xref: /linux/rust/kernel/device.rs (revision 52025b8fc992972168128be40bffee7eafa532b5)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Generic devices that are part of the kernel's driver model.
4 //!
5 //! C header: [`include/linux/device.h`](srctree/include/linux/device.h)
6 
7 use crate::{
8     bindings,
9     types::{ARef, ForeignOwnable, Opaque},
10 };
11 use core::{fmt, marker::PhantomData, ptr};
12 
13 #[cfg(CONFIG_PRINTK)]
14 use crate::c_str;
15 
16 pub mod property;
17 
18 /// The core representation of a device in the kernel's driver model.
19 ///
20 /// This structure represents the Rust abstraction for a C `struct device`. A [`Device`] can either
21 /// exist as temporary reference (see also [`Device::from_raw`]), which is only valid within a
22 /// certain scope or as [`ARef<Device>`], owning a dedicated reference count.
23 ///
24 /// # Device Types
25 ///
26 /// A [`Device`] can represent either a bus device or a class device.
27 ///
28 /// ## Bus Devices
29 ///
30 /// A bus device is a [`Device`] that is associated with a physical or virtual bus. Examples of
31 /// buses include PCI, USB, I2C, and SPI. Devices attached to a bus are registered with a specific
32 /// bus type, which facilitates matching devices with appropriate drivers based on IDs or other
33 /// identifying information. Bus devices are visible in sysfs under `/sys/bus/<bus-name>/devices/`.
34 ///
35 /// ## Class Devices
36 ///
37 /// A class device is a [`Device`] that is associated with a logical category of functionality
38 /// rather than a physical bus. Examples of classes include block devices, network interfaces, sound
39 /// cards, and input devices. Class devices are grouped under a common class and exposed to
40 /// userspace via entries in `/sys/class/<class-name>/`.
41 ///
42 /// # Device Context
43 ///
44 /// [`Device`] references are generic over a [`DeviceContext`], which represents the type state of
45 /// a [`Device`].
46 ///
47 /// As the name indicates, this type state represents the context of the scope the [`Device`]
48 /// reference is valid in. For instance, the [`Bound`] context guarantees that the [`Device`] is
49 /// bound to a driver for the entire duration of the existence of a [`Device<Bound>`] reference.
50 ///
51 /// Other [`DeviceContext`] types besides [`Bound`] are [`Normal`], [`Core`] and [`CoreInternal`].
52 ///
53 /// Unless selected otherwise [`Device`] defaults to the [`Normal`] [`DeviceContext`], which by
54 /// itself has no additional requirements.
55 ///
56 /// It is always up to the caller of [`Device::from_raw`] to select the correct [`DeviceContext`]
57 /// type for the corresponding scope the [`Device`] reference is created in.
58 ///
59 /// All [`DeviceContext`] types other than [`Normal`] are intended to be used with
60 /// [bus devices](#bus-devices) only.
61 ///
62 /// # Implementing Bus Devices
63 ///
64 /// This section provides a guideline to implement bus specific devices, such as [`pci::Device`] or
65 /// [`platform::Device`].
66 ///
67 /// A bus specific device should be defined as follows.
68 ///
69 /// ```ignore
70 /// #[repr(transparent)]
71 /// pub struct Device<Ctx: device::DeviceContext = device::Normal>(
72 ///     Opaque<bindings::bus_device_type>,
73 ///     PhantomData<Ctx>,
74 /// );
75 /// ```
76 ///
77 /// Since devices are reference counted, [`AlwaysRefCounted`] should be implemented for `Device`
78 /// (i.e. `Device<Normal>`). Note that [`AlwaysRefCounted`] must not be implemented for any other
79 /// [`DeviceContext`], since all other device context types are only valid within a certain scope.
80 ///
81 /// In order to be able to implement the [`DeviceContext`] dereference hierarchy, bus device
82 /// implementations should call the [`impl_device_context_deref`] macro as shown below.
83 ///
84 /// ```ignore
85 /// // SAFETY: `Device` is a transparent wrapper of a type that doesn't depend on `Device`'s
86 /// // generic argument.
87 /// kernel::impl_device_context_deref!(unsafe { Device });
88 /// ```
89 ///
90 /// In order to convert from a any [`Device<Ctx>`] to [`ARef<Device>`], bus devices can implement
91 /// the following macro call.
