that the returned [`&Device<Bound>`](Device<Bound>) 184 /// only lives as long as it can be guaranteed that the [`Device`] is actually bound. 185 pub unsafe fn as_bound(&self) -> &Device<Bound> { 186 let ptr = core::ptr::from_ref(self); 187 188 // CAST: By the safety requirements the caller is responsible to guarantee that the 189 // returned reference only lives as long as the device is actually bound. 190 let ptr = ptr.cast(); 191 192 // SAFETY: 193 // - `ptr` comes from `from_ref(self)` above, hence it's guaranteed to be valid. 194 // - Any valid `Device` pointer is also a valid pointer for `Device<Bound>`. 195 unsafe { &*ptr } 196 } 197 } 198 199 impl Device<CoreInternal> { 200 /// Store a pointer to the bound driver's private data. 201 pub fn set_drvdata(&self, data: impl ForeignOwnable) { 202 // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`. 203 unsafe { bindings::dev_set_drvdata(self.as_raw(), data.into_foreign().cast()) } 204 } 205 206 /// Take ownership of the private data stored in this [`Device`]. 207 /// 208 /// # Safety 209 /// 210 /// - Must only be called once after a preceding call to [`Device::set_drvdata`]. 211 /// - The type `T` must match the type of the `ForeignOwnable` previously stored by 212 /// [`Device::set_drvdata`]. 213 pub unsafe fn drvdata_obtain<T: ForeignOwnable>(&self) -> T { 214 // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`. 215 let ptr = unsafe { bindings::dev_get_drvdata(self.as_raw()) }; 216 217 // SAFETY: 218 // - By the safety requirements of this function, `ptr` comes from a previous call to 219 // `into_foreign()`. 220 // - `dev_get_drvdata()` guarantees to return the same pointer given to `dev_set_drvdata()` 221 // in `into_foreign()`. 222 unsafe { T::from_foreign(ptr.cast()) } 223 } 224 225 /// Borrow the driver's private data bound to this [`Device`]. 226 /// 227 /// # Safety 228 /// 229 /// - Must only be called after a preceding call to [`Device::set_drvdata`] and before 230 /// [`Device::drvdata_obtain`]. 231 /// - The type `T` must match the type of the `ForeignOwnable` previously stored by 232 /// [`Device::set_drvdata`]. 233 pub unsafe fn drvdata_borrow<T: ForeignOwnable>(&self) -> T::Borrowed<'_> { 234 // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`. 235 let ptr = unsafe { bindings::dev_get_drvdata(self.as_raw()) }; 236 237 // SAFETY: 238 // - By the safety requirements of this function, `ptr` comes from a previous call to 239 // `into_foreign()`. 240 // - `dev_get_drvdata()` guarantees to return the same pointer given to `dev_set_drvdata()` 241 // in `into_foreign()`. 242 unsafe { T::borrow(ptr.cast()) } 243 } 244 } 245 246 impl<Ctx: DeviceContext> Device<Ctx> { 247 /// Obtain the raw `struct device *`. 248 pub(crate) fn as_raw(&self) -> *mut bindings::device { 249 self.0.get() 250 } 251 252 /// Returns a reference to the parent device, if any. 253 #[cfg_attr(not(CONFIG_AUXILIARY_BUS), expect(dead_code))] 254 pub(crate) fn parent(&self) -> Option<&Self> { 255 // SAFETY: 256 // - By the type invariant `self.as_raw()` is always valid. 257 // - The parent device is only ever set at device creation. 258 let parent = unsafe { (*self.as_raw()).parent }; 259 260 if parent.is_null() { 261 None 262 } else { 263 // SAFETY: 264 // - Since `parent` is not NULL, it must be a valid pointer to a `struct device`. 265 // - `parent` is valid for the lifetime of `self`, since a `struct device` holds a 266 // reference count of its parent. 267 Some(unsafe { Self::from_raw(parent) }) 268 } 269 } 270 271 /// Convert a raw C `struct device` pointer to a `&'a Device`. 272 /// 273 /// # Safety 274 /// 275 /// Callers must ensure that `ptr` is valid, non-null, and has a non-zero reference count, 276 /// i.e. it must be ensured that the reference count of the C `struct device` `ptr` points to 277 /// can't drop to zero, for the duration of this function call and the entire duration when the 278 /// returned reference exists. 