1 // SPDX-License-Identifier: GPL-2.0 2 3 //! Generic devices that are part of the kernel's driver model. 4 //! 5 //! C header: [`include/linux/device.h`](srctree/include/linux/device.h) 6 7 use crate::{ 8 bindings, fmt, 9 prelude::*, 10 sync::aref::ARef, 11 types::{ForeignOwnable, Opaque}, 12 }; 13 use core::{marker::PhantomData, ptr}; 14 15 #[cfg(CONFIG_PRINTK)] 16 use crate::c_str; 17 18 pub mod property; 19 20 /// The core representation of a device in the kernel's driver model. 21 /// 22 /// This structure represents the Rust abstraction for a C `struct device`. A [`Device`] can either 23 /// exist as temporary reference (see also [`Device::from_raw`]), which is only valid within a 24 /// certain scope or as [`ARef<Device>`], owning a dedicated reference count. 25 /// 26 /// # Device Types 27 /// 28 /// A [`Device`] can represent either a bus device or a class device. 29 /// 30 /// ## Bus Devices 31 /// 32 /// A bus device is a [`Device`] that is associated with a physical or virtual bus. Examples of 33 /// buses include PCI, USB, I2C, and SPI. Devices attached to a bus are registered with a specific 34 /// bus type, which facilitates matching devices with appropriate drivers based on IDs or other 35 /// identifying information. Bus devices are visible in sysfs under `/sys/bus/<bus-name>/devices/`. 36 /// 37 /// ## Class Devices 38 /// 39 /// A class device is a [`Device`] that is associated with a logical category of functionality 40 /// rather than a physical bus. Examples of classes include block devices, network interfaces, sound 41 /// cards, and input devices. Class devices are grouped under a common class and exposed to 42 /// userspace via entries in `/sys/class/<class-name>/`. 43 /// 44 /// # Device Context 45 /// 46 /// [`Device`] references are generic over a [`DeviceContext`], which represents the type state of 47 /// a [`Device`]. 48 /// 49 /// As the name indicates, this type state represents the context of the scope the [`Device`] 50 /// reference is valid in. For instance, the [`Bound`] context guarantees that the [`Device`] is 51 /// bound to a driver for the entire duration of the existence of a [`Device<Bound>`] reference. 52 /// 53 /// Other [`DeviceContext`] types besides [`Bound`] are [`Normal`], [`Core`] and [`CoreInternal`]. 54 /// 55 /// Unless selected otherwise [`Device`] defaults to the [`Normal`] [`DeviceContext`], which by 56 /// itself has no additional requirements. 57 /// 58 /// It is always up to the caller of [`Device::from_raw`] to select the correct [`DeviceContext`] 59 /// type for the corresponding scope the [`Device`] reference is created in. 60 /// 61 /// All [`DeviceContext`] types other than [`Normal`] are intended to be used with 62 /// [bus devices](#bus-devices) only. 63 /// 64 /// # Implementing Bus Devices 65 /// 66 /// This section provides a guideline to implement bus specific devices, such as [`pci::Device`] or 67 /// [`platform::Device`]. 68 /// 69 /// A bus specific device should be defined as follows. 70 /// 71 /// ```ignore 72 /// #[repr(transparent)] 73 /// pub struct Device<Ctx: device::DeviceContext = device::Normal>( 74 /// Opaque<bindings::bus_device_type>, 75 /// PhantomData<Ctx>, 76 /// ); 77 /// ``` 78 /// 79 /// Since devices are reference counted, [`AlwaysRefCounted`] should be implemented for `Device` 80 /// (i.e. `Device<Normal>`). Note that [`AlwaysRefCounted`] must not be implemented for any other 81 /// [`DeviceContext`], since all other device context types are only valid within a certain scope. 82 /// 83 /// In order to be able to implement the [`DeviceContext`] dereference hierarchy, bus device 84 /// implementations should call the [`impl_device_context_deref`] macro as shown below. 85 /// 86 /// ```ignore 87 /// // SAFETY: `Device` is a transparent wrapper of a type that doesn't depend on `Device`'s 88 /// // generic argument. 