xref: /linux/rust/kernel/device.rs (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Generic devices that are part of the kernel's driver model.
4 //!
5 //! C header: [`include/linux/device.h`](srctree/include/linux/device.h)
6 
7 use crate::{
8     bindings, fmt,
9     sync::aref::ARef,
10     types::{ForeignOwnable, Opaque},
11 };
12 use core::{marker::PhantomData, ptr};
13 
14 #[cfg(CONFIG_PRINTK)]
15 use crate::c_str;
16 
17 pub mod property;
18 
19 /// The core representation of a device in the kernel's driver model.
20 ///
21 /// This structure represents the Rust abstraction for a C `struct device`. A [`Device`] can either
22 /// exist as temporary reference (see also [`Device::from_raw`]), which is only valid within a
23 /// certain scope or as [`ARef<Device>`], owning a dedicated reference count.
24 ///
25 /// # Device Types
26 ///
27 /// A [`Device`] can represent either a bus device or a class device.
28 ///
29 /// ## Bus Devices
30 ///
31 /// A bus device is a [`Device`] that is associated with a physical or virtual bus. Examples of
32 /// buses include PCI, USB, I2C, and SPI. Devices attached to a bus are registered with a specific
33 /// bus type, which facilitates matching devices with appropriate drivers based on IDs or other
34 /// identifying information. Bus devices are visible in sysfs under `/sys/bus/<bus-name>/devices/`.
35 ///
36 /// ## Class Devices
37 ///
38 /// A class device is a [`Device`] that is associated with a logical category of functionality
39 /// rather than a physical bus. Examples of classes include block devices, network interfaces, sound
40 /// cards, and input devices. Class devices are grouped under a common class and exposed to
41 /// userspace via entries in `/sys/class/<class-name>/`.
42 ///
43 /// # Device Context
44 ///
45 /// [`Device`] references are generic over a [`DeviceContext`], which represents the type state of
46 /// a [`Device`].
47 ///
48 /// As the name indicates, this type state represents the context of the scope the [`Device`]
49 /// reference is valid in. For instance, the [`Bound`] context guarantees that the [`Device`] is
50 /// bound to a driver for the entire duration of the existence of a [`Device<Bound>`] reference.
51 ///
52 /// Other [`DeviceContext`] types besides [`Bound`] are [`Normal`], [`Core`] and [`CoreInternal`].
53 ///
54 /// Unless selected otherwise [`Device`] defaults to the [`Normal`] [`DeviceContext`], which by
55 /// itself has no additional requirements.
56 ///
57 /// It is always up to the caller of [`Device::from_raw`] to select the correct [`DeviceContext`]
58 /// type for the corresponding scope the [`Device`] reference is created in.
59 ///
60 /// All [`DeviceContext`] types other than [`Normal`] are intended to be used with
61 /// [bus devices](#bus-devices) only.
62 ///
63 /// # Implementing Bus Devices
64 ///
65 /// This section provides a guideline to implement bus specific devices, such as [`pci::Device`] or
66 /// [`platform::Device`].
67 ///
68 /// A bus specific device should be defined as follows.
69 ///
70 /// ```ignore
71 /// #[repr(transparent)]
72 /// pub struct Device<Ctx: device::DeviceContext = device::Normal>(
73 ///     Opaque<bindings::bus_device_type>,
74 ///     PhantomData<Ctx>,
75 /// );
76 /// ```
77 ///
78 /// Since devices are reference counted, [`AlwaysRefCounted`] should be implemented for `Device`
79 /// (i.e. `Device<Normal>`). Note that [`AlwaysRefCounted`] must not be implemented for any other
80 /// [`DeviceContext`], since all other device context types are only valid within a certain scope.
81 ///
82 /// In order to be able to implement the [`DeviceContext`] dereference hierarchy, bus device
83 /// implementations should call the [`impl_device_context_deref`] macro as shown below.
84 ///
85 /// ```ignore
86 /// // SAFETY: `Device` is a transparent wrapper of a type that doesn't depend on `Device`'s
87 /// // generic argument.