279 pub unsafe fn from_raw<'a>(ptr: *mut bindings::device) -> &'a Self { 280 // SAFETY: Guaranteed by the safety requirements of the function. 281 unsafe { &*ptr.cast() } 282 } 283 284 /// Prints an emergency-level message (level 0) prefixed with device information. 285 /// 286 /// More details are available from [`dev_emerg`]. 287 /// 288 /// [`dev_emerg`]: crate::dev_emerg 289 pub fn pr_emerg(&self, args: fmt::Arguments<'_>) { 290 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. 291 unsafe { self.printk(bindings::KERN_EMERG, args) }; 292 } 293 294 /// Prints an alert-level message (level 1) prefixed with device information. 295 /// 296 /// More details are available from [`dev_alert`]. 297 /// 298 /// [`dev_alert`]: crate::dev_alert 299 pub fn pr_alert(&self, args: fmt::Arguments<'_>) { 300 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. 301 unsafe { self.printk(bindings::KERN_ALERT, args) }; 302 } 303 304 /// Prints a critical-level message (level 2) prefixed with device information. 305 /// 306 /// More details are available from [`dev_crit`]. 307 /// 308 /// [`dev_crit`]: crate::dev_crit 309 pub fn pr_crit(&self, args: fmt::Arguments<'_>) { 310 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. 311 unsafe { self.printk(bindings::KERN_CRIT, args) }; 312 } 313 314 /// Prints an error-level message (level 3) prefixed with device information. 315 /// 316 /// More details are available from [`dev_err`]. 317 /// 318 /// [`dev_err`]: crate::dev_err 319 pub fn pr_err(&self, args: fmt::Arguments<'_>) { 320 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. 321 unsafe { self.printk(bindings::KERN_ERR, args) }; 322 } 323 324 /// Prints a warning-level message (level 4) prefixed with device information. 325 /// 326 /// More details are available from [`dev_warn`]. 327 /// 328 /// [`dev_warn`]: crate::dev_warn 329 pub fn pr_warn(&self, args: fmt::Arguments<'_>) { 330 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. 331 unsafe { self.printk(bindings::KERN_WARNING, args) }; 332 } 333 334 /// Prints a notice-level message (level 5) prefixed with device information. 335 /// 336 /// More details are available from [`dev_notice`]. 337 /// 338 /// [`dev_notice`]: crate::dev_notice 339 pub fn pr_notice(&self, args: fmt::Arguments<'_>) { 340 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. 341 unsafe { self.printk(bindings::KERN_NOTICE, args) }; 342 } 343 344 /// Prints an info-level message (level 6) prefixed with device information. 345 /// 346 /// More details are available from [`dev_info`]. 347 /// 348 /// [`dev_info`]: crate::dev_info 349 pub fn pr_info(&self, args: fmt::Arguments<'_>) { 350 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. 351 unsafe { self.printk(bindings::KERN_INFO, args) }; 352 } 353 354 /// Prints a debug-level message (level 7) prefixed with device information. 355 /// 356 /// More details are available from [`dev_dbg`]. 357 /// 358 /// [`dev_dbg`]: crate::dev_dbg 359 pub fn pr_dbg(&self, args: fmt::Arguments<'_>) { 360 if cfg!(debug_assertions) { 361 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. 362 unsafe { self.printk(bindings::KERN_DEBUG, args) }; 363 } 364 } 365 366 /// Prints the provided message to the console. 367 /// 368 /// # Safety 369 /// 370 /// Callers must ensure that `klevel` is null-terminated; in particular, one of the 371 /// `KERN_*`constants, for example, `KERN_CRIT`, `KERN_ALERT`, etc. 372 #[cfg_attr(not(CONFIG_PRINTK), allow(unused_variables))] 373 unsafe fn printk(&self, klevel: &[u8], msg: fmt::Arguments<'_>) { 374 // SAFETY: `klevel` is null-terminated and one of the kernel constants. `self.as_raw` 375 // is valid because `self` is valid. The "%pA" format string expects a pointer to 376 // `fmt::Arguments`, which is what we're passing as the last argument. 