xref: /linux/rust/kernel/bitmap.rs (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 // Copyright (C) 2025 Google LLC.
4 
5 //! Rust API for bitmap.
6 //!
7 //! C headers: [`include/linux/bitmap.h`](srctree/include/linux/bitmap.h).
8 
9 use crate::alloc::{AllocError, Flags};
10 use crate::bindings;
11 #[cfg(not(CONFIG_RUST_BITMAP_HARDENED))]
12 use crate::pr_err;
13 use core::ptr::NonNull;
14 
15 const BITS_PER_LONG: usize = bindings::BITS_PER_LONG as usize;
16 
17 /// Represents a C bitmap. Wraps underlying C bitmap API.
18 ///
19 /// # Invariants
20 ///
21 /// Must reference a `[c_ulong]` long enough to fit `data.len()` bits.
22 #[cfg_attr(CONFIG_64BIT, repr(align(8)))]
23 #[cfg_attr(not(CONFIG_64BIT), repr(align(4)))]
24 pub struct Bitmap {
25     data: [()],
26 }
27 
28 impl Bitmap {
29     /// Borrows a C bitmap.
30     ///
31     /// # Safety
32     ///
33     /// * `ptr` holds a non-null address of an initialized array of `unsigned long`
34     ///   that is large enough to hold `nbits` bits.
35     /// * the array must not be freed for the lifetime of this [`Bitmap`]
36     /// * concurrent access only happens through atomic operations
37     pub unsafe fn from_raw<'a>(ptr: *const usize, nbits: usize) -> &'a Bitmap {
38         let data: *const [()] = core::ptr::slice_from_raw_parts(ptr.cast(), nbits);
39         // INVARIANT: `data` references an initialized array that can hold `nbits` bits.
40         // SAFETY:
41         // The caller guarantees that `data` (derived from `ptr` and `nbits`)
42         // points to a valid, initialized, and appropriately sized memory region
43         // that will not be freed for the lifetime 'a.
44         // We are casting `*const [()]` to `*const Bitmap`. The `Bitmap`
45         // struct is a ZST with a `data: [()]` field. This means its layout
46         // is compatible with a slice of `()`, and effectively it's a "thin pointer"
47         // (its size is 0 and alignment is 1). The `slice_from_raw_parts`
48         // function correctly encodes the length (number of bits, not elements)
49         // into the metadata of the fat pointer. Therefore, dereferencing this
50         // pointer as `&Bitmap` is safe given the caller's guarantees.
51         unsafe { &*(data as *const Bitmap) }
52     }
53 
54     /// Borrows a C bitmap exclusively.
55     ///
56     /// # Safety
57     ///
58     /// * `ptr` holds a non-null address of an initialized array of `unsigned long`
59     ///   that is large enough to hold `nbits` bits.
60     /// * the array must not be freed for the lifetime of this [`Bitmap`]
61     /// * no concurrent access may happen.
62     pub unsafe fn from_raw_mut<'a>(ptr: *mut usize, nbits: usize) -> &'a mut Bitmap {
63         let data: *mut [()] = core::ptr::slice_from_raw_parts_mut(ptr.cast(), nbits);
64         // INVARIANT: `data` references an initialized array that can hold `nbits` bits.
65         // SAFETY:
66         // The caller guarantees that `data` (derived from `ptr` and `nbits`)
67         // points to a valid, initialized, and appropriately sized memory region
68         // that will not be freed for the lifetime 'a.
69         // Furthermore, the caller guarantees no concurrent access will happen,
70         // which upholds the exclusivity requirement for a mutable reference.
71         // Similar to `from_raw`, casting `*mut [()]` to `*mut Bitmap` is
72         // safe because `Bitmap` is a ZST with a `data: [()]` field,
73         // making its layout compatible with a slice of `()`.
74         unsafe { &mut *(data as *mut Bitmap) }
75     }
76 
77     /// Returns a raw pointer to the backing [`Bitmap`].
78     pub fn as_ptr(&self) -> *const usize {
79         core::ptr::from_ref::<Bitmap>(self).cast::<usize>()
80     }
81 
82     /// Returns a mutable raw pointer to the backing [`Bitmap`].
