xref: /linux/rust/kernel/bitmap.rs (revision 11eca92a2caebcc2b3b65ca290385ff4b0498946)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 // Copyright (C) 2025 Google LLC.
4 
5 //! Rust API for bitmap.
6 //!
7 //! C headers: [`include/linux/bitmap.h`](srctree/include/linux/bitmap.h).
8 
9 use crate::alloc::{AllocError, Flags};
10 use crate::bindings;
11 #[cfg(not(CONFIG_RUST_BITMAP_HARDENED))]
12 use crate::pr_err;
13 use core::ptr::NonNull;
14 
15 const BITS_PER_LONG: usize = bindings::BITS_PER_LONG as usize;
16 
17 /// Represents a C bitmap. Wraps underlying C bitmap API.
18 ///
19 /// # Invariants
20 ///
21 /// Must reference a `[c_ulong]` long enough to fit `data.len()` bits.
22 #[cfg_attr(CONFIG_64BIT, repr(align(8)))]
23 #[cfg_attr(not(CONFIG_64BIT), repr(align(4)))]
24 pub struct Bitmap {
25     data: [()],
26 }
27 
28 impl Bitmap {
29     /// Borrows a C bitmap.
30     ///
31     /// # Safety
32     ///
33     /// * `ptr` holds a non-null address of an initialized array of `unsigned long`
34     ///   that is large enough to hold `nbits` bits.
35     /// * the array must not be freed for the lifetime of this [`Bitmap`]
36     /// * concurrent access only happens through atomic operations
37     pub unsafe fn from_raw<'a>(ptr: *const usize, nbits: usize) -> &'a Bitmap {
38         let data: *const [()] = core::ptr::slice_from_raw_parts(ptr.cast(), nbits);
39         // INVARIANT: `data` references an initialized array that can hold `nbits` bits.
40         // SAFETY:
41         // The caller guarantees that `data` (derived from `ptr` and `nbits`)
42         // points to a valid, initialized, and appropriately sized memory region
43         // that will not be freed for the lifetime 'a.
44         // We are casting `*const [()]` to `*const Bitmap`. The `Bitmap`
45         // struct is a ZST with a `data: [()]` field. This means its layout
46         // is compatible with a slice of `()`, and effectively it's a "thin pointer"
47         // (its size is 0 and alignment is 1). The `slice_from_raw_parts`
48         // function correctly encodes the length (number of bits, not elements)
49         // into the metadata of the fat pointer. Therefore, dereferencing this
50         // pointer as `&Bitmap` is safe given the caller's guarantees.
51         unsafe { &*(data as *const Bitmap) }
52     }
53 
54     /// Borrows a C bitmap exclusively.
55     ///
56     /// # Safety
57     ///
58     /// * `ptr` holds a non-null address of an initialized array of `unsigned long`
59     ///   that is large enough to hold `nbits` bits.
60     /// * the array must not be freed for the lifetime of this [`Bitmap`]
61     /// * no concurrent access may happen.
62     pub unsafe fn from_raw_mut<'a>(ptr: *mut usize, nbits: usize) -> &'a mut Bitmap {
63         let data: *mut [()] = core::ptr::slice_from_raw_parts_mut(ptr.cast(), nbits);
64         // INVARIANT: `data` references an initialized array that can hold `nbits` bits.
65         // SAFETY:
66         // The caller guarantees that `data` (derived from `ptr` and `nbits`)
67         // points to a valid, initialized, and appropriately sized memory region
68         // that will not be freed for the lifetime 'a.
69         // Furthermore, the caller guarantees no concurrent access will happen,
70         // which upholds the exclusivity requirement for a mutable reference.
71         // Similar to `from_raw`, casting `*mut [()]` to `*mut Bitmap` is
72         // safe because `Bitmap` is a ZST with a `data: [()]` field,
73         // making its layout compatible with a slice of `()`.
74         unsafe { &mut *(data as *mut Bitmap) }
75     }
76 
77     /// Returns a raw pointer to the backing [`Bitmap`].