377 #[cfg(CONFIG_PRINTK)] 378 unsafe { 379 bindings::_dev_printk( 380 klevel.as_ptr().cast::<crate::ffi::c_char>(), 381 self.as_raw(), 382 c_str!("%pA").as_char_ptr(), 383 core::ptr::from_ref(&msg).cast::<crate::ffi::c_void>(), 384 ) 385 }; 386 } 387 388 /// Obtain the [`FwNode`](property::FwNode) corresponding to this [`Device`]. 389 pub fn fwnode(&self) -> Option<&property::FwNode> { 390 // SAFETY: `self` is valid. 391 let fwnode_handle = unsafe { bindings::__dev_fwnode(self.as_raw()) }; 392 if fwnode_handle.is_null() { 393 return None; 394 } 395 // SAFETY: `fwnode_handle` is valid. Its lifetime is tied to `&self`. We 396 // return a reference instead of an `ARef<FwNode>` because `dev_fwnode()` 397 // doesn't increment the refcount. It is safe to cast from a 398 // `struct fwnode_handle*` to a `*const FwNode` because `FwNode` is 399 // defined as a `#[repr(transparent)]` wrapper around `fwnode_handle`. 400 Some(unsafe { &*fwnode_handle.cast() }) 401 } 402 } 403 404 // SAFETY: `Device` is a transparent wrapper of a type that doesn't depend on `Device`'s generic 405 // argument. 406 kernel::impl_device_context_deref!(unsafe { Device }); 407 kernel::impl_device_context_into_aref!(Device); 408 409 // SAFETY: Instances of `Device` are always reference-counted. 410 unsafe impl crate::sync::aref::AlwaysRefCounted for Device { 411 fn inc_ref(&self) { 412 // SAFETY: The existence of a shared reference guarantees that the refcount is non-zero. 413 unsafe { bindings::get_device(self.as_raw()) }; 414 } 415 416 unsafe fn dec_ref(obj: ptr::NonNull<Self>) { 417 // SAFETY: The safety requirements guarantee that the refcount is non-zero. 418 unsafe { bindings::put_device(obj.cast().as_ptr()) } 419 } 420 } 421 422 // SAFETY: As by the type invariant `Device` can be sent to any thread. 423 unsafe impl Send for Device {} 424 425 // SAFETY: `Device` can be shared among threads because all immutable methods are protected by the 426 // synchronization in `struct device`. 427 unsafe impl Sync for Device {} 428 429 /// Marker trait for the context or scope of a bus specific device. 430 /// 431 /// [`DeviceContext`] is a marker trait for types representing the context of a bus specific 432 /// [`Device`]. 433 /// 434 /// The specific device context types are: [`CoreInternal`], [`Core`], [`Bound`] and [`Normal`]. 435 /// 436 /// [`DeviceContext`] types are hierarchical, which means that there is a strict hierarchy that 437 /// defines which [`DeviceContext`] type can be derived from another. For instance, any 438 /// [`Device<Core>`] can dereference to a [`Device<Bound>`]. 439 /// 440 /// The following enumeration illustrates the dereference hierarchy of [`DeviceContext`] types. 441 /// 442 /// - [`CoreInternal`] => [`Core`] => [`Bound`] => [`Normal`] 443 /// 444 /// Bus devices can automatically implement the dereference hierarchy by using 445 /// [`impl_device_context_deref`]. 446 /// 447 /// Note that the guarantee for a [`Device`] reference to have a certain [`DeviceContext`] comes 448 /// from the specific scope the [`Device`] reference is valid in. 449 /// 450 /// [`impl_device_context_deref`]: kernel::impl_device_context_deref 451 pub trait DeviceContext: private::Sealed {} 452 453 /// The [`Normal`] context is the default [`DeviceContext`] of any [`Device`]. 454 /// 455 /// The normal context does not indicate any specific context. Any `Device<Ctx>` is also a valid 456 /// [`Device<Normal>`]. It is the only [`DeviceContext`] for which it is valid to implement 457 /// [`AlwaysRefCounted`] for. 458 /// 459 /// [`AlwaysRefCounted`]: kernel::types::AlwaysRefCounted 460 pub struct Normal; 461 462 /// The [`Core`] context is the context of a bus specific device when it appears as argument of 463 /// any bus specific callback, such as `probe()`. 