92 ///
93 /// ```ignore
94 /// kernel::impl_device_context_into_aref!(Device);
95 /// ```
96 ///
97 /// Bus devices should also implement the following [`AsRef`] implementation, such that users can
98 /// easily derive a generic [`Device`] reference.
99 ///
100 /// ```ignore
101 /// impl<Ctx: device::DeviceContext> AsRef<device::Device<Ctx>> for Device<Ctx> {
102 ///     fn as_ref(&self) -> &device::Device<Ctx> {
103 ///         ...
104 ///     }
105 /// }
106 /// ```
107 ///
108 /// # Implementing Class Devices
109 ///
110 /// Class device implementations require less infrastructure and depend slightly more on the
111 /// specific subsystem.
112 ///
113 /// An example implementation for a class device could look like this.
114 ///
115 /// ```ignore
116 /// #[repr(C)]
117 /// pub struct Device<T: class::Driver> {
118 ///     dev: Opaque<bindings::class_device_type>,
119 ///     data: T::Data,
120 /// }
121 /// ```
122 ///
123 /// This class device uses the sub-classing pattern to embed the driver's private data within the
124 /// allocation of the class device. For this to be possible the class device is generic over the
125 /// class specific `Driver` trait implementation.
126 ///
127 /// Just like any device, class devices are reference counted and should hence implement
128 /// [`AlwaysRefCounted`] for `Device`.
129 ///
130 /// Class devices should also implement the following [`AsRef`] implementation, such that users can
131 /// easily derive a generic [`Device`] reference.
132 ///
133 /// ```ignore
134 /// impl<T: class::Driver> AsRef<device::Device> for Device<T> {
135 ///     fn as_ref(&self) -> &device::Device {
136 ///         ...
137 ///     }
138 /// }
139 /// ```
140 ///
141 /// An example for a class device implementation is [`drm::Device`].
142 ///
143 /// # Invariants
144 ///
145 /// A `Device` instance represents a valid `struct device` created by the C portion of the kernel.
146 ///
147 /// Instances of this type are always reference-counted, that is, a call to `get_device` ensures
148 /// that the allocation remains valid at least until the matching call to `put_device`.
149 ///
150 /// `bindings::device::release` is valid to be called from any thread, hence `ARef<Device>` can be
151 /// dropped from any thread.
152 ///
153 /// [`AlwaysRefCounted`]: kernel::types::AlwaysRefCounted
154 /// [`drm::Device`]: kernel::drm::Device
155 /// [`impl_device_context_deref`]: kernel::impl_device_context_deref
156 /// [`pci::Device`]: kernel::pci::Device
157 /// [`platform::Device`]: kernel::platform::Device
158 #[repr(transparent)]
159 pub struct Device<Ctx: DeviceContext = Normal>(Opaque<bindings::device>, PhantomData<Ctx>);
160 
161 impl Device {
162     /// Creates a new reference-counted abstraction instance of an existing `struct device` pointer.
163     ///
164     /// # Safety
165     ///
166     /// Callers must ensure that `ptr` is valid, non-null, and has a non-zero reference count,
167     /// i.e. it must be ensured that the reference count of the C `struct device` `ptr` points to
168     /// can't drop to zero, for the duration of this function call.
169     ///
170     /// It must also be ensured that `bindings::device::release` can be called from any thread.
171     /// While not officially documented, this should be the case for any `struct device`.
get_device(ptr: *mut bindings::device) -> ARef<Self>172     pub unsafe fn get_device(ptr: *mut bindings::device) -> ARef<Self> {
173         // SAFETY: By the safety requirements ptr is valid
174         unsafe { Self::from_raw(ptr) }.into()
175     }
176 
177     /// Convert a [`&Device`](Device) into a [`&Device<Bound>`](Device<Bound>).
178     ///
179     /// # Safety
180     ///
181     /// The caller is responsible to ensure that the returned [`&Device<Bound>`](Device<Bound>)
182     /// only lives as long as it can be guaranteed that the [`Device`] is actually bound.
as_bound(&self) -> &Device<Bound>183     pub unsafe fn as_bound(&self) -> &Device<Bound> {
184         let ptr = core::ptr::from_ref(self);
185 
186         // CAST: By the safety requirements the caller is responsible to guarantee that the
187         // returned reference only lives as long as the device is actually bound.