88 /// kernel::impl_device_context_deref!(unsafe { Device });
89 /// ```
90 ///
91 /// In order to convert from a any [`Device<Ctx>`] to [`ARef<Device>`], bus devices can implement
92 /// the following macro call.
93 ///
94 /// ```ignore
95 /// kernel::impl_device_context_into_aref!(Device);
96 /// ```
97 ///
98 /// Bus devices should also implement the following [`AsRef`] implementation, such that users can
99 /// easily derive a generic [`Device`] reference.
100 ///
101 /// ```ignore
102 /// impl<Ctx: device::DeviceContext> AsRef<device::Device<Ctx>> for Device<Ctx> {
103 ///     fn as_ref(&self) -> &device::Device<Ctx> {
104 ///         ...
105 ///     }
106 /// }
107 /// ```
108 ///
109 /// # Implementing Class Devices
110 ///
111 /// Class device implementations require less infrastructure and depend slightly more on the
112 /// specific subsystem.
113 ///
114 /// An example implementation for a class device could look like this.
115 ///
116 /// ```ignore
117 /// #[repr(C)]
118 /// pub struct Device<T: class::Driver> {
119 ///     dev: Opaque<bindings::class_device_type>,
120 ///     data: T::Data,
121 /// }
122 /// ```
123 ///
124 /// This class device uses the sub-classing pattern to embed the driver's private data within the
125 /// allocation of the class device. For this to be possible the class device is generic over the
126 /// class specific `Driver` trait implementation.
127 ///
128 /// Just like any device, class devices are reference counted and should hence implement
129 /// [`AlwaysRefCounted`] for `Device`.
130 ///
131 /// Class devices should also implement the following [`AsRef`] implementation, such that users can
132 /// easily derive a generic [`Device`] reference.
133 ///
134 /// ```ignore
135 /// impl<T: class::Driver> AsRef<device::Device> for Device<T> {
136 ///     fn as_ref(&self) -> &device::Device {
137 ///         ...
138 ///     }
139 /// }
140 /// ```
141 ///
142 /// An example for a class device implementation is
143 #[cfg_attr(CONFIG_DRM = "y", doc = "[`drm::Device`](kernel::drm::Device).")]
144 #[cfg_attr(not(CONFIG_DRM = "y"), doc = "`drm::Device`.")]
145 ///
146 /// # Invariants
147 ///
148 /// A `Device` instance represents a valid `struct device` created by the C portion of the kernel.
149 ///
150 /// Instances of this type are always reference-counted, that is, a call to `get_device` ensures
151 /// that the allocation remains valid at least until the matching call to `put_device`.
152 ///
153 /// `bindings::device::release` is valid to be called from any thread, hence `ARef<Device>` can be
154 /// dropped from any thread.
155 ///
156 /// [`AlwaysRefCounted`]: kernel::types::AlwaysRefCounted
157 /// [`impl_device_context_deref`]: kernel::impl_device_context_deref
158 /// [`pci::Device`]: kernel::pci::Device
159 /// [`platform::Device`]: kernel::platform::Device
160 #[repr(transparent)]
161 pub struct Device<Ctx: DeviceContext = Normal>(Opaque<bindings::device>, PhantomData<Ctx>);
162 
163 impl Device {
164     /// Creates a new reference-counted abstraction instance of an existing `struct device` pointer.
165     ///
166     /// # Safety
167     ///
168     /// Callers must ensure that `ptr` is valid, non-null, and has a non-zero reference count,
169     /// i.e. it must be ensured that the reference count of the C `struct device` `ptr` points to
170     /// can't drop to zero, for the duration of this function call.
171     ///
172     /// It must also be ensured that `bindings::device::release` can be called from any thread.
173     /// While not officially documented, this should be the case for any `struct device`.
174     pub unsafe fn get_device(ptr: *mut bindings::device) -> ARef<Self> {
175         // SAFETY: By the safety requirements ptr is valid
176         unsafe { Self::from_raw(ptr) }.into()
177     }
178 
179     /// Convert a [`&Device`](Device) into a [`&Device<Bound>`](Device<Bound>).