464 /// 465 /// The core context indicates that the [`Device<Core>`] reference's scope is limited to the bus 466 /// callback it appears in. It is intended to be used for synchronization purposes. Bus device 467 /// implementations can implement methods for [`Device<Core>`], such that they can only be called 468 /// from bus callbacks. 469 pub struct Core; 470 471 /// Semantically the same as [`Core`], but reserved for internal usage of the corresponding bus 472 /// abstraction. 473 /// 474 /// The internal core context is intended to be used in exactly the same way as the [`Core`] 475 /// context, with the difference that this [`DeviceContext`] is internal to the corresponding bus 476 /// abstraction. 477 /// 478 /// This context mainly exists to share generic [`Device`] infrastructure that should only be called 479 /// from bus callbacks with bus abstractions, but without making them accessible for drivers. 480 pub struct CoreInternal; 481 482 /// The [`Bound`] context is the [`DeviceContext`] of a bus specific device when it is guaranteed to 483 /// be bound to a driver. 484 /// 485 /// The bound context indicates that for the entire duration of the lifetime of a [`Device<Bound>`] 486 /// reference, the [`Device`] is guaranteed to be bound to a driver. 487 /// 488 /// Some APIs, such as [`dma::CoherentAllocation`] or [`Devres`] rely on the [`Device`] to be bound, 489 /// which can be proven with the [`Bound`] device context. 490 /// 491 /// Any abstraction that can guarantee a scope where the corresponding bus device is bound, should 492 /// provide a [`Device<Bound>`] reference to its users for this scope. This allows users to benefit 493 /// from optimizations for accessing device resources, see also [`Devres::access`]. 494 /// 495 /// [`Devres`]: kernel::devres::Devres 496 /// [`Devres::access`]: kernel::devres::Devres::access 497 /// [`dma::CoherentAllocation`]: kernel::dma::CoherentAllocation 498 pub struct Bound; 499 500 mod private { 501 pub trait Sealed {} 502 503 impl Sealed for super::Bound {} 504 impl Sealed for super::Core {} 505 impl Sealed for super::CoreInternal {} 506 impl Sealed for super::Normal {} 507 } 508 509 impl DeviceContext for Bound {} 510 impl DeviceContext for Core {} 511 impl DeviceContext for CoreInternal {} 512 impl DeviceContext for Normal {} 513 514 /// # Safety 515 /// 516 /// The type given as `$device` must be a transparent wrapper of a type that doesn't depend on the 517 /// generic argument of `$device`. 518 #[doc(hidden)] 519 #[macro_export] 520 macro_rules! __impl_device_context_deref { 521 (unsafe { $device:ident, $src:ty => $dst:ty }) => { 522 impl ::core::ops::Deref for $device<$src> { 523 type Target = $device<$dst>; 524 525 fn deref(&self) -> &Self::Target { 526 let ptr: *const Self = self; 527 528 // CAST: `$device<$src>` and `$device<$dst>` transparently wrap the same type by the 529 // safety requirement of the macro. 530 let ptr = ptr.cast::<Self::Target>(); 531 532 // SAFETY: `ptr` was derived from `&self`. 533 unsafe { &*ptr } 534 } 535 } 536 }; 537 } 538 539 /// Implement [`core::ops::Deref`] traits for allowed [`DeviceContext`] conversions of a (bus 540 /// specific) device. 541 /// 542 /// # Safety 543 /// 544 /// The type given as `$device` must be a transparent wrapper of a type that doesn't depend on the 545 /// generic argument of `$device`. 546 #[macro_export] 547 macro_rules! impl_device_context_deref { 548 (unsafe { $device:ident }) => { 549 // SAFETY: This macro has the exact same safety requirement as 550 // `__impl_device_context_deref!`. 551 ::kernel::__impl_device_context_deref!(unsafe { 552 $device, 553 $crate::device::CoreInternal => $crate::device::Core 554 }); 555 556 // SAFETY: This macro has the exact same safety requirement as 557 // `__impl_device_context_deref!