188         let ptr = ptr.cast();
189 
190         // SAFETY:
191         // - `ptr` comes from `from_ref(self)` above, hence it's guaranteed to be valid.
192         // - Any valid `Device` pointer is also a valid pointer for `Device<Bound>`.
193         unsafe { &*ptr }
194     }
195 }
196 
197 impl Device<CoreInternal> {
198     /// Store a pointer to the bound driver's private data.
set_drvdata(&self, data: impl ForeignOwnable)199     pub fn set_drvdata(&self, data: impl ForeignOwnable) {
200         // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
201         unsafe { bindings::dev_set_drvdata(self.as_raw(), data.into_foreign().cast()) }
202     }
203 
204     /// Take ownership of the private data stored in this [`Device`].
205     ///
206     /// # Safety
207     ///
208     /// - Must only be called once after a preceding call to [`Device::set_drvdata`].
209     /// - The type `T` must match the type of the `ForeignOwnable` previously stored by
210     ///   [`Device::set_drvdata`].
drvdata_obtain<T: ForeignOwnable>(&self) -> T211     pub unsafe fn drvdata_obtain<T: ForeignOwnable>(&self) -> T {
212         // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
213         let ptr = unsafe { bindings::dev_get_drvdata(self.as_raw()) };
214 
215         // SAFETY:
216         // - By the safety requirements of this function, `ptr` comes from a previous call to
217         //   `into_foreign()`.
218         // - `dev_get_drvdata()` guarantees to return the same pointer given to `dev_set_drvdata()`
219         //   in `into_foreign()`.
220         unsafe { T::from_foreign(ptr.cast()) }
221     }
222 
223     /// Borrow the driver's private data bound to this [`Device`].
224     ///
225     /// # Safety
226     ///
227     /// - Must only be called after a preceding call to [`Device::set_drvdata`] and before
228     ///   [`Device::drvdata_obtain`].
229     /// - The type `T` must match the type of the `ForeignOwnable` previously stored by
230     ///   [`Device::set_drvdata`].
drvdata_borrow<T: ForeignOwnable>(&self) -> T::Borrowed<'_>231     pub unsafe fn drvdata_borrow<T: ForeignOwnable>(&self) -> T::Borrowed<'_> {
232         // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
233         let ptr = unsafe { bindings::dev_get_drvdata(self.as_raw()) };
234 
235         // SAFETY:
236         // - By the safety requirements of this function, `ptr` comes from a previous call to
237         //   `into_foreign()`.
238         // - `dev_get_drvdata()` guarantees to return the same pointer given to `dev_set_drvdata()`
239         //   in `into_foreign()`.
240         unsafe { T::borrow(ptr.cast()) }
241     }
242 }
243 
244 impl<Ctx: DeviceContext> Device<Ctx> {
245     /// Obtain the raw `struct device *`.
as_raw(&self) -> *mut bindings::device246     pub(crate) fn as_raw(&self) -> *mut bindings::device {
247         self.0.get()
248     }
249 
250     /// Returns a reference to the parent device, if any.
251     #[cfg_attr(not(CONFIG_AUXILIARY_BUS), expect(dead_code))]
parent(&self) -> Option<&Self>252     pub(crate) fn parent(&self) -> Option<&Self> {
253         // SAFETY:
254         // - By the type invariant `self.as_raw()` is always valid.
255         // - The parent device is only ever set at device creation.
256         let parent = unsafe { (*self.as_raw()).parent };
257 
258         if parent.is_null() {
259             None
260         } else {
261             // SAFETY:
262             // - Since `parent` is not NULL, it must be a valid pointer to a `struct device`.
263             // - `parent` is valid for the lifetime of `self`, since a `struct device` holds a
264             //   reference count of its parent.
265             Some(unsafe { Self::from_raw(parent) })
266         }
267     }
268 
269     /// Convert a raw C `struct device` pointer to a `&'a Device`.