78     pub fn as_ptr(&self) -> *const usize {
79         core::ptr::from_ref::<Bitmap>(self).cast::<usize>()
80     }
81 
82     /// Returns a mutable raw pointer to the backing [`Bitmap`].
83     pub fn as_mut_ptr(&mut self) -> *mut usize {
84         core::ptr::from_mut::<Bitmap>(self).cast::<usize>()
85     }
86 
87     /// Returns length of this [`Bitmap`].
88     #[expect(clippy::len_without_is_empty)]
89     pub fn len(&self) -> usize {
90         self.data.len()
91     }
92 }
93 
94 /// Holds either a pointer to array of `unsigned long` or a small bitmap.
95 #[repr(C)]
96 union BitmapRepr {
97     bitmap: usize,
98     ptr: NonNull<usize>,
99 }
100 
101 macro_rules! bitmap_assert {
102     ($cond:expr, $($arg:tt)+) => {
103         #[cfg(CONFIG_RUST_BITMAP_HARDENED)]
104         assert!($cond, $($arg)*);
105     }
106 }
107 
108 macro_rules! bitmap_assert_return {
109     ($cond:expr, $($arg:tt)+) => {
110         #[cfg(CONFIG_RUST_BITMAP_HARDENED)]
111         assert!($cond, $($arg)*);
112 
113         #[cfg(not(CONFIG_RUST_BITMAP_HARDENED))]
114         if !($cond) {
115             pr_err!($($arg)*);
116             return
117         }
118     }
119 }
120 
121 /// Represents an owned bitmap.
122 ///
123 /// Wraps underlying C bitmap API. See [`Bitmap`] for available
124 /// methods.
125 ///
126 /// # Examples
127 ///
128 /// Basic usage
129 ///
130 /// ```
131 /// use kernel::alloc::flags::GFP_KERNEL;
132 /// use kernel::bitmap::BitmapVec;
133 ///
134 /// let mut b = BitmapVec::new(16, GFP_KERNEL)?;
135 ///
136 /// assert_eq!(16, b.len());
137 /// for i in 0..16 {
138 ///     if i % 4 == 0 {
139 ///       b.set_bit(i);
140 ///     }
141 /// }
142 /// assert_eq!(Some(0), b.next_bit(0));
143 /// assert_eq!(Some(1), b.next_zero_bit(0));
144 /// assert_eq!(Some(4), b.next_bit(1));
145 /// assert_eq!(Some(5), b.next_zero_bit(4));
146 /// assert_eq!(Some(12), b.last_bit());
147 /// # Ok::<(), Error>(())
148 /// ```
149 ///
150 /// # Invariants
151 ///
152 /// * `nbits` is `<= i32::MAX` and never changes.
153 /// * if `nbits <= bindings::BITS_PER_LONG`, then `repr` is a `usize`.
154 /// * otherwise, `repr` holds a non-null pointer to an initialized
155 ///   array of `unsigned long` that is large enough to hold `nbits` bits.
156 pub struct BitmapVec {
157     /// Representation of bitmap.
158     repr: BitmapRepr,
159     /// Length of this bitmap. Must be `<= i32::MAX`.
160     nbits: usize,
161 }
162 
163 impl core::ops::Deref for BitmapVec {
164     type Target = Bitmap;
165 
166     fn deref(&self) -> &Bitmap {
167         let ptr = if self.nbits <= BITS_PER_LONG {
168             // SAFETY: Bitmap is represented inline.
169             unsafe { core::ptr::addr_of!(self.repr.bitmap) }
170         } else {
171             // SAFETY: Bitmap is represented as array of `unsigned long`.
172             unsafe { self.repr.ptr.as_ptr() }
173         };
174 
175         // SAFETY: We got the right pointer and invariants of [`Bitmap`] hold.
176         // An inline bitmap is treated like an array with single element.