180     ///
181     /// # Safety
182     ///
183     /// The caller is responsible to ensure that the returned [`&Device<Bound>`](Device<Bound>)
184     /// only lives as long as it can be guaranteed that the [`Device`] is actually bound.
185     pub unsafe fn as_bound(&self) -> &Device<Bound> {
186         let ptr = core::ptr::from_ref(self);
187 
188         // CAST: By the safety requirements the caller is responsible to guarantee that the
189         // returned reference only lives as long as the device is actually bound.
190         let ptr = ptr.cast();
191 
192         // SAFETY:
193         // - `ptr` comes from `from_ref(self)` above, hence it's guaranteed to be valid.
194         // - Any valid `Device` pointer is also a valid pointer for `Device<Bound>`.
195         unsafe { &*ptr }
196     }
197 }
198 
199 impl Device<CoreInternal> {
200     /// Store a pointer to the bound driver's private data.
201     pub fn set_drvdata(&self, data: impl ForeignOwnable) {
202         // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
203         unsafe { bindings::dev_set_drvdata(self.as_raw(), data.into_foreign().cast()) }
204     }
205 
206     /// Take ownership of the private data stored in this [`Device`].
207     ///
208     /// # Safety
209     ///
210     /// - Must only be called once after a preceding call to [`Device::set_drvdata`].
211     /// - The type `T` must match the type of the `ForeignOwnable` previously stored by
212     ///   [`Device::set_drvdata`].
213     pub unsafe fn drvdata_obtain<T: ForeignOwnable>(&self) -> T {
214         // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
215         let ptr = unsafe { bindings::dev_get_drvdata(self.as_raw()) };
216 
217         // SAFETY:
218         // - By the safety requirements of this function, `ptr` comes from a previous call to
219         //   `into_foreign()`.
220         // - `dev_get_drvdata()` guarantees to return the same pointer given to `dev_set_drvdata()`
221         //   in `into_foreign()`.
222         unsafe { T::from_foreign(ptr.cast()) }
223     }
224 
225     /// Borrow the driver's private data bound to this [`Device`].
226     ///
227     /// # Safety
228     ///
229     /// - Must only be called after a preceding call to [`Device::set_drvdata`] and before
230     ///   [`Device::drvdata_obtain`].
231     /// - The type `T` must match the type of the `ForeignOwnable` previously stored by
232     ///   [`Device::set_drvdata`].
233     pub unsafe fn drvdata_borrow<T: ForeignOwnable>(&self) -> T::Borrowed<'_> {
234         // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
235         let ptr = unsafe { bindings::dev_get_drvdata(self.as_raw()) };
236 
237         // SAFETY:
238         // - By the safety requirements of this function, `ptr` comes from a previous call to
239         //   `into_foreign()`.
240         // - `dev_get_drvdata()` guarantees to return the same pointer given to `dev_set_drvdata()`
241         //   in `into_foreign()`.
242         unsafe { T::borrow(ptr.cast()) }
243     }
244 }
245 
246 impl<Ctx: DeviceContext> Device<Ctx> {
247     /// Obtain the raw `struct device *`.
248     pub(crate) fn as_raw(&self) -> *mut bindings::device {
249         self.0.get()
250     }
251 
252     /// Returns a reference to the parent device, if any.
253     #[cfg_attr(not(CONFIG_AUXILIARY_BUS), expect(dead_code))]
254     pub(crate) fn parent(&self) -> Option<&Self> {
255         // SAFETY:
256         // - By the type invariant `self.as_raw()` is always valid.
257         // - The parent device is only ever set at device creation.
258         let parent = unsafe { (*self.as_raw()).parent };
259 
260         if parent.is_null() {
261             None
262         } else {
263             // SAFETY:
264             // - Since `parent` is not NULL, it must be a valid pointer to a `struct device`.
265             // - `parent` is valid for the lifetime of `self`, since a `struct device` holds a
266             //   reference count of its parent.
267             Some(unsafe { Self::from_raw(parent) })
268         }
269     }
270 
271     /// Convert a raw C `struct device` pointer to a `&'a Device`.