89 /// kernel::impl_device_context_deref!(unsafe { Device }); 90 /// ``` 91 /// 92 /// In order to convert from a any [`Device<Ctx>`] to [`ARef<Device>`], bus devices can implement 93 /// the following macro call. 94 /// 95 /// ```ignore 96 /// kernel::impl_device_context_into_aref!(Device); 97 /// ``` 98 /// 99 /// Bus devices should also implement the following [`AsRef`] implementation, such that users can 100 /// easily derive a generic [`Device`] reference. 101 /// 102 /// ```ignore 103 /// impl<Ctx: device::DeviceContext> AsRef<device::Device<Ctx>> for Device<Ctx> { 104 /// fn as_ref(&self) -> &device::Device<Ctx> { 105 /// ... 106 /// } 107 /// } 108 /// ``` 109 /// 110 /// # Implementing Class Devices 111 /// 112 /// Class device implementations require less infrastructure and depend slightly more on the 113 /// specific subsystem. 114 /// 115 /// An example implementation for a class device could look like this. 116 /// 117 /// ```ignore 118 /// #[repr(C)] 119 /// pub struct Device<T: class::Driver> { 120 /// dev: Opaque<bindings::class_device_type>, 121 /// data: T::Data, 122 /// } 123 /// ``` 124 /// 125 /// This class device uses the sub-classing pattern to embed the driver's private data within the 126 /// allocation of the class device. For this to be possible the class device is generic over the 127 /// class specific `Driver` trait implementation. 128 /// 129 /// Just like any device, class devices are reference counted and should hence implement 130 /// [`AlwaysRefCounted`] for `Device`. 131 /// 132 /// Class devices should also implement the following [`AsRef`] implementation, such that users can 133 /// easily derive a generic [`Device`] reference. 134 /// 135 /// ```ignore 136 /// impl<T: class::Driver> AsRef<device::Device> for Device<T> { 137 /// fn as_ref(&self) -> &device::Device { 138 /// ... 139 /// } 140 /// } 141 /// ``` 142 /// 143 /// An example for a class device implementation is 144 #[cfg_attr(CONFIG_DRM = "y", doc = "[`drm::Device`](kernel::drm::Device).")] 145 #[cfg_attr(not(CONFIG_DRM = "y"), doc = "`drm::Device`.")] 146 /// 147 /// # Invariants 148 /// 149 /// A `Device` instance represents a valid `struct device` created by the C portion of the kernel. 150 /// 151 /// Instances of this type are always reference-counted, that is, a call to `get_device` ensures 152 /// that the allocation remains valid at least until the matching call to `put_device`. 153 /// 154 /// `bindings::device::release` is valid to be called from any thread, hence `ARef<Device>` can be 155 /// dropped from any thread. 156 /// 157 /// [`AlwaysRefCounted`]: kernel::types::AlwaysRefCounted 158 /// [`impl_device_context_deref`]: kernel::impl_device_context_deref 159 /// [`pci::Device`]: kernel::pci::Device 160 /// [`platform::Device`]: kernel::platform::Device 161 #[repr(transparent)] 162 pub struct Device<Ctx: DeviceContext = Normal>(Opaque<bindings::device>, PhantomData<Ctx>); 163 164 impl Device { 165 /// Creates a new reference-counted abstraction instance of an existing `struct device` pointer. 166 /// 167 /// # Safety 168 /// 169 /// Callers must ensure that `ptr` is valid, non-null, and has a non-zero reference count, 170 /// i.e. it must be ensured that the reference count of the C `struct device` `ptr` points to 171 /// can't drop to zero, for the duration of this function call. 172 /// 173 /// It must also be ensured that `bindings::device::release` can be called from any thread. 174 /// While not officially documented, this should be the case for any `struct device`. 175 pub unsafe fn get_device(ptr: *mut bindings::device) -> ARef<Self> { 176 // SAFETY: By the safety requirements ptr is valid 177 unsafe { Self::from_raw(ptr) }.into() 178 } 179 180 /// Convert a [`&Device`](Device) into a [`&Device<Bound>`](Device<Bound>). 