270     ///
271     /// # Safety
272     ///
273     /// Callers must ensure that `ptr` is valid, non-null, and has a non-zero reference count,
274     /// i.e. it must be ensured that the reference count of the C `struct device` `ptr` points to
275     /// can't drop to zero, for the duration of this function call and the entire duration when the
276     /// returned reference exists.
from_raw<'a>(ptr: *mut bindings::device) -> &'a Self277     pub unsafe fn from_raw<'a>(ptr: *mut bindings::device) -> &'a Self {
278         // SAFETY: Guaranteed by the safety requirements of the function.
279         unsafe { &*ptr.cast() }
280     }
281 
282     /// Prints an emergency-level message (level 0) prefixed with device information.
283     ///
284     /// More details are available from [`dev_emerg`].
285     ///
286     /// [`dev_emerg`]: crate::dev_emerg
pr_emerg(&self, args: fmt::Arguments<'_>)287     pub fn pr_emerg(&self, args: fmt::Arguments<'_>) {
288         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
289         unsafe { self.printk(bindings::KERN_EMERG, args) };
290     }
291 
292     /// Prints an alert-level message (level 1) prefixed with device information.
293     ///
294     /// More details are available from [`dev_alert`].
295     ///
296     /// [`dev_alert`]: crate::dev_alert
pr_alert(&self, args: fmt::Arguments<'_>)297     pub fn pr_alert(&self, args: fmt::Arguments<'_>) {
298         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
299         unsafe { self.printk(bindings::KERN_ALERT, args) };
300     }
301 
302     /// Prints a critical-level message (level 2) prefixed with device information.
303     ///
304     /// More details are available from [`dev_crit`].
305     ///
306     /// [`dev_crit`]: crate::dev_crit
pr_crit(&self, args: fmt::Arguments<'_>)307     pub fn pr_crit(&self, args: fmt::Arguments<'_>) {
308         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
309         unsafe { self.printk(bindings::KERN_CRIT, args) };
310     }
311 
312     /// Prints an error-level message (level 3) prefixed with device information.
313     ///
314     /// More details are available from [`dev_err`].
315     ///
316     /// [`dev_err`]: crate::dev_err
pr_err(&self, args: fmt::Arguments<'_>)317     pub fn pr_err(&self, args: fmt::Arguments<'_>) {
318         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
319         unsafe { self.printk(bindings::KERN_ERR, args) };
320     }
321 
322     /// Prints a warning-level message (level 4) prefixed with device information.
323     ///
324     /// More details are available from [`dev_warn`].
325     ///
326     /// [`dev_warn`]: crate::dev_warn
pr_warn(&self, args: fmt::Arguments<'_>)327     pub fn pr_warn(&self, args: fmt::Arguments<'_>) {
328         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
329         unsafe { self.printk(bindings::KERN_WARNING, args) };
330     }
331 
332     /// Prints a notice-level message (level 5) prefixed with device information.
333     ///
334     /// More details are available from [`dev_notice`].
335     ///
336     /// [`dev_notice`]: crate::dev_notice
pr_notice(&self, args: fmt::Arguments<'_>)337     pub fn pr_notice(&self, args: fmt::Arguments<'_>) {
338         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
339         unsafe { self.printk(bindings::KERN_NOTICE, args) };
340     }
341 
342     /// Prints an info-level message (level 6) prefixed with device information.
343     ///
344     /// More details are available from [`dev_info`].
345     ///
346     /// [`dev_info`]: crate::dev_info
pr_info(&self, args: fmt::Arguments<'_>)347     pub fn pr_info(&self, args: fmt::Arguments<'_>) {
348         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
349         unsafe { self.printk(bindings::KERN_INFO, args) };
350     }
351 
352     /// Prints a debug-level message (level 7) prefixed with device information.
353     ///
354     /// More details are available from [`dev_dbg`].
355     ///
356     /// [`dev_dbg`]: crate::dev_dbg
pr_dbg(&self, args: fmt::Arguments<'_>)357     pub fn pr_dbg(&self, args: fmt::Arguments<'_>) {
358         if cfg!(debug_assertions) {
359             // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
360             unsafe { self.printk(bindings::KERN_DEBUG, args) };
361         }
362     }
363 
364     /// Prints the provided message to the console.