272     ///
273     /// # Safety
274     ///
275     /// Callers must ensure that `ptr` is valid, non-null, and has a non-zero reference count,
276     /// i.e. it must be ensured that the reference count of the C `struct device` `ptr` points to
277     /// can't drop to zero, for the duration of this function call and the entire duration when the
278     /// returned reference exists.
279     pub unsafe fn from_raw<'a>(ptr: *mut bindings::device) -> &'a Self {
280         // SAFETY: Guaranteed by the safety requirements of the function.
281         unsafe { &*ptr.cast() }
282     }
283 
284     /// Prints an emergency-level message (level 0) prefixed with device information.
285     ///
286     /// More details are available from [`dev_emerg`].
287     ///
288     /// [`dev_emerg`]: crate::dev_emerg
289     pub fn pr_emerg(&self, args: fmt::Arguments<'_>) {
290         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
291         unsafe { self.printk(bindings::KERN_EMERG, args) };
292     }
293 
294     /// Prints an alert-level message (level 1) prefixed with device information.
295     ///
296     /// More details are available from [`dev_alert`].
297     ///
298     /// [`dev_alert`]: crate::dev_alert
299     pub fn pr_alert(&self, args: fmt::Arguments<'_>) {
300         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
301         unsafe { self.printk(bindings::KERN_ALERT, args) };
302     }
303 
304     /// Prints a critical-level message (level 2) prefixed with device information.
305     ///
306     /// More details are available from [`dev_crit`].
307     ///
308     /// [`dev_crit`]: crate::dev_crit
309     pub fn pr_crit(&self, args: fmt::Arguments<'_>) {
310         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
311         unsafe { self.printk(bindings::KERN_CRIT, args) };
312     }
313 
314     /// Prints an error-level message (level 3) prefixed with device information.
315     ///
316     /// More details are available from [`dev_err`].
317     ///
318     /// [`dev_err`]: crate::dev_err
319     pub fn pr_err(&self, args: fmt::Arguments<'_>) {
320         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
321         unsafe { self.printk(bindings::KERN_ERR, args) };
322     }
323 
324     /// Prints a warning-level message (level 4) prefixed with device information.
325     ///
326     /// More details are available from [`dev_warn`].
327     ///
328     /// [`dev_warn`]: crate::dev_warn
329     pub fn pr_warn(&self, args: fmt::Arguments<'_>) {
330         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
331         unsafe { self.printk(bindings::KERN_WARNING, args) };
332     }
333 
334     /// Prints a notice-level message (level 5) prefixed with device information.
335     ///
336     /// More details are available from [`dev_notice`].
337     ///
338     /// [`dev_notice`]: crate::dev_notice
339     pub fn pr_notice(&self, args: fmt::Arguments<'_>) {
340         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
341         unsafe { self.printk(bindings::KERN_NOTICE, args) };
342     }
343 
344     /// Prints an info-level message (level 6) prefixed with device information.
345     ///
346     /// More details are available from [`dev_info`].
347     ///
348     /// [`dev_info`]: crate::dev_info
349     pub fn pr_info(&self, args: fmt::Arguments<'_>) {
350         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
351         unsafe { self.printk(bindings::KERN_INFO, args) };
352     }
353 
354     /// Prints a debug-level message (level 7) prefixed with device information.
355     ///
356     /// More details are available from [`dev_dbg`].
357     ///
358     /// [`dev_dbg`]: crate::dev_dbg
359     pub fn pr_dbg(&self, args: fmt::Arguments<'_>) {
360         if cfg!(debug_assertions) {
361             // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
362             unsafe { self.printk(bindings::KERN_DEBUG, args) };
363         }
364     }
365 
366     /// Prints the provided message to the console.
367     ///
368     /// # Safety
369     ///
370     /// Callers must ensure that `klevel` is null-terminated; in particular, one of the
371     /// `KERN_*`constants, for example, `KERN_CRIT`, `KERN_ALERT`, etc.
