1 // SPDX-License-Identifier: GPL-2.0 2 3 //! CPU frequency scaling. 4 //! 5 //! This module provides rust abstractions for interacting with the cpufreq subsystem. 6 //! 7 //! C header: [`include/linux/cpufreq.h`](srctree/include/linux/cpufreq.h) 8 //! 9 //! Reference: <https://docs.kernel.org/admin-guide/pm/cpufreq.html> 10 11 use crate::{ 12 clk::Hertz, 13 cpumask, 14 device::{Bound, Device}, 15 devres::Devres, 16 error::{code::*, from_err_ptr, from_result, to_result, Result, VTABLE_DEFAULT_ERROR}, 17 ffi::{c_char, c_ulong}, 18 prelude::*, 19 types::ForeignOwnable, 20 types::Opaque, 21 }; 22 23 #[cfg(CONFIG_COMMON_CLK)] 24 use crate::clk::Clk; 25 26 use core::{ 27 cell::UnsafeCell, 28 marker::PhantomData, 29 mem::MaybeUninit, 30 ops::{Deref, DerefMut}, 31 pin::Pin, 32 ptr, 33 }; 34 35 use macros::vtable; 36 37 /// Maximum length of CPU frequency driver's name. 38 const CPUFREQ_NAME_LEN: usize = bindings::CPUFREQ_NAME_LEN as usize; 39 40 /// Default transition latency value in nanoseconds. 41 pub const ETERNAL_LATENCY_NS: u32 = bindings::CPUFREQ_ETERNAL as u32; 42 43 /// CPU frequency driver flags. 44 pub mod flags { 45 /// Driver needs to update internal limits even if frequency remains unchanged. 46 pub const NEED_UPDATE_LIMITS: u16 = 1 << 0; 47 48 /// Platform where constants like `loops_per_jiffy` are unaffected by frequency changes. 49 pub const CONST_LOOPS: u16 = 1 << 1; 50 51 /// Register driver as a thermal cooling device automatically. 52 pub const IS_COOLING_DEV: u16 = 1 << 2; 53 54 /// Supports multiple clock domains with per-policy governors in `cpu/cpuN/cpufreq/`. 55 pub const HAVE_GOVERNOR_PER_POLICY: u16 = 1 << 3; 56 57 /// Allows post-change notifications outside of the `target()` routine. 58 pub const ASYNC_NOTIFICATION: u16 = 1 << 4; 59 60 /// Ensure CPU starts at a valid frequency from the driver's freq-table. 61 pub const NEED_INITIAL_FREQ_CHECK: u16 = 1 << 5; 62 63 /// Disallow governors with `dynamic_switching` capability. 64 pub const NO_AUTO_DYNAMIC_SWITCHING: u16 = 1 << 6; 65 } 66 67 /// Relations from the C code. 68 const CPUFREQ_RELATION_L: u32 = 0; 69 const CPUFREQ_RELATION_H: u32 = 1; 70 const CPUFREQ_RELATION_C: u32 = 2; 71 72 /// Can be used with any of the above values. 73 const CPUFREQ_RELATION_E: u32 = 1 << 2; 74 75 /// CPU frequency selection relations. 76 /// 77 /// CPU frequency selection relations, each optionally marked as "efficient". 78 #[derive(Copy, Clone, Debug, Eq, PartialEq)] 79 pub enum Relation { 80 /// Select the lowest frequency at or above target. 81 Low(bool), 82 /// Select the highest frequency below or at target. 83 High(bool), 84 /// Select the closest frequency to the target. 85 Close(bool), 86 } 87 88 impl Relation { 89 // Construct from a C-compatible `u32` value. 90 fn new(val: u32) -> Result<Self> { 91 let efficient = val & CPUFREQ_RELATION_E != 0; 92 93 Ok(match val & !CPUFREQ_RELATION_E { 94 CPUFREQ_RELATION_L => Self::Low(efficient), 95 CPUFREQ_RELATION_H => Self::High(efficient), 96 CPUFREQ_RELATION_C => Self::Close(efficient), 97 _ => return Err(EINVAL), 98 }) 99 } 100 } 101 102 impl From<Relation> for u32 { 103 // Convert to a C-compatible `u32` value. 104 fn from(rel: Relation) -> Self { 105 let (mut val, efficient) = match rel { 106 Relation::Low(e) => (CPUFREQ_RELATION_L, e), 107 Relation::High(e) => (CPUFREQ_RELATION_H, e), 108 Relation::Close(e) => (CPUFREQ_RELATION_C, e), 109 }; 110 111 if efficient { 112 val |= CPUFREQ_RELATION_E; 113 } 114 115 val 116 } 117 } 118 119 /// Policy data. 120 /// 121 /// Rust abstraction for the C `struct cpufreq_policy_data`. 122 /// 123 /// # Invariants 124 /// 125 /// A [`PolicyData`] instance always corresponds to a valid C `struct cpufreq_policy_data`. 126 /// 127 /// The callers must ensure that the `struct cpufreq_policy_data` is valid for access and remains 128 /// valid for the lifetime of the returned reference. 129 #[repr(transparent)] 130 pub struct PolicyData(Opaque<bindings::cpufreq_policy_data>); 131 132 impl PolicyData { 133 /// Creates a mutable reference to an existing `struct cpufreq_policy_data` pointer. 134 /// 135 /// # Safety 136 /// 137 /// The caller must ensure that `ptr` is valid for writing and remains valid for the lifetime 138 /// of the returned reference. 139 #[inline] 140 pub unsafe fn from_raw_mut<'a>(ptr: *mut bindings::cpufreq_policy_data) -> &'a mut Self { 141 // SAFETY: Guaranteed by the safety requirements of the function. 142 // 143 // INVARIANT: The caller ensures that `ptr` is valid for writing and remains valid for the 144 // lifetime of the returned reference. 145 unsafe { &mut *ptr.cast() } 146 } 147 148 /// Returns a raw pointer to the underlying C `cpufreq_policy_data`. 149 #[inline] 150 pub fn as_raw(&self) -> *mut bindings::cpufreq_policy_data { 151 let this: *const Self = self; 152 this.cast_mut().cast() 153 } 154 155 /// Wrapper for `cpufreq_generic_frequency_table_verify`. 156 #[inline] 157 pub fn generic_verify(&self) -> Result { 158 // SAFETY: By the type invariant, the pointer stored in `self` is valid. 159 to_result(unsafe { bindings::cpufreq_generic_frequency_table_verify(self.as_raw()) }) 160 } 161 } 162 163 /// The frequency table index. 164 /// 165 /// Represents index with a frequency table. 