`. 558 ::kernel::__impl_device_context_deref!(unsafe { 559 $device, 560 $crate::device::Core => $crate::device::Bound 561 }); 562 563 // SAFETY: This macro has the exact same safety requirement as 564 // `__impl_device_context_deref!`. 565 ::kernel::__impl_device_context_deref!(unsafe { 566 $device, 567 $crate::device::Bound => $crate::device::Normal 568 }); 569 }; 570 } 571 572 #[doc(hidden)] 573 #[macro_export] 574 macro_rules! __impl_device_context_into_aref { 575 ($src:ty, $device:tt) => { 576 impl ::core::convert::From<&$device<$src>> for $crate::sync::aref::ARef<$device> { 577 fn from(dev: &$device<$src>) -> Self { 578 (&**dev).into() 579 } 580 } 581 }; 582 } 583 584 /// Implement [`core::convert::From`], such that all `&Device<Ctx>` can be converted to an 585 /// `ARef<Device>`. 586 #[macro_export] 587 macro_rules! impl_device_context_into_aref { 588 ($device:tt) => { 589 ::kernel::__impl_device_context_into_aref!($crate::device::CoreInternal, $device); 590 ::kernel::__impl_device_context_into_aref!($crate::device::Core, $device); 591 ::kernel::__impl_device_context_into_aref!($crate::device::Bound, $device); 592 }; 593 } 594 595 #[doc(hidden)] 596 #[macro_export] 597 macro_rules! dev_printk { 598 ($method:ident, $dev:expr, $($f:tt)*) => { 599 { 600 ($dev).$method($crate::prelude::fmt!($($f)*)); 601 } 602 } 603 } 604 605 /// Prints an emergency-level message (level 0) prefixed with device information. 606 /// 607 /// This level should be used if the system is unusable. 608 /// 609 /// Equivalent to the kernel's `dev_emerg` macro. 610 /// 611 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from 612 /// [`core::fmt`] and [`std::format!`]. 613 /// 614 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html 615 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html 616 /// 617 /// # Examples 618 /// 619 /// ``` 620 /// # use kernel::device::Device; 621 /// 622 /// fn example(dev: &Device) { 623 /// dev_emerg!(dev, "hello {}\n", "there"); 624 /// } 625 /// ``` 626 #[macro_export] 627 macro_rules! dev_emerg { 628 ($($f:tt)*) => { $crate::dev_printk!(pr_emerg, $($f)*); } 629 } 630 631 /// Prints an alert-level message (level 1) prefixed with device information. 632 /// 633 /// This level should be used if action must be taken immediately. 634 /// 635 /// Equivalent to the kernel's `dev_alert` macro. 636 /// 637 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from 638 /// [`core::fmt`] and [`std::format!`]. 639 /// 640 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html 641 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html 642 /// 643 /// # Examples 644 /// 645 /// ``` 646 /// # use kernel::device::Device; 647 /// 648 /// fn example(dev: &Device) { 649 /// dev_alert!(dev, "hello {}\n", "there"); 650 /// } 651 /// ``` 652 #[macro_export] 653 macro_rules! dev_alert { 654 ($($f:tt)*) => { $crate::dev_printk!(pr_alert, $($f)*); } 655 } 656 657 /// Prints a critical-level message (level 2) prefixed with device information. 658 /// 659 /// This level should be used in critical conditions. 660 /// 661 /// Equivalent to the kernel's `dev_crit` macro. 662 /// 663 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from 664 /// [`core::fmt`] and [`std::format!`]. 665 /// 666 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html 667 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html 668 /// 669 /// # Examples 670 /// 671 /// ``` 672 /// # use kernel::device::Device; 673 /// 674 /// fn example(dev: &Device) { 675 /// dev_crit!(dev, "hello {}\n", "there"); 676 /// } 677 /// ``` 678 #[macro_export] 679 macro_rules! dev_crit { 680 ($($f:tt)*) => { $crate::dev_printk!(pr_crit, $($f)*); } 681 } 682 683 /// Prints an error-level message (level 3) prefixed with device information. 