181 /// 182 /// # Safety 183 /// 184 /// The caller is responsible to ensure that the returned [`&Device<Bound>`](Device<Bound>) 185 /// only lives as long as it can be guaranteed that the [`Device`] is actually bound. 186 pub unsafe fn as_bound(&self) -> &Device<Bound> { 187 let ptr = core::ptr::from_ref(self); 188 189 // CAST: By the safety requirements the caller is responsible to guarantee that the 190 // returned reference only lives as long as the device is actually bound. 191 let ptr = ptr.cast(); 192 193 // SAFETY: 194 // - `ptr` comes from `from_ref(self)` above, hence it's guaranteed to be valid. 195 // - Any valid `Device` pointer is also a valid pointer for `Device<Bound>`. 196 unsafe { &*ptr } 197 } 198 } 199 200 impl Device<CoreInternal> { 201 /// Store a pointer to the bound driver's private data. 202 pub fn set_drvdata<T: 'static>(&self, data: impl PinInit<T, Error>) -> Result { 203 let data = KBox::pin_init(data, GFP_KERNEL)?; 204 205 // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`. 206 unsafe { bindings::dev_set_drvdata(self.as_raw(), data.into_foreign().cast()) }; 207 208 Ok(()) 209 } 210 211 /// Take ownership of the private data stored in this [`Device`]. 212 /// 213 /// # Safety 214 /// 215 /// - Must only be called once after a preceding call to [`Device::set_drvdata`]. 216 /// - The type `T` must match the type of the `ForeignOwnable` previously stored by 217 /// [`Device::set_drvdata`]. 218 pub unsafe fn drvdata_obtain<T: ForeignOwnable>(&self) -> T { 219 // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`. 220 let ptr = unsafe { bindings::dev_get_drvdata(self.as_raw()) }; 221 222 // SAFETY: 223 // - By the safety requirements of this function, `ptr` comes from a previous call to 224 // `into_foreign()`. 225 // - `dev_get_drvdata()` guarantees to return the same pointer given to `dev_set_drvdata()` 226 // in `into_foreign()`. 227 unsafe { T::from_foreign(ptr.cast()) } 228 } 229 230 /// Borrow the driver's private data bound to this [`Device`]. 231 /// 232 /// # Safety 233 /// 234 /// - Must only be called after a preceding call to [`Device::set_drvdata`] and before 235 /// [`Device::drvdata_obtain`]. 236 /// - The type `T` must match the type of the `ForeignOwnable` previously stored by 237 /// [`Device::set_drvdata`]. 238 pub unsafe fn drvdata_borrow<T: ForeignOwnable>(&self) -> T::Borrowed<'_> { 239 // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`. 240 let ptr = unsafe { bindings::dev_get_drvdata(self.as_raw()) }; 241 242 // SAFETY: 243 // - By the safety requirements of this function, `ptr` comes from a previous call to 244 // `into_foreign()`. 245 // - `dev_get_drvdata()` guarantees to return the same pointer given to `dev_set_drvdata()` 246 // in `into_foreign()`. 247 unsafe { T::borrow(ptr.cast()) } 248 } 249 } 250 251 impl<Ctx: DeviceContext> Device<Ctx> { 252 /// Obtain the raw `struct device *`. 253 pub(crate) fn as_raw(&self) -> *mut bindings::device { 254 self.0.get() 255 } 256 257 /// Returns a reference to the parent device, if any. 258 #[cfg_attr(not(CONFIG_AUXILIARY_BUS), expect(dead_code))] 259 pub(crate) fn parent(&self) -> Option<&Self> { 260 // SAFETY: 261 // - By the type invariant `self.as_raw()` is always valid. 262 // - The parent device is only ever set at device creation. 263 let parent = unsafe { (*self.as_raw()).parent }; 264 265 if parent.is_null() { 266 None 267 } else { 268 // SAFETY: 269 // - Since `parent` is not NULL, it must be a valid pointer to a `struct device`. 270 // - `parent` is valid for the lifetime of `self`, since a `struct device` holds a 271 // reference count of its parent. 272 Some(unsafe { Self::from_raw(parent) }) 273 } 274 } 275 276 /// Convert a raw C `struct device` pointer to a `&'a Device`. 