83     pub fn as_mut_ptr(&mut self) -> *mut usize {
84         core::ptr::from_mut::<Bitmap>(self).cast::<usize>()
85     }
86 
87     /// Returns length of this [`Bitmap`].
88     #[expect(clippy::len_without_is_empty)]
89     pub fn len(&self) -> usize {
90         self.data.len()
91     }
92 }
93 
94 /// Holds either a pointer to array of `unsigned long` or a small bitmap.
95 #[repr(C)]
96 union BitmapRepr {
97     bitmap: usize,
98     ptr: NonNull<usize>,
99 }
100 
101 macro_rules! bitmap_assert {
102     ($cond:expr, $($arg:tt)+) => {
103         #[cfg(CONFIG_RUST_BITMAP_HARDENED)]
104         assert!($cond, $($arg)*);
105     }
106 }
107 
108 macro_rules! bitmap_assert_return {
109     ($cond:expr, $($arg:tt)+) => {
110         #[cfg(CONFIG_RUST_BITMAP_HARDENED)]
111         assert!($cond, $($arg)*);
112 
113         #[cfg(not(CONFIG_RUST_BITMAP_HARDENED))]
114         if !($cond) {
115             pr_err!($($arg)*);
116             return
117         }
118     }
119 }
120 
121 /// Represents an owned bitmap.
122 ///
123 /// Wraps underlying C bitmap API. See [`Bitmap`] for available
124 /// methods.
125 ///
126 /// # Examples
127 ///
128 /// Basic usage
129 ///
130 /// ```
131 /// use kernel::alloc::flags::GFP_KERNEL;
132 /// use kernel::bitmap::BitmapVec;
133 ///
134 /// let mut b = BitmapVec::new(16, GFP_KERNEL)?;
135 ///
136 /// assert_eq!(16, b.len());
137 /// for i in 0..16 {
138 ///     if i % 4 == 0 {
139 ///       b.set_bit(i);
140 ///     }
141 /// }
142 /// assert_eq!(Some(0), b.next_bit(0));
143 /// assert_eq!(Some(1), b.next_zero_bit(0));
144 /// assert_eq!(Some(4), b.next_bit(1));
145 /// assert_eq!(Some(5), b.next_zero_bit(4));
146 /// assert_eq!(Some(12), b.last_bit());
147 /// # Ok::<(), Error>(())
148 /// ```
149 ///
150 /// # Invariants
151 ///
152 /// * `nbits` is `<= i32::MAX` and never changes.
153 /// * if `nbits <= bindings::BITS_PER_LONG`, then `repr` is a `usize`.
154 /// * otherwise, `repr` holds a non-null pointer to an initialized
155 ///   array of `unsigned long` that is large enough to hold `nbits` bits.
156 pub struct BitmapVec {
157     /// Representation of bitmap.
158     repr: BitmapRepr,
159     /// Length of this bitmap. Must be `<= i32::MAX`.
160     nbits: usize,
161 }
162 
163 impl core::ops::Deref for BitmapVec {
164     type Target = Bitmap;
165 
166     fn deref(&self) -> &Bitmap {
167         let ptr = if self.nbits <= BITS_PER_LONG {
168             // SAFETY: Bitmap is represented inline.
169             unsafe { core::ptr::addr_of!(self.repr.bitmap) }
170         } else {
171             // SAFETY: Bitmap is represented as array of `unsigned long`.
172             unsafe { self.repr.ptr.as_ptr() }
173         };
174 
175         // SAFETY: We got the right pointer and invariants of [`Bitmap`] hold.
176         // An inline bitmap is treated like an array with single element.
177         unsafe { Bitmap::from_raw(ptr, self.nbits) }
178     }
179 }
180 
181 impl core::ops::DerefMut for BitmapVec {
182     fn deref_mut(&mut self) -> &mut Bitmap {
183         let ptr = if self.nbits <= BITS_PER_LONG {
184             // SAFETY: Bitmap is represented inline.
185             unsafe { core::ptr::addr_of_mut!(self.repr.bitmap) }
186         } else {
187             // SAFETY: Bitmap is represented as array of `unsigned long`.
188             unsafe { self.repr.ptr.as_ptr() }
189         };
190 
191         // SAFETY: We got the right pointer and invariants of [`BitmapVec`] hold.