166 /// 167 /// # Invariants 168 /// 169 /// The index must correspond to a valid entry in the [`Table`] it is used for. 170 #[derive(Copy, Clone, PartialEq, Eq, Debug)] 171 pub struct TableIndex(usize); 172 173 impl TableIndex { 174 /// Creates an instance of [`TableIndex`]. 175 /// 176 /// # Safety 177 /// 178 /// The caller must ensure that `index` correspond to a valid entry in the [`Table`] it is used 179 /// for. 180 pub unsafe fn new(index: usize) -> Self { 181 // INVARIANT: The caller ensures that `index` correspond to a valid entry in the [`Table`]. 182 Self(index) 183 } 184 } 185 186 impl From<TableIndex> for usize { 187 #[inline] 188 fn from(index: TableIndex) -> Self { 189 index.0 190 } 191 } 192 193 /// CPU frequency table. 194 /// 195 /// Rust abstraction for the C `struct cpufreq_frequency_table`. 196 /// 197 /// # Invariants 198 /// 199 /// A [`Table`] instance always corresponds to a valid C `struct cpufreq_frequency_table`. 200 /// 201 /// The callers must ensure that the `struct cpufreq_frequency_table` is valid for access and 202 /// remains valid for the lifetime of the returned reference. 203 /// 204 /// ## Examples 205 /// 206 /// The following example demonstrates how to read a frequency value from [`Table`]. 207 /// 208 /// ``` 209 /// use kernel::cpufreq::{Policy, TableIndex}; 210 /// 211 /// fn show_freq(policy: &Policy) -> Result { 212 /// let table = policy.freq_table()?; 213 /// 214 /// // SAFETY: Index is a valid entry in the table. 215 /// let index = unsafe { TableIndex::new(0) }; 216 /// 217 /// pr_info!("The frequency at index 0 is: {:?}\n", table.freq(index)?); 218 /// pr_info!("The flags at index 0 is: {}\n", table.flags(index)); 219 /// pr_info!("The data at index 0 is: {}\n", table.data(index)); 220 /// Ok(()) 221 /// } 222 /// ``` 223 #[repr(transparent)] 224 pub struct Table(Opaque<bindings::cpufreq_frequency_table>); 225 226 impl Table { 227 /// Creates a reference to an existing C `struct cpufreq_frequency_table` pointer. 228 /// 229 /// # Safety 230 /// 231 /// The caller must ensure that `ptr` is valid for reading and remains valid for the lifetime 232 /// of the returned reference. 233 #[inline] 234 pub unsafe fn from_raw<'a>(ptr: *const bindings::cpufreq_frequency_table) -> &'a Self { 235 // SAFETY: Guaranteed by the safety requirements of the function. 236 // 237 // INVARIANT: The caller ensures that `ptr` is valid for reading and remains valid for the 238 // lifetime of the returned reference. 239 unsafe { &*ptr.cast() } 240 } 241 242 /// Returns the raw mutable pointer to the C `struct cpufreq_frequency_table`. 243 #[inline] 244 pub fn as_raw(&self) -> *mut bindings::cpufreq_frequency_table { 245 let this: *const Self = self; 246 this.cast_mut().cast() 247 } 248 249 /// Returns frequency at `index` in the [`Table`]. 250 #[inline] 251 pub fn freq(&self, index: TableIndex) -> Result<Hertz> { 252 // SAFETY: By the type invariant, the pointer stored in `self` is valid and `index` is 253 // guaranteed to be valid by its safety requirements. 254 Ok(Hertz::from_khz(unsafe { 255 (*self.as_raw().add(index.into())).frequency.try_into()? 256 })) 257 } 258 259 /// Returns flags at `index` in the [`Table`]. 260 #[inline] 261 pub fn flags(&self, index: TableIndex) -> u32 { 262 // SAFETY: By the type invariant, the pointer stored in `self` is valid and `index` is 263 // guaranteed to be valid by its safety requirements. 264 unsafe { (*self.as_raw().add(index.into())).flags } 265 } 266 267 /// Returns data at `index` in the [`Table`]. 268 #[inline] 269 pub fn data(&self, index: TableIndex) -> u32 { 270 // SAFETY: By the type invariant, the pointer stored in `self` is valid and `index` is 271 // guaranteed to be valid by its safety requirements. 272 unsafe { (*self.as_raw().add(index.into())).driver_data } 273 } 274 } 275 276 /// CPU frequency table owned and pinned in memory, created from a [`TableBuilder`]. 277 pub struct TableBox { 278 entries: Pin<KVec<bindings::cpufreq_frequency_table>>, 279 } 280 281 impl TableBox { 282 /// Constructs a new [`TableBox`] from a [`KVec`] of entries. 283 /// 284 /// # Errors 285 /// 286 /// Returns `EINVAL` if the entries list is empty. 287 #[inline] 288 fn new(entries: KVec<bindings::cpufreq_frequency_table>) -> Result<Self> { 289 if entries.is_empty() { 290 return Err(EINVAL); 291 } 292 293 Ok(Self { 294 // Pin the entries to memory, since we are passing its pointer to the C code. 295 entries: Pin::new(entries), 296 }) 297 } 298 299 /// Returns a raw pointer to the underlying C `cpufreq_frequency_table`. 300 #[inline] 301 fn as_raw(&self) -> *const bindings::cpufreq_frequency_table { 302 // The pointer is valid until the table gets dropped. 303 self.entries.as_ptr() 304 } 305 } 306 307 impl Deref for TableBox { 308 type Target = Table; 309 310 fn deref(&self) -> &Self::Target { 311 // SAFETY: The caller owns TableBox, it is safe to deref. 312 unsafe { Self::Target::from_raw(self.as_raw()) } 313 } 314 } 315 316 /// CPU frequency table builder. 317 /// 318 /// This is used by the CPU frequency drivers to build a frequency table dynamically. 319 /// 320 /// ## Examples 321 /// 322 /// The following example demonstrates how to create a CPU frequency table. 