277 /// 278 /// # Safety 279 /// 280 /// Callers must ensure that `ptr` is valid, non-null, and has a non-zero reference count, 281 /// i.e. it must be ensured that the reference count of the C `struct device` `ptr` points to 282 /// can't drop to zero, for the duration of this function call and the entire duration when the 283 /// returned reference exists. 284 pub unsafe fn from_raw<'a>(ptr: *mut bindings::device) -> &'a Self { 285 // SAFETY: Guaranteed by the safety requirements of the function. 286 unsafe { &*ptr.cast() } 287 } 288 289 /// Prints an emergency-level message (level 0) prefixed with device information. 290 /// 291 /// More details are available from [`dev_emerg`]. 292 /// 293 /// [`dev_emerg`]: crate::dev_emerg 294 pub fn pr_emerg(&self, args: fmt::Arguments<'_>) { 295 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. 296 unsafe { self.printk(bindings::KERN_EMERG, args) }; 297 } 298 299 /// Prints an alert-level message (level 1) prefixed with device information. 300 /// 301 /// More details are available from [`dev_alert`]. 302 /// 303 /// [`dev_alert`]: crate::dev_alert 304 pub fn pr_alert(&self, args: fmt::Arguments<'_>) { 305 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. 306 unsafe { self.printk(bindings::KERN_ALERT, args) }; 307 } 308 309 /// Prints a critical-level message (level 2) prefixed with device information. 310 /// 311 /// More details are available from [`dev_crit`]. 312 /// 313 /// [`dev_crit`]: crate::dev_crit 314 pub fn pr_crit(&self, args: fmt::Arguments<'_>) { 315 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. 316 unsafe { self.printk(bindings::KERN_CRIT, args) }; 317 } 318 319 /// Prints an error-level message (level 3) prefixed with device information. 320 /// 321 /// More details are available from [`dev_err`]. 322 /// 323 /// [`dev_err`]: crate::dev_err 324 pub fn pr_err(&self, args: fmt::Arguments<'_>) { 325 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. 326 unsafe { self.printk(bindings::KERN_ERR, args) }; 327 } 328 329 /// Prints a warning-level message (level 4) prefixed with device information. 330 /// 331 /// More details are available from [`dev_warn`]. 332 /// 333 /// [`dev_warn`]: crate::dev_warn 334 pub fn pr_warn(&self, args: fmt::Arguments<'_>) { 335 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. 336 unsafe { self.printk(bindings::KERN_WARNING, args) }; 337 } 338 339 /// Prints a notice-level message (level 5) prefixed with device information. 340 /// 341 /// More details are available from [`dev_notice`]. 342 /// 343 /// [`dev_notice`]: crate::dev_notice 344 pub fn pr_notice(&self, args: fmt::Arguments<'_>) { 345 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. 346 unsafe { self.printk(bindings::KERN_NOTICE, args) }; 347 } 348 349 /// Prints an info-level message (level 6) prefixed with device information. 350 /// 351 /// More details are available from [`dev_info`]. 352 /// 353 /// [`dev_info`]: crate::dev_info 354 pub fn pr_info(&self, args: fmt::Arguments<'_>) { 355 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. 356 unsafe { self.printk(bindings::KERN_INFO, args) }; 357 } 358 359 /// Prints a debug-level message (level 7) prefixed with device information. 360 /// 361 /// More details are available from [`dev_dbg`]. 362 /// 363 /// [`dev_dbg`]: crate::dev_dbg 364 pub fn pr_dbg(&self, args: fmt::Arguments<'_>) { 365 if cfg!(debug_assertions) { 366 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants. 367 unsafe { self.printk(bindings::KERN_DEBUG, args) }; 368 } 369 } 370 371 /// Prints the provided message to the console. 372 /// 373 /// # Safety 374 /// 375 /// Callers must ensure that `klevel` is null-terminated; in particular, one of the 376 /// `KERN_*`constants, for example, `KERN_CRIT`, `KERN_ALERT`, etc. 377 #[cfg_attr(not(CONFIG_PRINTK), allow(unused_variables))] 378 unsafe fn printk(&self, klevel: &[u8], msg: fmt::Arguments<'_>) { 379 // SAFETY: `klevel` is null-terminated and one of the kernel constants. `self.as_raw` 380 // is valid because `self` is valid. The "%pA" format string expects a pointer to 381 // `fmt::Arguments`, which is what we're passing as the last argument. 