372     #[cfg_attr(not(CONFIG_PRINTK), allow(unused_variables))]
373     unsafe fn printk(&self, klevel: &[u8], msg: fmt::Arguments<'_>) {
374         // SAFETY: `klevel` is null-terminated and one of the kernel constants. `self.as_raw`
375         // is valid because `self` is valid. The "%pA" format string expects a pointer to
376         // `fmt::Arguments`, which is what we're passing as the last argument.
377         #[cfg(CONFIG_PRINTK)]
378         unsafe {
379             bindings::_dev_printk(
380                 klevel.as_ptr().cast::<crate::ffi::c_char>(),
381                 self.as_raw(),
382                 c_str!("%pA").as_char_ptr(),
383                 core::ptr::from_ref(&msg).cast::<crate::ffi::c_void>(),
384             )
385         };
386     }
387 
388     /// Obtain the [`FwNode`](property::FwNode) corresponding to this [`Device`].
389     pub fn fwnode(&self) -> Option<&property::FwNode> {
390         // SAFETY: `self` is valid.
391         let fwnode_handle = unsafe { bindings::__dev_fwnode(self.as_raw()) };
392         if fwnode_handle.is_null() {
393             return None;
394         }
395         // SAFETY: `fwnode_handle` is valid. Its lifetime is tied to `&self`. We
396         // return a reference instead of an `ARef<FwNode>` because `dev_fwnode()`
397         // doesn't increment the refcount. It is safe to cast from a
398         // `struct fwnode_handle*` to a `*const FwNode` because `FwNode` is
399         // defined as a `#[repr(transparent)]` wrapper around `fwnode_handle`.
400         Some(unsafe { &*fwnode_handle.cast() })
401     }
402 }
403 
404 // SAFETY: `Device` is a transparent wrapper of a type that doesn't depend on `Device`'s generic
405 // argument.
406 kernel::impl_device_context_deref!(unsafe { Device });
407 kernel::impl_device_context_into_aref!(Device);
408 
409 // SAFETY: Instances of `Device` are always reference-counted.
410 unsafe impl crate::sync::aref::AlwaysRefCounted for Device {
411     fn inc_ref(&self) {
412         // SAFETY: The existence of a shared reference guarantees that the refcount is non-zero.
413         unsafe { bindings::get_device(self.as_raw()) };
414     }
415 
416     unsafe fn dec_ref(obj: ptr::NonNull<Self>) {
417         // SAFETY: The safety requirements guarantee that the refcount is non-zero.
418         unsafe { bindings::put_device(obj.cast().as_ptr()) }
419     }
420 }
421 
422 // SAFETY: As by the type invariant `Device` can be sent to any thread.
423 unsafe impl Send for Device {}
424 
425 // SAFETY: `Device` can be shared among threads because all immutable methods are protected by the
426 // synchronization in `struct device`.
427 unsafe impl Sync for Device {}
428 
429 /// Marker trait for the context or scope of a bus specific device.
430 ///
431 /// [`DeviceContext`] is a marker trait for types representing the context of a bus specific
432 /// [`Device`].
433 ///
434 /// The specific device context types are: [`CoreInternal`], [`Core`], [`Bound`] and [`Normal`].
435 ///
436 /// [`DeviceContext`] types are hierarchical, which means that there is a strict hierarchy that
437 /// defines which [`DeviceContext`] type can be derived from another. For instance, any
438 /// [`Device<Core>`] can dereference to a [`Device<Bound>`].
439 ///
440 /// The following enumeration illustrates the dereference hierarchy of [`DeviceContext`] types.
441 ///
442 /// - [`CoreInternal`] => [`Core`] => [`Bound`] => [`Normal`]
443 ///
444 /// Bus devices can automatically implement the dereference hierarchy by using
445 /// [`impl_device_context_deref`].
446 ///
447 /// Note that the guarantee for a [`Device`] reference to have a certain [`DeviceContext`] comes
448 /// from the specific scope the [`Device`] reference is valid in.
449 ///
450 /// [`impl_device_context_deref`]: kernel::impl_device_context_deref
451 pub trait DeviceContext: private::Sealed {}
452 
453 /// The [`Normal`] context is the default [`DeviceContext`] of any [`Device`].