177         unsafe { Bitmap::from_raw(ptr, self.nbits) }
178     }
179 }
180 
181 impl core::ops::DerefMut for BitmapVec {
182     fn deref_mut(&mut self) -> &mut Bitmap {
183         let ptr = if self.nbits <= BITS_PER_LONG {
184             // SAFETY: Bitmap is represented inline.
185             unsafe { core::ptr::addr_of_mut!(self.repr.bitmap) }
186         } else {
187             // SAFETY: Bitmap is represented as array of `unsigned long`.
188             unsafe { self.repr.ptr.as_ptr() }
189         };
190 
191         // SAFETY: We got the right pointer and invariants of [`BitmapVec`] hold.
192         // An inline bitmap is treated like an array with single element.
193         unsafe { Bitmap::from_raw_mut(ptr, self.nbits) }
194     }
195 }
196 
197 /// Enable ownership transfer to other threads.
198 ///
199 /// SAFETY: We own the underlying bitmap representation.
200 unsafe impl Send for BitmapVec {}
201 
202 /// Enable unsynchronized concurrent access to [`BitmapVec`] through shared references.
203 ///
204 /// SAFETY: `deref()` will return a reference to a [`Bitmap`]. Its methods
205 /// take immutable references are either atomic or read-only.
206 unsafe impl Sync for BitmapVec {}
207 
208 impl Drop for BitmapVec {
209     fn drop(&mut self) {
210         if self.nbits <= BITS_PER_LONG {
211             return;
212         }
213         // SAFETY: `self.ptr` was returned by the C `bitmap_zalloc`.
214         //
215         // INVARIANT: there is no other use of the `self.ptr` after this
216         // call and the value is being dropped so the broken invariant is
217         // not observable on function exit.
218         unsafe { bindings::bitmap_free(self.repr.ptr.as_ptr()) };
219     }
220 }
221 
222 impl BitmapVec {
223     /// Constructs a new [`BitmapVec`].
224     ///
225     /// Fails with [`AllocError`] when the [`BitmapVec`] could not be allocated. This
226     /// includes the case when `nbits` is greater than `i32::MAX`.
227     #[inline]
228     pub fn new(nbits: usize, flags: Flags) -> Result<Self, AllocError> {
229         if nbits <= BITS_PER_LONG {
230             return Ok(BitmapVec {
231                 repr: BitmapRepr { bitmap: 0 },
232                 nbits,
233             });
234         }
235         if nbits > i32::MAX.try_into().unwrap() {
236             return Err(AllocError);
237         }
238         let nbits_u32 = u32::try_from(nbits).unwrap();
239         // SAFETY: `BITS_PER_LONG < nbits` and `nbits <= i32::MAX`.
240         let ptr = unsafe { bindings::bitmap_zalloc(nbits_u32, flags.as_raw()) };
241         let ptr = NonNull::new(ptr).ok_or(AllocError)?;
242         // INVARIANT: `ptr` returned by C `bitmap_zalloc` and `nbits` checked.
243         Ok(BitmapVec {
244             repr: BitmapRepr { ptr },
245             nbits,
246         })
247     }
248 
249     /// Returns length of this [`Bitmap`].
250     #[allow(clippy::len_without_is_empty)]
251     #[inline]
252     pub fn len(&self) -> usize {
253         self.nbits
254     }
255 }
256 
257 impl Bitmap {
258     /// Set bit with index `index`.
259     ///
260     /// ATTENTION: `set_bit` is non-atomic, which differs from the naming
261     /// convention in C code. The corresponding C function is `__set_bit`.
262     ///
263     /// If CONFIG_RUST_BITMAP_HARDENED is not enabled and `index` is greater than
264     /// or equal to `self.nbits`, does nothing.
265     ///
266     /// # Panics
267     ///
268     /// Panics if CONFIG_RUST_BITMAP_HARDENED is enabled and `index` is greater than
269     /// or equal to `self.nbits`.
270     #[inline]
271     pub fn set_bit(&mut self, index: usize) {
272         bitmap_assert_return!(
273             index < self.len(),
274             "Bit `index` must be < {}, was {}",
275             self.len(),
276             index
277         );
278         // SAFETY: Bit `index` is within bounds.