323 /// 324 /// ``` 325 /// use kernel::cpufreq::{TableBuilder, TableIndex}; 326 /// use kernel::clk::Hertz; 327 /// 328 /// let mut builder = TableBuilder::new(); 329 /// 330 /// // Adds few entries to the table. 331 /// builder.add(Hertz::from_mhz(700), 0, 1).unwrap(); 332 /// builder.add(Hertz::from_mhz(800), 2, 3).unwrap(); 333 /// builder.add(Hertz::from_mhz(900), 4, 5).unwrap(); 334 /// builder.add(Hertz::from_ghz(1), 6, 7).unwrap(); 335 /// 336 /// let table = builder.to_table().unwrap(); 337 /// 338 /// // SAFETY: Index values correspond to valid entries in the table. 339 /// let (index0, index2) = unsafe { (TableIndex::new(0), TableIndex::new(2)) }; 340 /// 341 /// assert_eq!(table.freq(index0), Ok(Hertz::from_mhz(700))); 342 /// assert_eq!(table.flags(index0), 0); 343 /// assert_eq!(table.data(index0), 1); 344 /// 345 /// assert_eq!(table.freq(index2), Ok(Hertz::from_mhz(900))); 346 /// assert_eq!(table.flags(index2), 4); 347 /// assert_eq!(table.data(index2), 5); 348 /// ``` 349 #[derive(Default)] 350 #[repr(transparent)] 351 pub struct TableBuilder { 352 entries: KVec<bindings::cpufreq_frequency_table>, 353 } 354 355 impl TableBuilder { 356 /// Creates a new instance of [`TableBuilder`]. 357 #[inline] 358 pub fn new() -> Self { 359 Self { 360 entries: KVec::new(), 361 } 362 } 363 364 /// Adds a new entry to the table. 365 pub fn add(&mut self, freq: Hertz, flags: u32, driver_data: u32) -> Result { 366 // Adds the new entry at the end of the vector. 367 Ok(self.entries.push( 368 bindings::cpufreq_frequency_table { 369 flags, 370 driver_data, 371 frequency: freq.as_khz() as u32, 372 }, 373 GFP_KERNEL, 374 )?) 375 } 376 377 /// Consumes the [`TableBuilder`] and returns [`TableBox`]. 378 pub fn to_table(mut self) -> Result<TableBox> { 379 // Add last entry to the table. 380 self.add(Hertz(c_ulong::MAX), 0, 0)?; 381 382 TableBox::new(self.entries) 383 } 384 } 385 386 /// CPU frequency policy. 387 /// 388 /// Rust abstraction for the C `struct cpufreq_policy`. 389 /// 390 /// # Invariants 391 /// 392 /// A [`Policy`] instance always corresponds to a valid C `struct cpufreq_policy`. 393 /// 394 /// The callers must ensure that the `struct cpufreq_policy` is valid for access and remains valid 395 /// for the lifetime of the returned reference. 396 /// 397 /// ## Examples 398 /// 399 /// The following example demonstrates how to create a CPU frequency table. 400 /// 401 /// ``` 402 /// use kernel::cpufreq::{ETERNAL_LATENCY_NS, Policy}; 403 /// 404 /// fn update_policy(policy: &mut Policy) { 405 /// policy 406 /// .set_dvfs_possible_from_any_cpu(true) 407 /// .set_fast_switch_possible(true) 408 /// .set_transition_latency_ns(ETERNAL_LATENCY_NS); 409 /// 410 /// pr_info!("The policy details are: {:?}\n", (policy.cpu(), policy.cur())); 411 /// } 412 /// ``` 413 #[repr(transparent)] 414 pub struct Policy(Opaque<bindings::cpufreq_policy>); 415 416 impl Policy { 417 /// Creates a reference to an existing `struct cpufreq_policy` pointer. 418 /// 419 /// # Safety 420 /// 421 /// The caller must ensure that `ptr` is valid for reading and remains valid for the lifetime 422 /// of the returned reference. 423 #[inline] 424 pub unsafe fn from_raw<'a>(ptr: *const bindings::cpufreq_policy) -> &'a Self { 425 // SAFETY: Guaranteed by the safety requirements of the function. 426 // 427 // INVARIANT: The caller ensures that `ptr` is valid for reading and remains valid for the 428 // lifetime of the returned reference. 429 unsafe { &*ptr.cast() } 430 } 431 432 /// Creates a mutable reference to an existing `struct cpufreq_policy` pointer. 433 /// 434 /// # Safety 435 /// 436 /// The caller must ensure that `ptr` is valid for writing and remains valid for the lifetime 437 /// of the returned reference. 438 #[inline] 439 pub unsafe fn from_raw_mut<'a>(ptr: *mut bindings::cpufreq_policy) -> &'a mut Self { 440 // SAFETY: Guaranteed by the safety requirements of the function. 441 // 442 // INVARIANT: The caller ensures that `ptr` is valid for writing and remains valid for the 443 // lifetime of the returned reference. 444 unsafe { &mut *ptr.cast() } 445 } 446 447 /// Returns a raw mutable pointer to the C `struct cpufreq_policy`. 448 #[inline] 449 fn as_raw(&self) -> *mut bindings::cpufreq_policy { 450 let this: *const Self = self; 451 this.cast_mut().cast() 452 } 453 454 #[inline] 455 fn as_ref(&self) -> &bindings::cpufreq_policy { 456 // SAFETY: By the type invariant, the pointer stored in `self` is valid. 457 unsafe { &*self.as_raw() } 458 } 459 460 #[inline] 461 fn as_mut_ref(&mut self) -> &mut bindings::cpufreq_policy { 462 // SAFETY: By the type invariant, the pointer stored in `self` is valid. 463 unsafe { &mut *self.as_raw() } 464 } 465 466 /// Returns the primary CPU for the [`Policy`]. 467 #[inline] 468 pub fn cpu(&self) -> u32 { 469 self.as_ref().cpu 470 } 471 472 /// Returns the minimum frequency for the [`Policy`]. 473 #[inline] 474 pub fn min(&self) -> Hertz { 475 Hertz::from_khz(self.as_ref().min as usize) 476 } 477 478 /// Set the minimum frequency for the [`Policy`]. 479 #[inline] 480 pub fn set_min(&mut self, min: Hertz) -> &mut Self { 481 self.as_mut_ref().min = min.as_khz() as u32; 482 self 483 } 484 485 /// Returns the maximum frequency for the [`Policy`]. 486 #[inline] 487 pub fn max(&self) -> Hertz { 488 Hertz::from_khz(self.as_ref().max as usize) 489 } 490 491 /// Set the maximum frequency for the [`Policy`]. 