365     ///
366     /// # Safety
367     ///
368     /// Callers must ensure that `klevel` is null-terminated; in particular, one of the
369     /// `KERN_*`constants, for example, `KERN_CRIT`, `KERN_ALERT`, etc.
370     #[cfg_attr(not(CONFIG_PRINTK), allow(unused_variables))]
printk(&self, klevel: &[u8], msg: fmt::Arguments<'_>)371     unsafe fn printk(&self, klevel: &[u8], msg: fmt::Arguments<'_>) {
372         // SAFETY: `klevel` is null-terminated and one of the kernel constants. `self.as_raw`
373         // is valid because `self` is valid. The "%pA" format string expects a pointer to
374         // `fmt::Arguments`, which is what we're passing as the last argument.
375         #[cfg(CONFIG_PRINTK)]
376         unsafe {
377             bindings::_dev_printk(
378                 klevel.as_ptr().cast::<crate::ffi::c_char>(),
379                 self.as_raw(),
380                 c_str!("%pA").as_char_ptr(),
381                 core::ptr::from_ref(&msg).cast::<crate::ffi::c_void>(),
382             )
383         };
384     }
385 
386     /// Obtain the [`FwNode`](property::FwNode) corresponding to this [`Device`].
fwnode(&self) -> Option<&property::FwNode>387     pub fn fwnode(&self) -> Option<&property::FwNode> {
388         // SAFETY: `self` is valid.
389         let fwnode_handle = unsafe { bindings::__dev_fwnode(self.as_raw()) };
390         if fwnode_handle.is_null() {
391             return None;
392         }
393         // SAFETY: `fwnode_handle` is valid. Its lifetime is tied to `&self`. We
394         // return a reference instead of an `ARef<FwNode>` because `dev_fwnode()`
395         // doesn't increment the refcount. It is safe to cast from a
396         // `struct fwnode_handle*` to a `*const FwNode` because `FwNode` is
397         // defined as a `#[repr(transparent)]` wrapper around `fwnode_handle`.
398         Some(unsafe { &*fwnode_handle.cast() })
399     }
400 }
401 
402 // SAFETY: `Device` is a transparent wrapper of a type that doesn't depend on `Device`'s generic
403 // argument.
404 kernel::impl_device_context_deref!(unsafe { Device });
405 kernel::impl_device_context_into_aref!(Device);
406 
407 // SAFETY: Instances of `Device` are always reference-counted.
408 unsafe impl crate::types::AlwaysRefCounted for Device {
inc_ref(&self)409     fn inc_ref(&self) {
410         // SAFETY: The existence of a shared reference guarantees that the refcount is non-zero.
411         unsafe { bindings::get_device(self.as_raw()) };
412     }
413 
dec_ref(obj: ptr::NonNull<Self>)414     unsafe fn dec_ref(obj: ptr::NonNull<Self>) {
415         // SAFETY: The safety requirements guarantee that the refcount is non-zero.
416         unsafe { bindings::put_device(obj.cast().as_ptr()) }
417     }
418 }
419 
420 // SAFETY: As by the type invariant `Device` can be sent to any thread.
421 unsafe impl Send for Device {}
422 
423 // SAFETY: `Device` can be shared among threads because all immutable methods are protected by the
424 // synchronization in `struct device`.
425 unsafe impl Sync for Device {}
426 
427 /// Marker trait for the context or scope of a bus specific device.
428 ///
429 /// [`DeviceContext`] is a marker trait for types representing the context of a bus specific
430 /// [`Device`].
431 ///
432 /// The specific device context types are: [`CoreInternal`], [`Core`], [`Bound`] and [`Normal`].
433 ///
434 /// [`DeviceContext`] types are hierarchical, which means that there is a strict hierarchy that
435 /// defines which [`DeviceContext`] type can be derived from another. For instance, any
436 /// [`Device<Core>`] can dereference to a [`Device<Bound>`].
437 ///
438 /// The following enumeration illustrates the dereference hierarchy of [`DeviceContext`] types.
439 ///
440 /// - [`CoreInternal`] => [`Core`] => [`Bound`] => [`Normal`]
441 ///
442 /// Bus devices can automatically implement the dereference hierarchy by using
443 /// [`impl_device_context_deref`].