454 ///
455 /// The normal context does not indicate any specific context. Any `Device<Ctx>` is also a valid
456 /// [`Device<Normal>`]. It is the only [`DeviceContext`] for which it is valid to implement
457 /// [`AlwaysRefCounted`] for.
458 ///
459 /// [`AlwaysRefCounted`]: kernel::types::AlwaysRefCounted
460 pub struct Normal;
461 
462 /// The [`Core`] context is the context of a bus specific device when it appears as argument of
463 /// any bus specific callback, such as `probe()`.
464 ///
465 /// The core context indicates that the [`Device<Core>`] reference's scope is limited to the bus
466 /// callback it appears in. It is intended to be used for synchronization purposes. Bus device
467 /// implementations can implement methods for [`Device<Core>`], such that they can only be called
468 /// from bus callbacks.
469 pub struct Core;
470 
471 /// Semantically the same as [`Core`], but reserved for internal usage of the corresponding bus
472 /// abstraction.
473 ///
474 /// The internal core context is intended to be used in exactly the same way as the [`Core`]
475 /// context, with the difference that this [`DeviceContext`] is internal to the corresponding bus
476 /// abstraction.
477 ///
478 /// This context mainly exists to share generic [`Device`] infrastructure that should only be called
479 /// from bus callbacks with bus abstractions, but without making them accessible for drivers.
480 pub struct CoreInternal;
481 
482 /// The [`Bound`] context is the [`DeviceContext`] of a bus specific device when it is guaranteed to
483 /// be bound to a driver.
484 ///
485 /// The bound context indicates that for the entire duration of the lifetime of a [`Device<Bound>`]
486 /// reference, the [`Device`] is guaranteed to be bound to a driver.
487 ///
488 /// Some APIs, such as [`dma::CoherentAllocation`] or [`Devres`] rely on the [`Device`] to be bound,
489 /// which can be proven with the [`Bound`] device context.
490 ///
491 /// Any abstraction that can guarantee a scope where the corresponding bus device is bound, should
492 /// provide a [`Device<Bound>`] reference to its users for this scope. This allows users to benefit
493 /// from optimizations for accessing device resources, see also [`Devres::access`].
494 ///
495 /// [`Devres`]: kernel::devres::Devres
496 /// [`Devres::access`]: kernel::devres::Devres::access
497 /// [`dma::CoherentAllocation`]: kernel::dma::CoherentAllocation
498 pub struct Bound;
499 
500 mod private {
501     pub trait Sealed {}
502 
503     impl Sealed for super::Bound {}
504     impl Sealed for super::Core {}
505     impl Sealed for super::CoreInternal {}
506     impl Sealed for super::Normal {}
507 }
508 
509 impl DeviceContext for Bound {}
510 impl DeviceContext for Core {}
511 impl DeviceContext for CoreInternal {}
512 impl DeviceContext for Normal {}
513 
514 /// # Safety
515 ///
516 /// The type given as `$device` must be a transparent wrapper of a type that doesn't depend on the
517 /// generic argument of `$device`.
518 #[doc(hidden)]
519 #[macro_export]
520 macro_rules! __impl_device_context_deref {
521     (unsafe { $device:ident, $src:ty => $dst:ty }) => {
522         impl ::core::ops::Deref for $device<$src> {
523             type Target = $device<$dst>;
524 
525             fn deref(&self) -> &Self::Target {
526                 let ptr: *const Self = self;
527 
528                 // CAST: `$device<$src>` and `$device<$dst>` transparently wrap the same type by the
529                 // safety requirement of the macro.
530                 let ptr = ptr.cast::<Self::Target>();
531 
532                 // SAFETY: `ptr` was derived from `&self`.
533                 unsafe { &*ptr }
534             }
535         }
536     };
537 }
538 
539 /// Implement [`core::ops::Deref`] traits for allowed [`DeviceContext`] conversions of a (bus
540 /// specific) device.
541 ///
542 /// # Safety
543 ///
544 /// The type given as `$device` must be a transparent wrapper of a type that doesn't depend on the
545 /// generic argument of `$device`.