492 #[inline] 493 pub fn set_max(&mut self, max: Hertz) -> &mut Self { 494 self.as_mut_ref().max = max.as_khz() as u32; 495 self 496 } 497 498 /// Returns the current frequency for the [`Policy`]. 499 #[inline] 500 pub fn cur(&self) -> Hertz { 501 Hertz::from_khz(self.as_ref().cur as usize) 502 } 503 504 /// Returns the suspend frequency for the [`Policy`]. 505 #[inline] 506 pub fn suspend_freq(&self) -> Hertz { 507 Hertz::from_khz(self.as_ref().suspend_freq as usize) 508 } 509 510 /// Sets the suspend frequency for the [`Policy`]. 511 #[inline] 512 pub fn set_suspend_freq(&mut self, freq: Hertz) -> &mut Self { 513 self.as_mut_ref().suspend_freq = freq.as_khz() as u32; 514 self 515 } 516 517 /// Provides a wrapper to the generic suspend routine. 518 #[inline] 519 pub fn generic_suspend(&mut self) -> Result { 520 // SAFETY: By the type invariant, the pointer stored in `self` is valid. 521 to_result(unsafe { bindings::cpufreq_generic_suspend(self.as_mut_ref()) }) 522 } 523 524 /// Provides a wrapper to the generic get routine. 525 #[inline] 526 pub fn generic_get(&self) -> Result<u32> { 527 // SAFETY: By the type invariant, the pointer stored in `self` is valid. 528 Ok(unsafe { bindings::cpufreq_generic_get(self.cpu()) }) 529 } 530 531 /// Provides a wrapper to the register with energy model using the OPP core. 532 #[cfg(CONFIG_PM_OPP)] 533 #[inline] 534 pub fn register_em_opp(&mut self) { 535 // SAFETY: By the type invariant, the pointer stored in `self` is valid. 536 unsafe { bindings::cpufreq_register_em_with_opp(self.as_mut_ref()) }; 537 } 538 539 /// Gets [`cpumask::Cpumask`] for a cpufreq [`Policy`]. 540 #[inline] 541 pub fn cpus(&mut self) -> &mut cpumask::Cpumask { 542 // SAFETY: The pointer to `cpus` is valid for writing and remains valid for the lifetime of 543 // the returned reference. 544 unsafe { cpumask::CpumaskVar::as_mut_ref(&mut self.as_mut_ref().cpus) } 545 } 546 547 /// Sets clock for the [`Policy`]. 548 /// 549 /// # Safety 550 /// 551 /// The caller must guarantee that the returned [`Clk`] is not dropped while it is getting used 552 /// by the C code. 553 #[cfg(CONFIG_COMMON_CLK)] 554 pub unsafe fn set_clk(&mut self, dev: &Device, name: Option<&CStr>) -> Result<Clk> { 555 let clk = Clk::get(dev, name)?; 556 self.as_mut_ref().clk = clk.as_raw(); 557 Ok(clk) 558 } 559 560 /// Allows / disallows frequency switching code to run on any CPU. 561 #[inline] 562 pub fn set_dvfs_possible_from_any_cpu(&mut self, val: bool) -> &mut Self { 563 self.as_mut_ref().dvfs_possible_from_any_cpu = val; 564 self 565 } 566 567 /// Returns if fast switching of frequencies is possible or not. 568 #[inline] 569 pub fn fast_switch_possible(&self) -> bool { 570 self.as_ref().fast_switch_possible 571 } 572 573 /// Enables / disables fast frequency switching. 574 #[inline] 575 pub fn set_fast_switch_possible(&mut self, val: bool) -> &mut Self { 576 self.as_mut_ref().fast_switch_possible = val; 577 self 578 } 579 580 /// Sets transition latency (in nanoseconds) for the [`Policy`]. 581 #[inline] 582 pub fn set_transition_latency_ns(&mut self, latency_ns: u32) -> &mut Self { 583 self.as_mut_ref().cpuinfo.transition_latency = latency_ns; 584 self 585 } 586 587 /// Sets cpuinfo `min_freq`. 588 #[inline] 589 pub fn set_cpuinfo_min_freq(&mut self, min_freq: Hertz) -> &mut Self { 590 self.as_mut_ref().cpuinfo.min_freq = min_freq.as_khz() as u32; 591 self 592 } 593 594 /// Sets cpuinfo `max_freq`. 595 #[inline] 596 pub fn set_cpuinfo_max_freq(&mut self, max_freq: Hertz) -> &mut Self { 597 self.as_mut_ref().cpuinfo.max_freq = max_freq.as_khz() as u32; 598 self 599 } 600 601 /// Set `transition_delay_us`, i.e. the minimum time between successive frequency change 602 /// requests. 603 #[inline] 604 pub fn set_transition_delay_us(&mut self, transition_delay_us: u32) -> &mut Self { 605 self.as_mut_ref().transition_delay_us = transition_delay_us; 606 self 607 } 608 609 /// Returns reference to the CPU frequency [`Table`] for the [`Policy`]. 610 pub fn freq_table(&self) -> Result<&Table> { 611 if self.as_ref().freq_table.is_null() { 612 return Err(EINVAL); 613 } 614 615 // SAFETY: The `freq_table` is guaranteed to be valid for reading and remains valid for the 616 // lifetime of the returned reference. 617 Ok(unsafe { Table::from_raw(self.as_ref().freq_table) }) 618 } 619 620 /// Sets the CPU frequency [`Table`] for the [`Policy`]. 621 /// 622 /// # Safety 623 /// 624 /// The caller must guarantee that the [`Table`] is not dropped while it is getting used by the 625 /// C code. 626 #[inline] 627 pub unsafe fn set_freq_table(&mut self, table: &Table) -> &mut Self { 628 self.as_mut_ref().freq_table = table.as_raw(); 629 self 630 } 631 632 /// Returns the [`Policy`]'s private data. 633 pub fn data<T: ForeignOwnable>(&mut self) -> Option<<T>::Borrowed<'_>> { 634 if self.as_ref().driver_data.is_null() { 635 None 636 } else { 637 // SAFETY: The data is earlier set from [`set_data`]. 638 Some(unsafe { T::borrow(self.as_ref().driver_data.cast()) }) 639 } 640 } 641 642 /// Sets the private data of the [`Policy`] using a foreign-ownable wrapper. 643 /// 644 /// # Errors 645 /// 646 /// Returns `EBUSY` if private data is already set. 647 fn set_data<T: ForeignOwnable>(&mut self, data: T) -> Result { 648 if self.as_ref().driver_data.is_null() { 649 // Transfer the ownership of the data to the foreign interface. 