192         // An inline bitmap is treated like an array with single element.
193         unsafe { Bitmap::from_raw_mut(ptr, self.nbits) }
194     }
195 }
196 
197 /// Enable ownership transfer to other threads.
198 ///
199 /// SAFETY: We own the underlying bitmap representation.
200 unsafe impl Send for BitmapVec {}
201 
202 /// Enable unsynchronized concurrent access to [`BitmapVec`] through shared references.
203 ///
204 /// SAFETY: `deref()` will return a reference to a [`Bitmap`]. Its methods
205 /// take immutable references are either atomic or read-only.
206 unsafe impl Sync for BitmapVec {}
207 
208 impl Drop for BitmapVec {
209     fn drop(&mut self) {
210         if self.nbits <= BITS_PER_LONG {
211             return;
212         }
213         // SAFETY: `self.ptr` was returned by the C `bitmap_zalloc`.
214         //
215         // INVARIANT: there is no other use of the `self.ptr` after this
216         // call and the value is being dropped so the broken invariant is
217         // not observable on function exit.
218         unsafe { bindings::bitmap_free(self.repr.ptr.as_ptr()) };
219     }
220 }
221 
222 impl BitmapVec {
223     /// Constructs a new [`BitmapVec`].
224     ///
225     /// Fails with [`AllocError`] when the [`BitmapVec`] could not be allocated. This
226     /// includes the case when `nbits` is greater than `i32::MAX`.
227     #[inline]
228     pub fn new(nbits: usize, flags: Flags) -> Result<Self, AllocError> {
229         if nbits <= BITS_PER_LONG {
230             return Ok(BitmapVec {
231                 repr: BitmapRepr { bitmap: 0 },
232                 nbits,
233             });
234         }
235         if nbits > i32::MAX.try_into().unwrap() {
236             return Err(AllocError);
237         }
238         let nbits_u32 = u32::try_from(nbits).unwrap();
239         // SAFETY: `BITS_PER_LONG < nbits` and `nbits <= i32::MAX`.
240         let ptr = unsafe { bindings::bitmap_zalloc(nbits_u32, flags.as_raw()) };
241         let ptr = NonNull::new(ptr).ok_or(AllocError)?;
242         // INVARIANT: `ptr` returned by C `bitmap_zalloc` and `nbits` checked.
243         Ok(BitmapVec {
244             repr: BitmapRepr { ptr },
245             nbits,
246         })
247     }
248 
249     /// Returns length of this [`Bitmap`].
250     #[allow(clippy::len_without_is_empty)]
251     #[inline]
252     pub fn len(&self) -> usize {
253         self.nbits
254     }
255 
256     /// Fills this `Bitmap` with random bits.
257     #[cfg(CONFIG_FIND_BIT_BENCHMARK_RUST)]
258     pub fn fill_random(&mut self) {
259         // SAFETY: `self.as_mut_ptr` points to either an array of the
260         // appropriate length or one usize.
261         unsafe {
262             bindings::get_random_bytes(
263                 self.as_mut_ptr().cast::<ffi::c_void>(),
264                 usize::div_ceil(self.nbits, bindings::BITS_PER_LONG as usize)
265                     * bindings::BITS_PER_LONG as usize
266                     / 8,
267             );
268         }
269     }
270 }
271 
272 impl Bitmap {
273     /// Set bit with index `index`.
274     ///
275     /// ATTENTION: `set_bit` is non-atomic, which differs from the naming
276     /// convention in C code. The corresponding C function is `__set_bit`.
277     ///
278     /// If CONFIG_RUST_BITMAP_HARDENED is not enabled and `index` is greater than
279     /// or equal to `self.nbits`, does nothing.
280     ///
281     /// # Panics
282     ///
283     /// Panics if CONFIG_RUST_BITMAP_HARDENED is enabled and `index` is greater than
284     /// or equal to `self.nbits`.
285     #[inline]
286     pub fn set_bit(&mut self, index: usize) {
287         bitmap_assert_return!(
288             index < self.len(),
289             "Bit `index` must be < {}, was {}",
290             self.len(),
291             index
292         );
293         // SAFETY: Bit `index` is within bounds.