546 #[macro_export]
547 macro_rules! impl_device_context_deref {
548     (unsafe { $device:ident }) => {
549         // SAFETY: This macro has the exact same safety requirement as
550         // `__impl_device_context_deref!`.
551         ::kernel::__impl_device_context_deref!(unsafe {
552             $device,
553             $crate::device::CoreInternal => $crate::device::Core
554         });
555 
556         // SAFETY: This macro has the exact same safety requirement as
557         // `__impl_device_context_deref!`.
558         ::kernel::__impl_device_context_deref!(unsafe {
559             $device,
560             $crate::device::Core => $crate::device::Bound
561         });
562 
563         // SAFETY: This macro has the exact same safety requirement as
564         // `__impl_device_context_deref!`.
565         ::kernel::__impl_device_context_deref!(unsafe {
566             $device,
567             $crate::device::Bound => $crate::device::Normal
568         });
569     };
570 }
571 
572 #[doc(hidden)]
573 #[macro_export]
574 macro_rules! __impl_device_context_into_aref {
575     ($src:ty, $device:tt) => {
576         impl ::core::convert::From<&$device<$src>> for $crate::sync::aref::ARef<$device> {
577             fn from(dev: &$device<$src>) -> Self {
578                 (&**dev).into()
579             }
580         }
581     };
582 }
583 
584 /// Implement [`core::convert::From`], such that all `&Device<Ctx>` can be converted to an
585 /// `ARef<Device>`.
586 #[macro_export]
587 macro_rules! impl_device_context_into_aref {
588     ($device:tt) => {
589         ::kernel::__impl_device_context_into_aref!($crate::device::CoreInternal, $device);
590         ::kernel::__impl_device_context_into_aref!($crate::device::Core, $device);
591         ::kernel::__impl_device_context_into_aref!($crate::device::Bound, $device);
592     };
593 }
594 
595 #[doc(hidden)]
596 #[macro_export]
597 macro_rules! dev_printk {
598     ($method:ident, $dev:expr, $($f:tt)*) => {
599         {
600             ($dev).$method($crate::prelude::fmt!($($f)*));
601         }
602     }
603 }
604 
605 /// Prints an emergency-level message (level 0) prefixed with device information.
606 ///
607 /// This level should be used if the system is unusable.
608 ///
609 /// Equivalent to the kernel's `dev_emerg` macro.
610 ///
611 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
612 /// [`core::fmt`] and [`std::format!`].
613 ///
614 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
615 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
616 ///
617 /// # Examples
618 ///
619 /// ```
620 /// # use kernel::device::Device;
621 ///
622 /// fn example(dev: &Device) {
623 ///     dev_emerg!(dev, "hello {}\n", "there");
624 /// }
625 /// ```
626 #[macro_export]
627 macro_rules! dev_emerg {
628     ($($f:tt)*) => { $crate::dev_printk!(pr_emerg, $($f)*); }
629 }
630 
631 /// Prints an alert-level message (level 1) prefixed with device information.
632 ///
633 /// This level should be used if action must be taken immediately.
634 ///
635 /// Equivalent to the kernel's `dev_alert` macro.
636 ///
637 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
638 /// [`core::fmt`] and [`std::format!`].
639 ///
640 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
641 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
642 ///
643 /// # Examples
644 ///
645 /// ```
646 /// # use kernel::device::Device;
647 ///
648 /// fn example(dev: &Device) {
649 ///     dev_alert!(dev, "hello {}\n", "there");
650 /// }
651 /// ```
652 #[macro_export]
653 macro_rules! dev_alert {
654     ($($f:tt)*) => { $crate::dev_printk!(pr_alert, $($f)*); }
655 }
656 
657 /// Prints a critical-level message (level 2) prefixed with device information.
658 ///
659 /// This level should be used in critical conditions.
660 ///
661 /// Equivalent to the kernel's `dev_crit` macro.
662 ///
663 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
664 /// [`core::fmt`] and [`std::format!`].