382 #[cfg(CONFIG_PRINTK)] 383 unsafe { 384 bindings::_dev_printk( 385 klevel.as_ptr().cast::<crate::ffi::c_char>(), 386 self.as_raw(), 387 c_str!("%pA").as_char_ptr(), 388 core::ptr::from_ref(&msg).cast::<crate::ffi::c_void>(), 389 ) 390 }; 391 } 392 393 /// Obtain the [`FwNode`](property::FwNode) corresponding to this [`Device`]. 394 pub fn fwnode(&self) -> Option<&property::FwNode> { 395 // SAFETY: `self` is valid. 396 let fwnode_handle = unsafe { bindings::__dev_fwnode(self.as_raw()) }; 397 if fwnode_handle.is_null() { 398 return None; 399 } 400 // SAFETY: `fwnode_handle` is valid. Its lifetime is tied to `&self`. We 401 // return a reference instead of an `ARef<FwNode>` because `dev_fwnode()` 402 // doesn't increment the refcount. It is safe to cast from a 403 // `struct fwnode_handle*` to a `*const FwNode` because `FwNode` is 404 // defined as a `#[repr(transparent)]` wrapper around `fwnode_handle`. 405 Some(unsafe { &*fwnode_handle.cast() }) 406 } 407 } 408 409 // SAFETY: `Device` is a transparent wrapper of a type that doesn't depend on `Device`'s generic 410 // argument. 411 kernel::impl_device_context_deref!(unsafe { Device }); 412 kernel::impl_device_context_into_aref!(Device); 413 414 // SAFETY: Instances of `Device` are always reference-counted. 415 unsafe impl crate::sync::aref::AlwaysRefCounted for Device { 416 fn inc_ref(&self) { 417 // SAFETY: The existence of a shared reference guarantees that the refcount is non-zero. 418 unsafe { bindings::get_device(self.as_raw()) }; 419 } 420 421 unsafe fn dec_ref(obj: ptr::NonNull<Self>) { 422 // SAFETY: The safety requirements guarantee that the refcount is non-zero. 423 unsafe { bindings::put_device(obj.cast().as_ptr()) } 424 } 425 } 426 427 // SAFETY: As by the type invariant `Device` can be sent to any thread. 428 unsafe impl Send for Device {} 429 430 // SAFETY: `Device` can be shared among threads because all immutable methods are protected by the 431 // synchronization in `struct device`. 432 unsafe impl Sync for Device {} 433 434 /// Marker trait for the context or scope of a bus specific device. 435 /// 436 /// [`DeviceContext`] is a marker trait for types representing the context of a bus specific 437 /// [`Device`]. 438 /// 439 /// The specific device context types are: [`CoreInternal`], [`Core`], [`Bound`] and [`Normal`]. 440 /// 441 /// [`DeviceContext`] types are hierarchical, which means that there is a strict hierarchy that 442 /// defines which [`DeviceContext`] type can be derived from another. For instance, any 443 /// [`Device<Core>`] can dereference to a [`Device<Bound>`]. 444 /// 445 /// The following enumeration illustrates the dereference hierarchy of [`DeviceContext`] types. 446 /// 447 /// - [`CoreInternal`] => [`Core`] => [`Bound`] => [`Normal`] 448 /// 449 /// Bus devices can automatically implement the dereference hierarchy by using 450 /// [`impl_device_context_deref`]. 451 /// 452 /// Note that the guarantee for a [`Device`] reference to have a certain [`DeviceContext`] comes 453 /// from the specific scope the [`Device`] reference is valid in. 454 /// 455 /// [`impl_device_context_deref`]: kernel::impl_device_context_deref 456 pub trait DeviceContext: private::Sealed {} 457 458 /// The [`Normal`] context is the default [`DeviceContext`] of any [`Device`]. 459 /// 460 /// The normal context does not indicate any specific context. Any `Device<Ctx>` is also a valid 461 /// [`Device<Normal>`]. It is the only [`DeviceContext`] for which it is valid to implement 462 /// [`AlwaysRefCounted`] for. 463 /// 464 /// [`AlwaysRefCounted`]: kernel::types::AlwaysRefCounted 465 pub struct Normal; 466 467 /// The [`Core`] context is the context of a bus specific device when it appears as argument of 468 /// any bus specific callback, such as `probe()`. 