294         unsafe { bindings::__set_bit(index, self.as_mut_ptr()) };
295     }
296 
297     /// Set bit with index `index`, atomically.
298     ///
299     /// This is a relaxed atomic operation (no implied memory barriers).
300     ///
301     /// ATTENTION: The naming convention differs from C, where the corresponding
302     /// function is called `set_bit`.
303     ///
304     /// If CONFIG_RUST_BITMAP_HARDENED is not enabled and `index` is greater than
305     /// or equal to `self.len()`, does nothing.
306     ///
307     /// # Panics
308     ///
309     /// Panics if CONFIG_RUST_BITMAP_HARDENED is enabled and `index` is greater than
310     /// or equal to `self.len()`.
311     #[inline]
312     pub fn set_bit_atomic(&self, index: usize) {
313         bitmap_assert_return!(
314             index < self.len(),
315             "Bit `index` must be < {}, was {}",
316             self.len(),
317             index
318         );
319         // SAFETY: `index` is within bounds and the caller has ensured that
320         // there is no mix of non-atomic and atomic operations.
321         unsafe { bindings::set_bit(index, self.as_ptr().cast_mut()) };
322     }
323 
324     /// Clear `index` bit.
325     ///
326     /// ATTENTION: `clear_bit` is non-atomic, which differs from the naming
327     /// convention in C code. The corresponding C function is `__clear_bit`.
328     ///
329     /// If CONFIG_RUST_BITMAP_HARDENED is not enabled and `index` is greater than
330     /// or equal to `self.len()`, does nothing.
331     ///
332     /// # Panics
333     ///
334     /// Panics if CONFIG_RUST_BITMAP_HARDENED is enabled and `index` is greater than
335     /// or equal to `self.len()`.
336     #[inline]
337     pub fn clear_bit(&mut self, index: usize) {
338         bitmap_assert_return!(
339             index < self.len(),
340             "Bit `index` must be < {}, was {}",
341             self.len(),
342             index
343         );
344         // SAFETY: `index` is within bounds.
345         unsafe { bindings::__clear_bit(index, self.as_mut_ptr()) };
346     }
347 
348     /// Clear `index` bit, atomically.
349     ///
350     /// This is a relaxed atomic operation (no implied memory barriers).
351     ///
352     /// ATTENTION: The naming convention differs from C, where the corresponding
353     /// function is called `clear_bit`.
354     ///
355     /// If CONFIG_RUST_BITMAP_HARDENED is not enabled and `index` is greater than
356     /// or equal to `self.len()`, does nothing.
357     ///
358     /// # Panics
359     ///
360     /// Panics if CONFIG_RUST_BITMAP_HARDENED is enabled and `index` is greater than
361     /// or equal to `self.len()`.
362     #[inline]
363     pub fn clear_bit_atomic(&self, index: usize) {
364         bitmap_assert_return!(
365             index < self.len(),
366             "Bit `index` must be < {}, was {}",
367             self.len(),
368             index
369         );
370         // SAFETY: `index` is within bounds and the caller has ensured that
371         // there is no mix of non-atomic and atomic operations.
372         unsafe { bindings::clear_bit(index, self.as_ptr().cast_mut()) };
373     }
374 
375     /// Copy `src` into this [`Bitmap`] and set any remaining bits to zero.
376     ///
377     /// # Examples
378     ///
379     /// ```
380     /// use kernel::alloc::{AllocError, flags::GFP_KERNEL};
381     /// use kernel::bitmap::BitmapVec;
382     ///
383     /// let mut long_bitmap = BitmapVec::new(256, GFP_KERNEL)?;
384     ///
385     /// assert_eq!(None, long_bitmap.last_bit());
386     ///
387     /// let mut short_bitmap = BitmapVec::new(16, GFP_KERNEL)?;
388     ///
389     /// short_bitmap.set_bit(7);
390     /// long_bitmap.copy_and_extend(&short_bitmap);
391     /// assert_eq!(Some(7), long_bitmap.last_bit());
392     ///
393     /// # Ok::<(), AllocError>(())
394     /// ```
395     #[inline]
396     pub fn copy_and_extend(&mut self, src: &Bitmap) {
397         let len = core::cmp::min(src.len(), self.len());
398         // SAFETY: access to `self` and `src` is within bounds.