279         unsafe { bindings::__set_bit(index, self.as_mut_ptr()) };
280     }
281 
282     /// Set bit with index `index`, atomically.
283     ///
284     /// This is a relaxed atomic operation (no implied memory barriers).
285     ///
286     /// ATTENTION: The naming convention differs from C, where the corresponding
287     /// function is called `set_bit`.
288     ///
289     /// If CONFIG_RUST_BITMAP_HARDENED is not enabled and `index` is greater than
290     /// or equal to `self.len()`, does nothing.
291     ///
292     /// # Panics
293     ///
294     /// Panics if CONFIG_RUST_BITMAP_HARDENED is enabled and `index` is greater than
295     /// or equal to `self.len()`.
296     #[inline]
297     pub fn set_bit_atomic(&self, index: usize) {
298         bitmap_assert_return!(
299             index < self.len(),
300             "Bit `index` must be < {}, was {}",
301             self.len(),
302             index
303         );
304         // SAFETY: `index` is within bounds and the caller has ensured that
305         // there is no mix of non-atomic and atomic operations.
306         unsafe { bindings::set_bit(index, self.as_ptr().cast_mut()) };
307     }
308 
309     /// Clear `index` bit.
310     ///
311     /// ATTENTION: `clear_bit` is non-atomic, which differs from the naming
312     /// convention in C code. The corresponding C function is `__clear_bit`.
313     ///
314     /// If CONFIG_RUST_BITMAP_HARDENED is not enabled and `index` is greater than
315     /// or equal to `self.len()`, does nothing.
316     ///
317     /// # Panics
318     ///
319     /// Panics if CONFIG_RUST_BITMAP_HARDENED is enabled and `index` is greater than
320     /// or equal to `self.len()`.
321     #[inline]
322     pub fn clear_bit(&mut self, index: usize) {
323         bitmap_assert_return!(
324             index < self.len(),
325             "Bit `index` must be < {}, was {}",
326             self.len(),
327             index
328         );
329         // SAFETY: `index` is within bounds.
330         unsafe { bindings::__clear_bit(index, self.as_mut_ptr()) };
331     }
332 
333     /// Clear `index` bit, atomically.
334     ///
335     /// This is a relaxed atomic operation (no implied memory barriers).
336     ///
337     /// ATTENTION: The naming convention differs from C, where the corresponding
338     /// function is called `clear_bit`.
339     ///
340     /// If CONFIG_RUST_BITMAP_HARDENED is not enabled and `index` is greater than
341     /// or equal to `self.len()`, does nothing.
342     ///
343     /// # Panics
344     ///
345     /// Panics if CONFIG_RUST_BITMAP_HARDENED is enabled and `index` is greater than
346     /// or equal to `self.len()`.
347     #[inline]
348     pub fn clear_bit_atomic(&self, index: usize) {
349         bitmap_assert_return!(
350             index < self.len(),
351             "Bit `index` must be < {}, was {}",
352             self.len(),
353             index
354         );
355         // SAFETY: `index` is within bounds and the caller has ensured that
356         // there is no mix of non-atomic and atomic operations.
357         unsafe { bindings::clear_bit(index, self.as_ptr().cast_mut()) };
358     }
359 
360     /// Copy `src` into this [`Bitmap`] and set any remaining bits to zero.
361     ///
362     /// # Examples
363     ///
364     /// ```
365     /// use kernel::alloc::{AllocError, flags::GFP_KERNEL};
366     /// use kernel::bitmap::BitmapVec;
367     ///
368     /// let mut long_bitmap = BitmapVec::new(256, GFP_KERNEL)?;
369     ///
370     /// assert_eq!(None, long_bitmap.last_bit());
371     ///
372     /// let mut short_bitmap = BitmapVec::new(16, GFP_KERNEL)?;
373     ///
374     /// short_bitmap.set_bit(7);
375     /// long_bitmap.copy_and_extend(&short_bitmap);
376     /// assert_eq!(Some(7), long_bitmap.last_bit());
377     ///
378     /// # Ok::<(), AllocError>(())
379     /// ```
380     #[inline]
381     pub fn copy_and_extend(&mut self, src: &Bitmap) {
382         let len = core::cmp::min(src.len(), self.len());
383         // SAFETY: access to `self` and `src` is within bounds.