444 ///
445 /// Note that the guarantee for a [`Device`] reference to have a certain [`DeviceContext`] comes
446 /// from the specific scope the [`Device`] reference is valid in.
447 ///
448 /// [`impl_device_context_deref`]: kernel::impl_device_context_deref
449 pub trait DeviceContext: private::Sealed {}
450 
451 /// The [`Normal`] context is the default [`DeviceContext`] of any [`Device`].
452 ///
453 /// The normal context does not indicate any specific context. Any `Device<Ctx>` is also a valid
454 /// [`Device<Normal>`]. It is the only [`DeviceContext`] for which it is valid to implement
455 /// [`AlwaysRefCounted`] for.
456 ///
457 /// [`AlwaysRefCounted`]: kernel::types::AlwaysRefCounted
458 pub struct Normal;
459 
460 /// The [`Core`] context is the context of a bus specific device when it appears as argument of
461 /// any bus specific callback, such as `probe()`.
462 ///
463 /// The core context indicates that the [`Device<Core>`] reference's scope is limited to the bus
464 /// callback it appears in. It is intended to be used for synchronization purposes. Bus device
465 /// implementations can implement methods for [`Device<Core>`], such that they can only be called
466 /// from bus callbacks.
467 pub struct Core;
468 
469 /// Semantically the same as [`Core`], but reserved for internal usage of the corresponding bus
470 /// abstraction.
471 ///
472 /// The internal core context is intended to be used in exactly the same way as the [`Core`]
473 /// context, with the difference that this [`DeviceContext`] is internal to the corresponding bus
474 /// abstraction.
475 ///
476 /// This context mainly exists to share generic [`Device`] infrastructure that should only be called
477 /// from bus callbacks with bus abstractions, but without making them accessible for drivers.
478 pub struct CoreInternal;
479 
480 /// The [`Bound`] context is the [`DeviceContext`] of a bus specific device when it is guaranteed to
481 /// be bound to a driver.
482 ///
483 /// The bound context indicates that for the entire duration of the lifetime of a [`Device<Bound>`]
484 /// reference, the [`Device`] is guaranteed to be bound to a driver.
485 ///
486 /// Some APIs, such as [`dma::CoherentAllocation`] or [`Devres`] rely on the [`Device`] to be bound,
487 /// which can be proven with the [`Bound`] device context.
488 ///
489 /// Any abstraction that can guarantee a scope where the corresponding bus device is bound, should
490 /// provide a [`Device<Bound>`] reference to its users for this scope. This allows users to benefit
491 /// from optimizations for accessing device resources, see also [`Devres::access`].
492 ///
493 /// [`Devres`]: kernel::devres::Devres
494 /// [`Devres::access`]: kernel::devres::Devres::access
495 /// [`dma::CoherentAllocation`]: kernel::dma::CoherentAllocation
496 pub struct Bound;
497 
498 mod private {
499     pub trait Sealed {}
500 
501     impl Sealed for super::Bound {}
502     impl Sealed for super::Core {}
503     impl Sealed for super::CoreInternal {}
504     impl Sealed for super::Normal {}
505 }
506 
507 impl DeviceContext for Bound {}
508 impl DeviceContext for Core {}
509 impl DeviceContext for CoreInternal {}
510 impl DeviceContext for Normal {}
511 
512 /// # Safety
513 ///
514 /// The type given as `$device` must be a transparent wrapper of a type that doesn't depend on the
515 /// generic argument of `$device`.
516 #[doc(hidden)]
517 #[macro_export]
518 macro_rules! __impl_device_context_deref {
519     (unsafe { $device:ident, $src:ty => $dst:ty }) => {
520         impl ::core::ops::Deref for $device<$src> {
521             type Target = $device<$dst>;
522 
523             fn deref(&self) -> &Self::Target {
524                 let ptr: *const Self = self;
525 
526                 // CAST: `$device<$src>` and `$device<$dst>` transparently wrap the same type by the
527                 // safety requirement of the macro.
528                 let ptr = ptr.cast::<Self::Target>();
529 
530                 // SAFETY: `ptr` was derived from `&self`.
531                 unsafe { &*ptr }
532             }
533         }
534     };
535 }
536 
537 /// Implement [`core::ops::Deref`] traits for allowed [`DeviceContext`] conversions of a (bus
538 /// specific) device.