469 /// 470 /// The core context indicates that the [`Device<Core>`] reference's scope is limited to the bus 471 /// callback it appears in. It is intended to be used for synchronization purposes. Bus device 472 /// implementations can implement methods for [`Device<Core>`], such that they can only be called 473 /// from bus callbacks. 474 pub struct Core; 475 476 /// Semantically the same as [`Core`], but reserved for internal usage of the corresponding bus 477 /// abstraction. 478 /// 479 /// The internal core context is intended to be used in exactly the same way as the [`Core`] 480 /// context, with the difference that this [`DeviceContext`] is internal to the corresponding bus 481 /// abstraction. 482 /// 483 /// This context mainly exists to share generic [`Device`] infrastructure that should only be called 484 /// from bus callbacks with bus abstractions, but without making them accessible for drivers. 485 pub struct CoreInternal; 486 487 /// The [`Bound`] context is the [`DeviceContext`] of a bus specific device when it is guaranteed to 488 /// be bound to a driver. 489 /// 490 /// The bound context indicates that for the entire duration of the lifetime of a [`Device<Bound>`] 491 /// reference, the [`Device`] is guaranteed to be bound to a driver. 492 /// 493 /// Some APIs, such as [`dma::CoherentAllocation`] or [`Devres`] rely on the [`Device`] to be bound, 494 /// which can be proven with the [`Bound`] device context. 495 /// 496 /// Any abstraction that can guarantee a scope where the corresponding bus device is bound, should 497 /// provide a [`Device<Bound>`] reference to its users for this scope. This allows users to benefit 498 /// from optimizations for accessing device resources, see also [`Devres::access`]. 499 /// 500 /// [`Devres`]: kernel::devres::Devres 501 /// [`Devres::access`]: kernel::devres::Devres::access 502 /// [`dma::CoherentAllocation`]: kernel::dma::CoherentAllocation 503 pub struct Bound; 504 505 mod private { 506 pub trait Sealed {} 507 508 impl Sealed for super::Bound {} 509 impl Sealed for super::Core {} 510 impl Sealed for super::CoreInternal {} 511 impl Sealed for super::Normal {} 512 } 513 514 impl DeviceContext for Bound {} 515 impl DeviceContext for Core {} 516 impl DeviceContext for CoreInternal {} 517 impl DeviceContext for Normal {} 518 519 /// # Safety 520 /// 521 /// The type given as `$device` must be a transparent wrapper of a type that doesn't depend on the 522 /// generic argument of `$device`. 523 #[doc(hidden)] 524 #[macro_export] 525 macro_rules! __impl_device_context_deref { 526 (unsafe { $device:ident, $src:ty => $dst:ty }) => { 527 impl ::core::ops::Deref for $device<$src> { 528 type Target = $device<$dst>; 529 530 fn deref(&self) -> &Self::Target { 531 let ptr: *const Self = self; 532 533 // CAST: `$device<$src>` and `$device<$dst>` transparently wrap the same type by the 534 // safety requirement of the macro. 535 let ptr = ptr.cast::<Self::Target>(); 536 537 // SAFETY: `ptr` was derived from `&self`. 538 unsafe { &*ptr } 539 } 540 } 541 }; 542 } 543 544 /// Implement [`core::ops::Deref`] traits for allowed [`DeviceContext`] conversions of a (bus 545 /// specific) device. 546 /// 547 /// # Safety 548 /// 549 /// The type given as `$device` must be a transparent wrapper of a type that doesn't depend on the 550 /// generic argument of `$device`. 551 #[macro_export] 552 macro_rules! impl_device_context_deref { 553 (unsafe { $device:ident }) => { 554 // SAFETY: This macro has the exact same safety requirement as 555 // `__impl_device_context_deref!`. 556 ::kernel::__impl_device_context_deref!