665 ///
666 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
667 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
668 ///
669 /// # Examples
670 ///
671 /// ```
672 /// # use kernel::device::Device;
673 ///
674 /// fn example(dev: &Device) {
675 ///     dev_crit!(dev, "hello {}\n", "there");
676 /// }
677 /// ```
678 #[macro_export]
679 macro_rules! dev_crit {
680     ($($f:tt)*) => { $crate::dev_printk!(pr_crit, $($f)*); }
681 }
682 
683 /// Prints an error-level message (level 3) prefixed with device information.
684 ///
685 /// This level should be used in error conditions.
686 ///
687 /// Equivalent to the kernel's `dev_err` macro.
688 ///
689 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
690 /// [`core::fmt`] and [`std::format!`].
691 ///
692 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
693 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
694 ///
695 /// # Examples
696 ///
697 /// ```
698 /// # use kernel::device::Device;
699 ///
700 /// fn example(dev: &Device) {
701 ///     dev_err!(dev, "hello {}\n", "there");
702 /// }
703 /// ```
704 #[macro_export]
705 macro_rules! dev_err {
706     ($($f:tt)*) => { $crate::dev_printk!(pr_err, $($f)*); }
707 }
708 
709 /// Prints a warning-level message (level 4) prefixed with device information.
710 ///
711 /// This level should be used in warning conditions.
712 ///
713 /// Equivalent to the kernel's `dev_warn` macro.
714 ///
715 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
716 /// [`core::fmt`] and [`std::format!`].
717 ///
718 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
719 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
720 ///
721 /// # Examples
722 ///
723 /// ```
724 /// # use kernel::device::Device;
725 ///
726 /// fn example(dev: &Device) {
727 ///     dev_warn!(dev, "hello {}\n", "there");
728 /// }
729 /// ```
730 #[macro_export]
731 macro_rules! dev_warn {
732     ($($f:tt)*) => { $crate::dev_printk!(pr_warn, $($f)*); }
733 }
734 
735 /// Prints a notice-level message (level 5) prefixed with device information.
736 ///
737 /// This level should be used in normal but significant conditions.
738 ///
739 /// Equivalent to the kernel's `dev_notice` macro.
740 ///
741 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
742 /// [`core::fmt`] and [`std::format!`].
743 ///
744 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
745 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
746 ///
747 /// # Examples
748 ///
749 /// ```
750 /// # use kernel::device::Device;
751 ///
752 /// fn example(dev: &Device) {
753 ///     dev_notice!(dev, "hello {}\n", "there");
754 /// }
755 /// ```
756 #[macro_export]
757 macro_rules! dev_notice {
758     ($($f:tt)*) => { $crate::dev_printk!(pr_notice, $($f)*); }
759 }
760 
761 /// Prints an info-level message (level 6) prefixed with device information.
762 ///
763 /// This level should be used for informational messages.
764 ///
765 /// Equivalent to the kernel's `dev_info` macro.
766 ///
767 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
768 /// [`core::fmt`] and [`std::format!`].
769 ///
770 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
771 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
772 ///
773 /// # Examples
774 ///
775 /// ```
776 /// # use kernel::device::Device;
777 ///
778 /// fn example(dev: &Device) {
779 ///     dev_info!(dev, "hello {}\n", "there");
780 /// }
781 /// ```
782 #[macro_export]
783 macro_rules! dev_info {
784     ($($f:tt)*) => { $crate::dev_printk!(pr_info, $($f)*); }
785 }
786 
787 /// Prints a debug-level message (level 7) prefixed with device information.
788 ///
789 /// This level should be used for debug messages.
790 ///
791 /// Equivalent to the kernel's `dev_dbg` macro, except that it doesn't support dynamic debug yet.
792 ///
793 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
794 /// [`core::fmt`] and [`std::format!`].
795 ///
796 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
797 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
798 ///
799 /// # Examples
800 ///
801 /// ```
802 /// # use kernel::device::Device;
803 ///
804 /// fn example(dev: &Device) {
805 ///     dev_dbg!(dev, "hello {}\n", "there");
806 /// }
807 /// ```
808 #[macro_export]
809 macro_rules! dev_dbg {
810     ($($f:tt)*) => { $crate::dev_printk!(pr_dbg, $($f)*); }
811 }
812