384         unsafe {
385             bindings::bitmap_copy_and_extend(
386                 self.as_mut_ptr(),
387                 src.as_ptr(),
388                 len as u32,
389                 self.len() as u32,
390             )
391         };
392     }
393 
394     /// Finds last set bit.
395     ///
396     /// # Examples
397     ///
398     /// ```
399     /// use kernel::alloc::{AllocError, flags::GFP_KERNEL};
400     /// use kernel::bitmap::BitmapVec;
401     ///
402     /// let bitmap = BitmapVec::new(64, GFP_KERNEL)?;
403     ///
404     /// match bitmap.last_bit() {
405     ///     Some(idx) => {
406     ///         pr_info!("The last bit has index {idx}.\n");
407     ///     }
408     ///     None => {
409     ///         pr_info!("All bits in this bitmap are 0.\n");
410     ///     }
411     /// }
412     /// # Ok::<(), AllocError>(())
413     /// ```
414     #[inline]
415     pub fn last_bit(&self) -> Option<usize> {
416         // SAFETY: `_find_next_bit` access is within bounds due to invariant.
417         let index = unsafe { bindings::_find_last_bit(self.as_ptr(), self.len()) };
418         if index >= self.len() {
419             None
420         } else {
421             Some(index)
422         }
423     }
424 
425     /// Finds next set bit, starting from `start`.
426     ///
427     /// Returns `None` if `start` is greater or equal to `self.nbits`.
428     #[inline]
429     pub fn next_bit(&self, start: usize) -> Option<usize> {
430         bitmap_assert!(
431             start < self.len(),
432             "`start` must be < {} was {}",
433             self.len(),
434             start
435         );
436         // SAFETY: `_find_next_bit` tolerates out-of-bounds arguments and returns a
437         // value larger than or equal to `self.len()` in that case.
438         let index = unsafe { bindings::_find_next_bit(self.as_ptr(), self.len(), start) };
439         if index >= self.len() {
440             None
441         } else {
442             Some(index)
443         }
444     }
445 
446     /// Finds next zero bit, starting from `start`.
447     /// Returns `None` if `start` is greater than or equal to `self.len()`.
448     #[inline]
449     pub fn next_zero_bit(&self, start: usize) -> Option<usize> {
450         bitmap_assert!(
451             start < self.len(),
452             "`start` must be < {} was {}",
453             self.len(),
454             start
455         );
456         // SAFETY: `_find_next_zero_bit` tolerates out-of-bounds arguments and returns a
457         // value larger than or equal to `self.len()` in that case.
458         let index = unsafe { bindings::_find_next_zero_bit(self.as_ptr(), self.len(), start) };
459         if index >= self.len() {
460             None
461         } else {
462             Some(index)
463         }
464     }
465 }
466 
467 use macros::kunit_tests;
468 
469 #[kunit_tests(rust_kernel_bitmap)]
470 mod tests {
471     use super::*;
472     use kernel::alloc::flags::GFP_KERNEL;
473 
474     #[test]
475     fn bitmap_borrow() {
476         let fake_bitmap: [usize; 2] = [0, 0];
477         // SAFETY: `fake_c_bitmap` is an array of expected length.
478         let b = unsafe { Bitmap::from_raw(fake_bitmap.as_ptr(), 2 * BITS_PER_LONG) };
479         assert_eq!(2 * BITS_PER_LONG, b.len());
480         assert_eq!(None, b.next_bit(0));
481     }
482 
483     #[test]
484     fn bitmap_copy() {
485         let fake_bitmap: usize = 0xFF;
486         // SAFETY: `fake_c_bitmap` can be used as one-element array of expected length.