(unsafe { 557 $device, 558 $crate::device::CoreInternal => $crate::device::Core 559 }); 560 561 // SAFETY: This macro has the exact same safety requirement as 562 // `__impl_device_context_deref!`. 563 ::kernel::__impl_device_context_deref!(unsafe { 564 $device, 565 $crate::device::Core => $crate::device::Bound 566 }); 567 568 // SAFETY: This macro has the exact same safety requirement as 569 // `__impl_device_context_deref!`. 570 ::kernel::__impl_device_context_deref!(unsafe { 571 $device, 572 $crate::device::Bound => $crate::device::Normal 573 }); 574 }; 575 } 576 577 #[doc(hidden)] 578 #[macro_export] 579 macro_rules! __impl_device_context_into_aref { 580 ($src:ty, $device:tt) => { 581 impl ::core::convert::From<&$device<$src>> for $crate::sync::aref::ARef<$device> { 582 fn from(dev: &$device<$src>) -> Self { 583 (&**dev).into() 584 } 585 } 586 }; 587 } 588 589 /// Implement [`core::convert::From`], such that all `&Device<Ctx>` can be converted to an 590 /// `ARef<Device>`. 591 #[macro_export] 592 macro_rules! impl_device_context_into_aref { 593 ($device:tt) => { 594 ::kernel::__impl_device_context_into_aref!($crate::device::CoreInternal, $device); 595 ::kernel::__impl_device_context_into_aref!($crate::device::Core, $device); 596 ::kernel::__impl_device_context_into_aref!($crate::device::Bound, $device); 597 }; 598 } 599 600 #[doc(hidden)] 601 #[macro_export] 602 macro_rules! dev_printk { 603 ($method:ident, $dev:expr, $($f:tt)*) => { 604 { 605 ($dev).$method($crate::prelude::fmt!($($f)*)); 606 } 607 } 608 } 609 610 /// Prints an emergency-level message (level 0) prefixed with device information. 611 /// 612 /// This level should be used if the system is unusable. 613 /// 614 /// Equivalent to the kernel's `dev_emerg` macro. 615 /// 616 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from 617 /// [`core::fmt`] and [`std::format!`]. 618 /// 619 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html 620 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html 621 /// 622 /// # Examples 623 /// 624 /// ``` 625 /// # use kernel::device::Device; 626 /// 627 /// fn example(dev: &Device) { 628 /// dev_emerg!(dev, "hello {}\n", "there"); 629 /// } 630 /// ``` 631 #[macro_export] 632 macro_rules! dev_emerg { 633 ($($f:tt)*) => { $crate::dev_printk!(pr_emerg, $($f)*); } 634 } 635 636 /// Prints an alert-level message (level 1) prefixed with device information. 637 /// 638 /// This level should be used if action must be taken immediately. 639 /// 640 /// Equivalent to the kernel's `dev_alert` macro. 641 /// 642 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from 643 /// [`core::fmt`] and [`std::format!`]. 644 /// 645 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html 646 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html 647 /// 648 /// # Examples 649 /// 650 /// ``` 651 /// # use kernel::device::Device; 652 /// 653 /// fn example(dev: &Device) { 654 /// dev_alert!(dev, "hello {}\n", "there"); 655 /// } 656 /// ``` 657 #[macro_export] 658 macro_rules! dev_alert { 659 ($($f:tt)*) => { $crate::dev_printk!(pr_alert, $($f)*); } 660 } 661 662 /// Prints a critical-level message (level 2) prefixed with device information. 663 /// 664 /// This level should be used in critical conditions. 665 /// 666 /// Equivalent to the kernel's `dev_crit` macro. 667 /// 668 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from 669 /// [`core::fmt`] and [`std::format!`]. 670 /// 671 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html 672 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html 673 /// 674 /// # Examples 675 /// 676 /// ``` 677 /// # use kernel::device::Device; 678 /// 679 /// fn example(dev: &Device) { 680 /// dev_crit!(dev, "hello {}\n", "there"); 681 /// } 682 /// ``` 683 #[macro_export] 684 macro_rules! dev_crit { 685 ($($f:tt)*) => { $crate::dev_printk!(pr_crit, $($f)*); } 686 } 687 688 /// Prints an error-level message (level 3) prefixed with device information. 