539 ///
540 /// # Safety
541 ///
542 /// The type given as `$device` must be a transparent wrapper of a type that doesn't depend on the
543 /// generic argument of `$device`.
544 #[macro_export]
545 macro_rules! impl_device_context_deref {
546     (unsafe { $device:ident }) => {
547         // SAFETY: This macro has the exact same safety requirement as
548         // `__impl_device_context_deref!`.
549         ::kernel::__impl_device_context_deref!(unsafe {
550             $device,
551             $crate::device::CoreInternal => $crate::device::Core
552         });
553 
554         // SAFETY: This macro has the exact same safety requirement as
555         // `__impl_device_context_deref!`.
556         ::kernel::__impl_device_context_deref!(unsafe {
557             $device,
558             $crate::device::Core => $crate::device::Bound
559         });
560 
561         // SAFETY: This macro has the exact same safety requirement as
562         // `__impl_device_context_deref!`.
563         ::kernel::__impl_device_context_deref!(unsafe {
564             $device,
565             $crate::device::Bound => $crate::device::Normal
566         });
567     };
568 }
569 
570 #[doc(hidden)]
571 #[macro_export]
572 macro_rules! __impl_device_context_into_aref {
573     ($src:ty, $device:tt) => {
574         impl ::core::convert::From<&$device<$src>> for $crate::types::ARef<$device> {
575             fn from(dev: &$device<$src>) -> Self {
576                 (&**dev).into()
577             }
578         }
579     };
580 }
581 
582 /// Implement [`core::convert::From`], such that all `&Device<Ctx>` can be converted to an
583 /// `ARef<Device>`.
584 #[macro_export]
585 macro_rules! impl_device_context_into_aref {
586     ($device:tt) => {
587         ::kernel::__impl_device_context_into_aref!($crate::device::CoreInternal, $device);
588         ::kernel::__impl_device_context_into_aref!($crate::device::Core, $device);
589         ::kernel::__impl_device_context_into_aref!($crate::device::Bound, $device);
590     };
591 }
592 
593 #[doc(hidden)]
594 #[macro_export]
595 macro_rules! dev_printk {
596     ($method:ident, $dev:expr, $($f:tt)*) => {
597         {
598             ($dev).$method(::core::format_args!($($f)*));
599         }
600     }
601 }
602 
603 /// Prints an emergency-level message (level 0) prefixed with device information.
604 ///
605 /// This level should be used if the system is unusable.
606 ///
607 /// Equivalent to the kernel's `dev_emerg` macro.
608 ///
609 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
610 /// [`core::fmt`] and [`std::format!`].
611 ///
612 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
613 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
614 ///
615 /// # Examples
616 ///
617 /// ```
618 /// # use kernel::device::Device;
619 ///
620 /// fn example(dev: &Device) {
621 ///     dev_emerg!(dev, "hello {}\n", "there");
622 /// }
623 /// ```
624 #[macro_export]
625 macro_rules! dev_emerg {
626     ($($f:tt)*) => { $crate::dev_printk!(pr_emerg, $($f)*); }
627 }
628 
629 /// Prints an alert-level message (level 1) prefixed with device information.
630 ///
631 /// This level should be used if action must be taken immediately.
632 ///
633 /// Equivalent to the kernel's `dev_alert` macro.
634 ///
635 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
636 /// [`core::fmt`] and [`std::format!`].
637 ///
638 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
639 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
640 ///
641 /// # Examples
642 ///
643 /// ```
644 /// # use kernel::device::Device;
645 ///
646 /// fn example(dev: &Device) {
647 ///     dev_alert!(dev, "hello {}\n", "there");
648 /// }
649 /// ```
650 #[macro_export]
651 macro_rules! dev_alert {
652     ($($f:tt)*) => { $crate::dev_printk!(pr_alert, $($f)*); }
653 }
654 
655 /// Prints a critical-level message (level 2) prefixed with device information.
656 ///
657 /// This level should be used in critical conditions.
658 ///
659 /// Equivalent to the kernel's `dev_crit` macro.
660 ///
661 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
662 /// [`core::fmt`] and [`std::format!`].