650 self.as_mut_ref().driver_data = <T as ForeignOwnable>::into_foreign(data) as _; 651 Ok(()) 652 } else { 653 Err(EBUSY) 654 } 655 } 656 657 /// Clears and returns ownership of the private data. 658 fn clear_data<T: ForeignOwnable>(&mut self) -> Option<T> { 659 if self.as_ref().driver_data.is_null() { 660 None 661 } else { 662 let data = Some( 663 // SAFETY: The data is earlier set by us from [`set_data`]. It is safe to take 664 // back the ownership of the data from the foreign interface. 665 unsafe { <T as ForeignOwnable>::from_foreign(self.as_ref().driver_data.cast()) }, 666 ); 667 self.as_mut_ref().driver_data = ptr::null_mut(); 668 data 669 } 670 } 671 } 672 673 /// CPU frequency policy created from a CPU number. 674 /// 675 /// This struct represents the CPU frequency policy obtained for a specific CPU, providing safe 676 /// access to the underlying `cpufreq_policy` and ensuring proper cleanup when the `PolicyCpu` is 677 /// dropped. 678 struct PolicyCpu<'a>(&'a mut Policy); 679 680 impl<'a> PolicyCpu<'a> { 681 fn from_cpu(cpu: u32) -> Result<Self> { 682 // SAFETY: It is safe to call `cpufreq_cpu_get` for any valid CPU. 683 let ptr = from_err_ptr(unsafe { bindings::cpufreq_cpu_get(cpu) })?; 684 685 Ok(Self( 686 // SAFETY: The `ptr` is guaranteed to be valid and remains valid for the lifetime of 687 // the returned reference. 688 unsafe { Policy::from_raw_mut(ptr) }, 689 )) 690 } 691 } 692 693 impl<'a> Deref for PolicyCpu<'a> { 694 type Target = Policy; 695 696 fn deref(&self) -> &Self::Target { 697 self.0 698 } 699 } 700 701 impl<'a> DerefMut for PolicyCpu<'a> { 702 fn deref_mut(&mut self) -> &mut Policy { 703 self.0 704 } 705 } 706 707 impl<'a> Drop for PolicyCpu<'a> { 708 fn drop(&mut self) { 709 // SAFETY: The underlying pointer is guaranteed to be valid for the lifetime of `self`. 710 unsafe { bindings::cpufreq_cpu_put(self.0.as_raw()) }; 711 } 712 } 713 714 /// CPU frequency driver. 715 /// 716 /// Implement this trait to provide a CPU frequency driver and its callbacks. 717 /// 718 /// Reference: <https://docs.kernel.org/cpu-freq/cpu-drivers.html> 719 #[vtable] 720 pub trait Driver { 721 /// Driver's name. 722 const NAME: &'static CStr; 723 724 /// Driver's flags. 725 const FLAGS: u16; 726 727 /// Boost support. 728 const BOOST_ENABLED: bool; 729 730 /// Policy specific data. 731 /// 732 /// Require that `PData` implements `ForeignOwnable`. We guarantee to never move the underlying 733 /// wrapped data structure. 734 type PData: ForeignOwnable; 735 736 /// Driver's `init` callback. 737 fn init(policy: &mut Policy) -> Result<Self::PData>; 738 739 /// Driver's `exit` callback. 740 fn exit(_policy: &mut Policy, _data: Option<Self::PData>) -> Result { 741 build_error!(VTABLE_DEFAULT_ERROR) 742 } 743 744 /// Driver's `online` callback. 745 fn online(_policy: &mut Policy) -> Result { 746 build_error!(VTABLE_DEFAULT_ERROR) 747 } 748 749 /// Driver's `offline` callback. 750 fn offline(_policy: &mut Policy) -> Result { 751 build_error!(VTABLE_DEFAULT_ERROR) 752 } 753 754 /// Driver's `suspend` callback. 755 fn suspend(_policy: &mut Policy) -> Result { 756 build_error!(VTABLE_DEFAULT_ERROR) 757 } 758 759 /// Driver's `resume` callback. 760 fn resume(_policy: &mut Policy) -> Result { 761 build_error!(VTABLE_DEFAULT_ERROR) 762 } 763 764 /// Driver's `ready` callback. 765 fn ready(_policy: &mut Policy) { 766 build_error!(VTABLE_DEFAULT_ERROR) 767 } 768 769 /// Driver's `verify` callback. 770 fn verify(data: &mut PolicyData) -> Result; 771 772 /// Driver's `setpolicy` callback. 773 fn setpolicy(_policy: &mut Policy) -> Result { 774 build_error!(VTABLE_DEFAULT_ERROR) 775 } 776 777 /// Driver's `target` callback. 778 fn target(_policy: &mut Policy, _target_freq: u32, _relation: Relation) -> Result { 779 build_error!(VTABLE_DEFAULT_ERROR) 780 } 781 782 /// Driver's `target_index` callback. 783 fn target_index(_policy: &mut Policy, _index: TableIndex) -> Result { 784 build_error!(VTABLE_DEFAULT_ERROR) 785 } 786 787 /// Driver's `fast_switch` callback. 788 fn fast_switch(_policy: &mut Policy, _target_freq: u32) -> u32 { 789 build_error!(VTABLE_DEFAULT_ERROR) 790 } 791 792 /// Driver's `adjust_perf` callback. 793 fn adjust_perf(_policy: &mut Policy, _min_perf: usize, _target_perf: usize, _capacity: usize) { 794 build_error!(VTABLE_DEFAULT_ERROR) 795 } 796 797 /// Driver's `get_intermediate` callback. 798 fn get_intermediate(_policy: &mut Policy, _index: TableIndex) -> u32 { 799 build_error!(VTABLE_DEFAULT_ERROR) 800 } 801 802 /// Driver's `target_intermediate` callback. 803 fn target_intermediate(_policy: &mut Policy, _index: TableIndex) -> Result { 804 build_error!(VTABLE_DEFAULT_ERROR) 805 } 806 807 /// Driver's `get` callback. 808 fn get(_policy: &mut Policy) -> Result<u32> { 809 build_error!(VTABLE_DEFAULT_ERROR) 810 } 811 812 /// Driver's `update_limits` callback. 813 fn update_limits(_policy: &mut Policy) { 814 build_error!(VTABLE_DEFAULT_ERROR) 815 } 816 817 /// Driver's `bios_limit` callback. 818 fn bios_limit(_policy: &mut Policy, _limit: &mut u32) -> Result { 819 build_error!(VTABLE_DEFAULT_ERROR) 820 } 821 822 /// Driver's `set_boost` callback. 