684 /// 685 /// This level should be used in error conditions. 686 /// 687 /// Equivalent to the kernel's `dev_err` macro. 688 /// 689 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from 690 /// [`core::fmt`] and [`std::format!`]. 691 /// 692 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html 693 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html 694 /// 695 /// # Examples 696 /// 697 /// ``` 698 /// # use kernel::device::Device; 699 /// 700 /// fn example(dev: &Device) { 701 /// dev_err!(dev, "hello {}\n", "there"); 702 /// } 703 /// ``` 704 #[macro_export] 705 macro_rules! dev_err { 706 ($($f:tt)*) => { $crate::dev_printk!(pr_err, $($f)*); } 707 } 708 709 /// Prints a warning-level message (level 4) prefixed with device information. 710 /// 711 /// This level should be used in warning conditions. 712 /// 713 /// Equivalent to the kernel's `dev_warn` macro. 714 /// 715 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from 716 /// [`core::fmt`] and [`std::format!`]. 717 /// 718 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html 719 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html 720 /// 721 /// # Examples 722 /// 723 /// ``` 724 /// # use kernel::device::Device; 725 /// 726 /// fn example(dev: &Device) { 727 /// dev_warn!(dev, "hello {}\n", "there"); 728 /// } 729 /// ``` 730 #[macro_export] 731 macro_rules! dev_warn { 732 ($($f:tt)*) => { $crate::dev_printk!(pr_warn, $($f)*); } 733 } 734 735 /// Prints a notice-level message (level 5) prefixed with device information. 736 /// 737 /// This level should be used in normal but significant conditions. 738 /// 739 /// Equivalent to the kernel's `dev_notice` macro. 740 /// 741 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from 742 /// [`core::fmt`] and [`std::format!`]. 743 /// 744 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html 745 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html 746 /// 747 /// # Examples 748 /// 749 /// ``` 750 /// # use kernel::device::Device; 751 /// 752 /// fn example(dev: &Device) { 753 /// dev_notice!(dev, "hello {}\n", "there"); 754 /// } 755 /// ``` 756 #[macro_export] 757 macro_rules! dev_notice { 758 ($($f:tt)*) => { $crate::dev_printk!(pr_notice, $($f)*); } 759 } 760 761 /// Prints an info-level message (level 6) prefixed with device information. 762 /// 763 /// This level should be used for informational messages. 764 /// 765 /// Equivalent to the kernel's `dev_info` macro. 766 /// 767 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from 768 /// [`core::fmt`] and [`std::format!`]. 769 /// 770 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html 771 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html 772 /// 773 /// # Examples 774 /// 775 /// ``` 776 /// # use kernel::device::Device; 777 /// 778 /// fn example(dev: &Device) { 779 /// dev_info!(dev, "hello {}\n", "there"); 780 /// } 781 /// ``` 782 #[macro_export] 783 macro_rules! dev_info { 784 ($($f:tt)*) => { $crate::dev_printk!(pr_info, $($f)*); } 785 } 786 787 /// Prints a debug-level message (level 7) prefixed with device information. 788 /// 789 /// This level should be used for debug messages. 790 /// 791 /// Equivalent to the kernel's `dev_dbg` macro, except that it doesn't support dynamic debug yet. 792 /// 793 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from 794 /// [`core::fmt`] and [`std::format!`]. 795 /// 796 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html 797 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html 798 /// 799 /// # Examples 800 /// 801 /// ``` 802 /// # use kernel::device::Device; 803 /// 804 /// fn example(dev: &Device) { 805 /// dev_dbg!(dev, "hello {}\n", "there"); 806 /// } 807 /// ``` 808 #[macro_export] 809 macro_rules! dev_dbg { 810 ($($f:tt)*) => { $crate::dev_printk!(pr_dbg, $($f)*); } 811 } 812