663 ///
664 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
665 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
666 ///
667 /// # Examples
668 ///
669 /// ```
670 /// # use kernel::device::Device;
671 ///
672 /// fn example(dev: &Device) {
673 ///     dev_crit!(dev, "hello {}\n", "there");
674 /// }
675 /// ```
676 #[macro_export]
677 macro_rules! dev_crit {
678     ($($f:tt)*) => { $crate::dev_printk!(pr_crit, $($f)*); }
679 }
680 
681 /// Prints an error-level message (level 3) prefixed with device information.
682 ///
683 /// This level should be used in error conditions.
684 ///
685 /// Equivalent to the kernel's `dev_err` macro.
686 ///
687 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
688 /// [`core::fmt`] and [`std::format!`].
689 ///
690 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
691 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
692 ///
693 /// # Examples
694 ///
695 /// ```
696 /// # use kernel::device::Device;
697 ///
698 /// fn example(dev: &Device) {
699 ///     dev_err!(dev, "hello {}\n", "there");
700 /// }
701 /// ```
702 #[macro_export]
703 macro_rules! dev_err {
704     ($($f:tt)*) => { $crate::dev_printk!(pr_err, $($f)*); }
705 }
706 
707 /// Prints a warning-level message (level 4) prefixed with device information.
708 ///
709 /// This level should be used in warning conditions.
710 ///
711 /// Equivalent to the kernel's `dev_warn` macro.
712 ///
713 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
714 /// [`core::fmt`] and [`std::format!`].
715 ///
716 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
717 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
718 ///
719 /// # Examples
720 ///
721 /// ```
722 /// # use kernel::device::Device;
723 ///
724 /// fn example(dev: &Device) {
725 ///     dev_warn!(dev, "hello {}\n", "there");
726 /// }
727 /// ```
728 #[macro_export]
729 macro_rules! dev_warn {
730     ($($f:tt)*) => { $crate::dev_printk!(pr_warn, $($f)*); }
731 }
732 
733 /// Prints a notice-level message (level 5) prefixed with device information.
734 ///
735 /// This level should be used in normal but significant conditions.
736 ///
737 /// Equivalent to the kernel's `dev_notice` macro.
738 ///
739 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
740 /// [`core::fmt`] and [`std::format!`].
741 ///
742 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
743 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
744 ///
745 /// # Examples
746 ///
747 /// ```
748 /// # use kernel::device::Device;
749 ///
750 /// fn example(dev: &Device) {
751 ///     dev_notice!(dev, "hello {}\n", "there");
752 /// }
753 /// ```
754 #[macro_export]
755 macro_rules! dev_notice {
756     ($($f:tt)*) => { $crate::dev_printk!(pr_notice, $($f)*); }
757 }
758 
759 /// Prints an info-level message (level 6) prefixed with device information.
760 ///
761 /// This level should be used for informational messages.
762 ///
763 /// Equivalent to the kernel's `dev_info` macro.
764 ///
765 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
766 /// [`core::fmt`] and [`std::format!`].
767 ///
768 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
769 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
770 ///
771 /// # Examples
772 ///
773 /// ```
774 /// # use kernel::device::Device;
775 ///
776 /// fn example(dev: &Device) {
777 ///     dev_info!(dev, "hello {}\n", "there");
778 /// }
779 /// ```
780 #[macro_export]
781 macro_rules! dev_info {
782     ($($f:tt)*) => { $crate::dev_printk!(pr_info, $($f)*); }
783 }
784 
785 /// Prints a debug-level message (level 7) prefixed with device information.
786 ///
787 /// This level should be used for debug messages.
788 ///
789 /// Equivalent to the kernel's `dev_dbg` macro, except that it doesn't support dynamic debug yet.
790 ///
791 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
792 /// [`core::fmt`] and [`std::format!`].
793 ///
794 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
795 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
796 ///
797 /// # Examples
798 ///
799 /// ```
800 /// # use kernel::device::Device;
801 ///
802 /// fn example(dev: &Device) {
803 ///     dev_dbg!(dev, "hello {}\n", "there");
804 /// }
805 /// ```
806 #[macro_export]
807 macro_rules! dev_dbg {
808     ($($f:tt)*) => { $crate::dev_printk!(pr_dbg, $($f)*); }
809 }
810