823 fn set_boost(_policy: &mut Policy, _state: i32) -> Result { 824 build_error!(VTABLE_DEFAULT_ERROR) 825 } 826 827 /// Driver's `register_em` callback. 828 fn register_em(_policy: &mut Policy) { 829 build_error!(VTABLE_DEFAULT_ERROR) 830 } 831 } 832 833 /// CPU frequency driver Registration. 834 /// 835 /// ## Examples 836 /// 837 /// The following example demonstrates how to register a cpufreq driver. 838 /// 839 /// ``` 840 /// use kernel::{ 841 /// cpufreq, 842 /// c_str, 843 /// device::{Core, Device}, 844 /// macros::vtable, 845 /// of, platform, 846 /// sync::Arc, 847 /// }; 848 /// struct SampleDevice; 849 /// 850 /// #[derive(Default)] 851 /// struct SampleDriver; 852 /// 853 /// #[vtable] 854 /// impl cpufreq::Driver for SampleDriver { 855 /// const NAME: &'static CStr = c_str!("cpufreq-sample"); 856 /// const FLAGS: u16 = cpufreq::flags::NEED_INITIAL_FREQ_CHECK | cpufreq::flags::IS_COOLING_DEV; 857 /// const BOOST_ENABLED: bool = true; 858 /// 859 /// type PData = Arc<SampleDevice>; 860 /// 861 /// fn init(policy: &mut cpufreq::Policy) -> Result<Self::PData> { 862 /// // Initialize here 863 /// Ok(Arc::new(SampleDevice, GFP_KERNEL)?) 864 /// } 865 /// 866 /// fn exit(_policy: &mut cpufreq::Policy, _data: Option<Self::PData>) -> Result { 867 /// Ok(()) 868 /// } 869 /// 870 /// fn suspend(policy: &mut cpufreq::Policy) -> Result { 871 /// policy.generic_suspend() 872 /// } 873 /// 874 /// fn verify(data: &mut cpufreq::PolicyData) -> Result { 875 /// data.generic_verify() 876 /// } 877 /// 878 /// fn target_index(policy: &mut cpufreq::Policy, index: cpufreq::TableIndex) -> Result { 879 /// // Update CPU frequency 880 /// Ok(()) 881 /// } 882 /// 883 /// fn get(policy: &mut cpufreq::Policy) -> Result<u32> { 884 /// policy.generic_get() 885 /// } 886 /// } 887 /// 888 /// impl platform::Driver for SampleDriver { 889 /// type IdInfo = (); 890 /// const OF_ID_TABLE: Option<of::IdTable<Self::IdInfo>> = None; 891 /// 892 /// fn probe( 893 /// pdev: &platform::Device<Core>, 894 /// _id_info: Option<&Self::IdInfo>, 895 /// ) -> Result<Pin<KBox<Self>>> { 896 /// cpufreq::Registration::<SampleDriver>::new_foreign_owned(pdev.as_ref())?; 897 /// Ok(KBox::new(Self {}, GFP_KERNEL)?.into()) 898 /// } 899 /// } 900 /// ``` 901 #[repr(transparent)] 902 pub struct Registration<T: Driver>(KBox<UnsafeCell<bindings::cpufreq_driver>>, PhantomData<T>); 903 904 /// SAFETY: `Registration` doesn't offer any methods or access to fields when shared between threads 905 /// or CPUs, so it is safe to share it. 906 unsafe impl<T: Driver> Sync for Registration<T> {} 907 908 #[allow(clippy::non_send_fields_in_send_ty)] 909 /// SAFETY: Registration with and unregistration from the cpufreq subsystem can happen from any 910 /// thread. 911 unsafe impl<T: Driver> Send for Registration<T> {} 912 913 impl<T: Driver> Registration<T> { 914 const VTABLE: bindings::cpufreq_driver = bindings::cpufreq_driver { 915 name: Self::copy_name(T::NAME), 916 boost_enabled: T::BOOST_ENABLED, 917 flags: T::FLAGS, 918 919 // Initialize mandatory callbacks. 920 init: Some(Self::init_callback), 921 verify: Some(Self::verify_callback), 922 923 // Initialize optional callbacks based on the traits of `T`. 924 setpolicy: if T::HAS_SETPOLICY { 925 Some(Self::setpolicy_callback) 926 } else { 927 None 928 }, 929 target: if T::HAS_TARGET { 930 Some(Self::target_callback) 931 } else { 932 None 933 }, 934 target_index: if T::HAS_TARGET_INDEX { 935 Some(Self::target_index_callback) 936 } else { 937 None 938 }, 939 fast_switch: if T::HAS_FAST_SWITCH { 940 Some(Self::fast_switch_callback) 941 } else { 942 None 943 }, 944 adjust_perf: if T::HAS_ADJUST_PERF { 945 Some(Self::adjust_perf_callback) 946 } else { 947 None 948 }, 949 get_intermediate: if T::HAS_GET_INTERMEDIATE { 950 Some(Self::get_intermediate_callback) 951 } else { 952 None 953 }, 954 target_intermediate: if T::HAS_TARGET_INTERMEDIATE { 955 Some(Self::target_intermediate_callback) 956 } else { 957 None 958 }, 959 get: if T::HAS_GET { 960 Some(Self::get_callback) 961 } else { 962 None 963 }, 964 update_limits: if T::HAS_UPDATE_LIMITS { 965 Some(Self::update_limits_callback) 966 } else { 967 None 968 }, 969 bios_limit: if T::HAS_BIOS_LIMIT { 970 Some(Self::bios_limit_callback) 971 } else { 972 None 973 }, 974 online: if T::HAS_ONLINE { 975 Some(Self::online_callback) 976 } else { 977 None 978 }, 979 offline: if T::HAS_OFFLINE { 980 Some(Self::offline_callback) 981 } else { 982 None 983 }, 984 exit: if T::HAS_EXIT { 985 Some(Self::exit_callback) 986 } else { 987 None 988 }, 989 suspend: if T::HAS_SUSPEND { 990 Some(Self::suspend_callback) 991 } else { 992 None 993 }, 994 resume: if T::HAS_RESUME { 995 Some(Self::resume_callback) 996 } else { 997 None 998 }, 999 ready: if T::HAS_READY { 1000 Some(Self::ready_callback) 1001 } else { 1002 None 1003 }, 1004 set_boost: if T::HAS_SET_BOOST { 1005 Some(Self::set_boost_callback) 1006 } else { 1007 None 1008 }, 1009 register_em: if T::HAS_REGISTER_EM { 1010 Some(Self::register_em_callback) 1011 } else { 1012 None 1013 }, 1014 // SAFETY: All zeros is a valid value for `bindings::cpufreq_driver`. 1015 ..unsafe { MaybeUninit::zeroed().assume_init() } 1016 }; 1017 1018 const fn copy_name(name: &'static CStr) -> [c_char; CPUFREQ_NAME_LEN] { 1019 let src = name.as_bytes_with_nul(); 1020 let mut dst = [0; CPUFREQ_NAME_LEN]; 1021 1022 build_assert!