689 /// 690 /// This level should be used in error conditions. 691 /// 692 /// Equivalent to the kernel's `dev_err` macro. 693 /// 694 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from 695 /// [`core::fmt`] and [`std::format!`]. 696 /// 697 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html 698 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html 699 /// 700 /// # Examples 701 /// 702 /// ``` 703 /// # use kernel::device::Device; 704 /// 705 /// fn example(dev: &Device) { 706 /// dev_err!(dev, "hello {}\n", "there"); 707 /// } 708 /// ``` 709 #[macro_export] 710 macro_rules! dev_err { 711 ($($f:tt)*) => { $crate::dev_printk!(pr_err, $($f)*); } 712 } 713 714 /// Prints a warning-level message (level 4) prefixed with device information. 715 /// 716 /// This level should be used in warning conditions. 717 /// 718 /// Equivalent to the kernel's `dev_warn` macro. 719 /// 720 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from 721 /// [`core::fmt`] and [`std::format!`]. 722 /// 723 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html 724 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html 725 /// 726 /// # Examples 727 /// 728 /// ``` 729 /// # use kernel::device::Device; 730 /// 731 /// fn example(dev: &Device) { 732 /// dev_warn!(dev, "hello {}\n", "there"); 733 /// } 734 /// ``` 735 #[macro_export] 736 macro_rules! dev_warn { 737 ($($f:tt)*) => { $crate::dev_printk!(pr_warn, $($f)*); } 738 } 739 740 /// Prints a notice-level message (level 5) prefixed with device information. 741 /// 742 /// This level should be used in normal but significant conditions. 743 /// 744 /// Equivalent to the kernel's `dev_notice` macro. 745 /// 746 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from 747 /// [`core::fmt`] and [`std::format!`]. 748 /// 749 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html 750 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html 751 /// 752 /// # Examples 753 /// 754 /// ``` 755 /// # use kernel::device::Device; 756 /// 757 /// fn example(dev: &Device) { 758 /// dev_notice!(dev, "hello {}\n", "there"); 759 /// } 760 /// ``` 761 #[macro_export] 762 macro_rules! dev_notice { 763 ($($f:tt)*) => { $crate::dev_printk!(pr_notice, $($f)*); } 764 } 765 766 /// Prints an info-level message (level 6) prefixed with device information. 767 /// 768 /// This level should be used for informational messages. 769 /// 770 /// Equivalent to the kernel's `dev_info` macro. 771 /// 772 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from 773 /// [`core::fmt`] and [`std::format!`]. 774 /// 775 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html 776 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html 777 /// 778 /// # Examples 779 /// 780 /// ``` 781 /// # use kernel::device::Device; 782 /// 783 /// fn example(dev: &Device) { 784 /// dev_info!(dev, "hello {}\n", "there"); 785 /// } 786 /// ``` 787 #[macro_export] 788 macro_rules! dev_info { 789 ($($f:tt)*) => { $crate::dev_printk!(pr_info, $($f)*); } 790 } 791 792 /// Prints a debug-level message (level 7) prefixed with device information. 793 /// 794 /// This level should be used for debug messages. 795 /// 796 /// Equivalent to the kernel's `dev_dbg` macro, except that it doesn't support dynamic debug yet. 797 /// 798 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from 799 /// [`core::fmt`] and [`std::format!`]. 800 /// 801 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html 802 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html 803 /// 804 /// # Examples 805 /// 806 /// ``` 807 /// # use kernel::device::Device; 808 /// 809 /// fn example(dev: &Device) { 810 /// dev_dbg!(dev, "hello {}\n", "there"); 811 /// } 812 /// ``` 813 #[macro_export] 814 macro_rules! dev_dbg { 815 ($($f:tt)*) => { $crate::dev_printk!(pr_dbg, $($f)*); } 816 } 817