487         let b = unsafe { Bitmap::from_raw(core::ptr::addr_of!(fake_bitmap), 8) };
488         assert_eq!(8, b.len());
489         assert_eq!(None, b.next_zero_bit(0));
490     }
491 
492     #[test]
493     fn bitmap_vec_new() -> Result<(), AllocError> {
494         let b = BitmapVec::new(0, GFP_KERNEL)?;
495         assert_eq!(0, b.len());
496 
497         let b = BitmapVec::new(3, GFP_KERNEL)?;
498         assert_eq!(3, b.len());
499 
500         let b = BitmapVec::new(1024, GFP_KERNEL)?;
501         assert_eq!(1024, b.len());
502 
503         // Requesting too large values results in [`AllocError`].
504         let res = BitmapVec::new(1 << 31, GFP_KERNEL);
505         assert!(res.is_err());
506         Ok(())
507     }
508 
509     #[test]
510     fn bitmap_set_clear_find() -> Result<(), AllocError> {
511         let mut b = BitmapVec::new(128, GFP_KERNEL)?;
512 
513         // Zero-initialized
514         assert_eq!(None, b.next_bit(0));
515         assert_eq!(Some(0), b.next_zero_bit(0));
516         assert_eq!(None, b.last_bit());
517 
518         b.set_bit(17);
519 
520         assert_eq!(Some(17), b.next_bit(0));
521         assert_eq!(Some(17), b.next_bit(17));
522         assert_eq!(None, b.next_bit(18));
523         assert_eq!(Some(17), b.last_bit());
524 
525         b.set_bit(107);
526 
527         assert_eq!(Some(17), b.next_bit(0));
528         assert_eq!(Some(17), b.next_bit(17));
529         assert_eq!(Some(107), b.next_bit(18));
530         assert_eq!(Some(107), b.last_bit());
531 
532         b.clear_bit(17);
533 
534         assert_eq!(Some(107), b.next_bit(0));
535         assert_eq!(Some(107), b.last_bit());
536         Ok(())
537     }
538 
539     #[test]
540     fn owned_bitmap_out_of_bounds() -> Result<(), AllocError> {
541         // TODO: Kunit #[test]s do not support `cfg` yet,
542         // so we add it here in the body.
543         #[cfg(not(CONFIG_RUST_BITMAP_HARDENED))]
544         {
545             let mut b = BitmapVec::new(128, GFP_KERNEL)?;
546             b.set_bit(2048);
547             b.set_bit_atomic(2048);
548             b.clear_bit(2048);
549             b.clear_bit_atomic(2048);
550             assert_eq!(None, b.next_bit(2048));
551             assert_eq!(None, b.next_zero_bit(2048));
552             assert_eq!(None, b.last_bit());
553         }
554         Ok(())
555     }
556 
557     // TODO: uncomment once kunit supports [should_panic] and `cfg`.
558     // #[cfg(CONFIG_RUST_BITMAP_HARDENED)]
559     // #[test]
560     // #[should_panic]
561     // fn owned_bitmap_out_of_bounds() -> Result<(), AllocError> {
562     //     let mut b = BitmapVec::new(128, GFP_KERNEL)?;
563     //
564     //     b.set_bit(2048);
565     // }
566 
567     #[test]
568     fn bitmap_copy_and_extend() -> Result<(), AllocError> {
569         let mut long_bitmap = BitmapVec::new(256, GFP_KERNEL)?;
570 
571         long_bitmap.set_bit(3);
572         long_bitmap.set_bit(200);
573 
574         let mut short_bitmap = BitmapVec::new(32, GFP_KERNEL)?;
575 
576         short_bitmap.set_bit(17);
577 
578         long_bitmap.copy_and_extend(&short_bitmap);
579 
580         // Previous bits have been cleared.
581         assert_eq!(Some(17), long_bitmap.next_bit(0));
582         assert_eq!(Some(17), long_bitmap.last_bit());
583         Ok(())
584     }
585 }
586