(src.len() <= CPUFREQ_NAME_LEN); 1023 1024 let mut i = 0; 1025 while i < src.len() { 1026 dst[i] = src[i]; 1027 i += 1; 1028 } 1029 1030 dst 1031 } 1032 1033 /// Registers a CPU frequency driver with the cpufreq core. 1034 pub fn new() -> Result<Self> { 1035 // We can't use `&Self::VTABLE` directly because the cpufreq core modifies some fields in 1036 // the C `struct cpufreq_driver`, which requires a mutable reference. 1037 let mut drv = KBox::new(UnsafeCell::new(Self::VTABLE), GFP_KERNEL)?; 1038 1039 // SAFETY: `drv` is guaranteed to be valid for the lifetime of `Registration`. 1040 to_result(unsafe { bindings::cpufreq_register_driver(drv.get_mut()) })?; 1041 1042 Ok(Self(drv, PhantomData)) 1043 } 1044 1045 /// Same as [`Registration::new`], but does not return a [`Registration`] instance. 1046 /// 1047 /// Instead the [`Registration`] is owned by [`Devres`] and will be revoked / dropped, once the 1048 /// device is detached. 1049 pub fn new_foreign_owned(dev: &Device<Bound>) -> Result { 1050 Devres::new_foreign_owned(dev, Self::new()?, GFP_KERNEL) 1051 } 1052 } 1053 1054 /// CPU frequency driver callbacks. 1055 impl<T: Driver> Registration<T> { 1056 /// Driver's `init` callback. 1057 /// 1058 /// SAFETY: Called from C. Inputs must be valid pointers. 1059 extern "C" fn init_callback(ptr: *mut bindings::cpufreq_policy) -> kernel::ffi::c_int { 1060 from_result(|| { 1061 // SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the 1062 // lifetime of `policy`. 1063 let policy = unsafe { Policy::from_raw_mut(ptr) }; 1064 1065 let data = T::init(policy)?; 1066 policy.set_data(data)?; 1067 Ok(0) 1068 }) 1069 } 1070 1071 /// Driver's `exit` callback. 1072 /// 1073 /// SAFETY: Called from C. Inputs must be valid pointers. 1074 extern "C" fn exit_callback(ptr: *mut bindings::cpufreq_policy) { 1075 // SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the 1076 // lifetime of `policy`. 1077 let policy = unsafe { Policy::from_raw_mut(ptr) }; 1078 1079 let data = policy.clear_data(); 1080 let _ = T::exit(policy, data); 1081 } 1082 1083 /// Driver's `online` callback. 1084 /// 1085 /// SAFETY: Called from C. Inputs must be valid pointers. 1086 extern "C" fn online_callback(ptr: *mut bindings::cpufreq_policy) -> kernel::ffi::c_int { 1087 from_result(|| { 1088 // SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the 1089 // lifetime of `policy`. 1090 let policy = unsafe { Policy::from_raw_mut(ptr) }; 1091 T::online(policy).map(|()| 0) 1092 }) 1093 } 1094 1095 /// Driver's `offline` callback. 1096 /// 1097 /// SAFETY: Called from C. Inputs must be valid pointers. 1098 extern "C" fn offline_callback(ptr: *mut bindings::cpufreq_policy) -> kernel::ffi::c_int { 1099 from_result(|| { 1100 // SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the 1101 // lifetime of `policy`. 1102 let policy = unsafe { Policy::from_raw_mut(ptr) }; 1103 T::offline(policy).map(|()| 0) 1104 }) 1105 } 1106 1107 /// Driver's `suspend` callback. 1108 /// 1109 /// SAFETY: Called from C. Inputs must be valid pointers. 1110 extern "C" fn suspend_callback(ptr: *mut bindings::cpufreq_policy) -> kernel::ffi::c_int { 1111 from_result(|| { 1112 // SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the 1113 // lifetime of `policy`. 1114 let policy = unsafe { Policy::from_raw_mut(ptr) }; 1115 T::suspend(policy).map(|()| 0) 1116 }) 1117 } 1118 1119 /// Driver's `resume` callback. 1120 /// 1121 /// SAFETY: Called from C. Inputs must be valid pointers. 1122 extern "C" fn resume_callback(ptr: *mut bindings::cpufreq_policy) -> kernel::ffi::c_int { 1123 from_result(|| { 1124 // SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the 1125 // lifetime of `policy`. 1126 let policy = unsafe { Policy::from_raw_mut(ptr) }; 1127 T::resume(policy).map(|()| 0) 1128 }) 1129 } 1130 1131 /// Driver's `ready` callback. 1132 /// 1133 /// SAFETY: Called from C. Inputs must be valid pointers. 1134 extern "C" fn ready_callback(ptr: *mut bindings::cpufreq_policy) { 1135 // SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the 1136 // lifetime of `policy`. 1137 let policy = unsafe { Policy::from_raw_mut(ptr) }; 1138 T::ready(policy); 1139 } 1140 1141 /// Driver's `verify` callback. 1142 /// 1143 /// SAFETY: Called from C. Inputs must be valid pointers. 1144 extern "C" fn verify_callback(ptr: *mut bindings::cpufreq_policy_data) -> kernel::ffi::c_int { 1145 from_result(|| { 1146 // SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the 1147 // lifetime of `policy`. 1148 let data = unsafe { PolicyData::from_raw_mut(ptr) }; 1149 T::verify(data).map(|()| 0) 1150 }) 1151 } 1152 1153 /// Driver's `setpolicy` callback. 1154 /// 1155 /// SAFETY: Called from C. Inputs must be valid pointers. 1156 extern "C" fn setpolicy_callback(ptr: *mut bindings::cpufreq_policy) -> kernel::ffi::c_int { 1157 from_result(|| { 1158 // SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the 1159 // lifetime of `policy`. 1160 let policy = unsafe { Policy::from_raw_mut(ptr) }; 1161 T::setpolicy(policy).map(|()| 0) 1162 }) 1163 } 1164 1165 /// Driver's `target` callback. 1166 /// 1167 /// SAFETY: Called from C. Inputs must be valid pointers. 1168 extern "C" fn target_callback( 1169 ptr: *mut bindings::cpufreq_policy, 1170 target_freq: u32, 1171 relation: u32, 1172 ) -> kernel::ffi::c_int { 1173 from_result(|| { 1174 // SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the 1175 // lifetime of `policy`. 1176 let policy = unsafe { Policy::from_raw_mut(ptr) }; 1177 T::target(policy, target_freq, Relation::new(relation)?).map(|()| 0) 1178 }) 1179 } 1180 1181 /// Driver's `target_index` callback. 1182 /// 1183 /// SAFETY: Called from C. Inputs must be valid pointers. 1184 extern "C" fn target_index_callback( 1185 ptr: *mut bindings::cpufreq_policy, 1186 index: u32, 1187 ) -> kernel::ffi::c_int { 1188 from_result(|| { 1189 // SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the 1190 // lifetime of `policy`. 1191 let policy = unsafe { Policy::from_raw_mut(ptr) }; 1192 1193 // SAFETY: The C code guarantees that `index` corresponds to a valid entry in the 1194 // frequency table. 1195 let index = unsafe { TableIndex::new(index as usize) }; 1196 1197 T::target_index(policy, index).map(|()| 0) 1198 }) 1199 } 1200 1201 /// Driver's `fast_switch` callback. 1202 /// 1203 /// SAFETY: Called from C. Inputs must be valid pointers. 1204 extern "C" fn fast_switch_callback( 1205 ptr: *mut bindings::cpufreq_policy, 1206 target_freq: u32, 1207 ) -> kernel::ffi::c_uint { 1208 // SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the 1209 // lifetime of `policy`. 1210 let policy = unsafe { Policy::from_raw_mut(ptr) }; 1211 T::fast_switch(policy, target_freq) 1212 } 1213 1214 /// Driver's `adjust_perf` callback. 1215 extern "C" fn adjust_perf_callback( 1216 cpu: u32, 1217 min_perf: usize, 1218 target_perf: usize, 1219 capacity: usize, 1220 ) { 1221 if let Ok(mut policy) = PolicyCpu::from_cpu(cpu) { 1222 T::adjust_perf(&mut policy, min_perf, target_perf, capacity); 1223 } 1224 } 1225 1226 /// Driver's `get_intermediate` callback. 1227 /// 1228 /// SAFETY: Called from C. Inputs must be valid pointers. 1229 extern "C" fn get_intermediate_callback( 1230 ptr: *mut bindings::cpufreq_policy, 1231 index: u32, 1232 ) -> kernel::ffi::c_uint { 1233 // SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the 1234 // lifetime of `policy`. 1235 let policy = unsafe { Policy::from_raw_mut(ptr) }; 1236 1237 // SAFETY: The C code guarantees that `index` corresponds to a valid entry in the 1238 // frequency table. 1239 let index = unsafe { TableIndex::new(index as usize) }; 1240 1241 T::get_intermediate(policy, index) 1242 } 1243 1244 /// Driver's `target_intermediate` callback. 1245 /// 1246 /// SAFETY: Called from C. Inputs must be valid pointers. 1247 extern "C" fn target_intermediate_callback( 1248 ptr: *mut bindings::cpufreq_policy, 1249 index: u32, 1250 ) -> kernel::ffi::c_int { 1251 from_result(|| { 1252 // SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the 1253 // lifetime of `policy`. 1254 let policy = unsafe { Policy::from_raw_mut(ptr) }; 1255 1256 // SAFETY: The C code guarantees that `index` corresponds to a valid entry in the 1257 // frequency table. 1258 let index = unsafe { TableIndex::new(index as usize) }; 1259 1260 T::target_intermediate(policy, index).map(|()| 0) 1261 }) 1262 } 1263 1264 /// Driver's `get` callback. 1265 extern "C" fn get_callback(cpu: u32) -> kernel::ffi::c_uint { 1266 PolicyCpu::from_cpu(cpu).map_or(0, |mut policy| T::get(&mut policy).map_or(0, |f| f)) 1267 } 1268 1269 /// Driver's `update_limit` callback. 1270 extern "C" fn update_limits_callback(ptr: *mut bindings::cpufreq_policy) { 1271 // SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the 1272 // lifetime of `policy`. 1273 let policy = unsafe { Policy::from_raw_mut(ptr) }; 1274 T::update_limits(policy); 1275 } 1276 1277 /// Driver's `bios_limit` callback. 1278 /// 1279 /// SAFETY: Called from C. Inputs must be valid pointers. 1280 extern "C" fn bios_limit_callback(cpu: i32, limit: *mut u32) -> kernel::ffi::c_int { 1281 from_result(|| { 1282 let mut policy = PolicyCpu::from_cpu(cpu as u32)?; 1283 1284 // SAFETY: `limit` is guaranteed by the C code to be valid. 1285 T::bios_limit(&mut policy, &mut (unsafe { *limit })).map(|()| 0) 1286 }) 1287 } 1288 1289 /// Driver's `set_boost` callback. 1290 /// 1291 /// SAFETY: Called from C. Inputs must be valid pointers. 1292 extern "C" fn set_boost_callback( 1293 ptr: *mut bindings::cpufreq_policy, 1294 state: i32, 1295 ) -> kernel::ffi::c_int { 1296 from_result(|| { 1297 // SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the 1298 // lifetime of `policy`. 1299 let policy = unsafe { Policy::from_raw_mut(ptr) }; 1300 T::set_boost(policy, state).map(|()| 0) 1301 }) 1302 } 1303 1304 /// Driver's `register_em` callback. 1305 /// 1306 /// SAFETY: Called from C. Inputs must be valid pointers. 1307 extern "C" fn register_em_callback(ptr: *mut bindings::cpufreq_policy) { 1308 // SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the 1309 // lifetime of `policy`. 1310 let policy = unsafe { Policy::from_raw_mut(ptr) }; 1311 T::register_em(policy); 1312 } 1313 } 1314 1315 impl<T: Driver> Drop for Registration<T> { 1316 /// Unregisters with the cpufreq core. 1317 fn drop(&mut self) { 1318 // SAFETY: `self.0` is guaranteed to be valid for the lifetime of `Registration`. 1319 unsafe { bindings::cpufreq_unregister_driver(self.0.get_mut()) }; 1320 } 1321 } 1322