399         unsafe {
400             bindings::bitmap_copy_and_extend(
401                 self.as_mut_ptr(),
402                 src.as_ptr(),
403                 len as u32,
404                 self.len() as u32,
405             )
406         };
407     }
408 
409     /// Finds last set bit.
410     ///
411     /// # Examples
412     ///
413     /// ```
414     /// use kernel::alloc::{AllocError, flags::GFP_KERNEL};
415     /// use kernel::bitmap::BitmapVec;
416     ///
417     /// let bitmap = BitmapVec::new(64, GFP_KERNEL)?;
418     ///
419     /// match bitmap.last_bit() {
420     ///     Some(idx) => {
421     ///         pr_info!("The last bit has index {idx}.\n");
422     ///     }
423     ///     None => {
424     ///         pr_info!("All bits in this bitmap are 0.\n");
425     ///     }
426     /// }
427     /// # Ok::<(), AllocError>(())
428     /// ```
429     #[inline]
430     pub fn last_bit(&self) -> Option<usize> {
431         // SAFETY: `_find_next_bit` access is within bounds due to invariant.
432         let index = unsafe { bindings::_find_last_bit(self.as_ptr(), self.len()) };
433         if index >= self.len() {
434             None
435         } else {
436             Some(index)
437         }
438     }
439 
440     /// Finds next set bit, starting from `start`.
441     ///
442     /// Returns `None` if `start` is greater or equal to `self.nbits`.
443     #[inline]
444     pub fn next_bit(&self, start: usize) -> Option<usize> {
445         bitmap_assert!(
446             start < self.len(),
447             "`start` must be < {} was {}",
448             self.len(),
449             start
450         );
451         // SAFETY: `_find_next_bit` tolerates out-of-bounds arguments and returns a
452         // value larger than or equal to `self.len()` in that case.
453         let index = unsafe { bindings::_find_next_bit(self.as_ptr(), self.len(), start) };
454         if index >= self.len() {
455             None
456         } else {
457             Some(index)
458         }
459     }
460 
461     /// Finds next zero bit, starting from `start`.
462     /// Returns `None` if `start` is greater than or equal to `self.len()`.
463     #[inline]
464     pub fn next_zero_bit(&self, start: usize) -> Option<usize> {
465         bitmap_assert!(
466             start < self.len(),
467             "`start` must be < {} was {}",
468             self.len(),
469             start
470         );
471         // SAFETY: `_find_next_zero_bit` tolerates out-of-bounds arguments and returns a
472         // value larger than or equal to `self.len()` in that case.
473         let index = unsafe { bindings::_find_next_zero_bit(self.as_ptr(), self.len(), start) };
474         if index >= self.len() {
475             None
476         } else {
477             Some(index)
478         }
479     }
480 }
481 
482 use macros::kunit_tests;
483 
484 #[kunit_tests(rust_kernel_bitmap)]
485 mod tests {
486     use super::*;
487     use kernel::alloc::flags::GFP_KERNEL;
488 
489     #[test]
490     fn bitmap_borrow() {
491         let fake_bitmap: [usize; 2] = [0, 0];
492         // SAFETY: `fake_c_bitmap` is an array of expected length.
493         let b = unsafe { Bitmap::from_raw(fake_bitmap.as_ptr(), 2 * BITS_PER_LONG) };
494         assert_eq!(2 * BITS_PER_LONG, b.len());
495         assert_eq!(None, b.next_bit(0));
496     }
497 
498     #[test]
499     fn bitmap_copy() {
500         let fake_bitmap: usize = 0xFF;
501         // SAFETY: `fake_c_bitmap` can be used as one-element array of expected length.
502         let b = unsafe { Bitmap::from_raw(core::ptr::addr_of!(fake_bitmap), 8) };
503         assert_eq!(8, b.len());
504         assert_eq!(None, b.next_zero_bit(0));
505     }
506 
507     #[test]
508     fn bitmap_vec_new() -> Result<(), AllocError> {
509         let b = BitmapVec::new(0, GFP_KERNEL)?;
510         assert_eq!(0, b.len());
511 
512         let b = BitmapVec::new(3, GFP_KERNEL)?;
513         assert_eq!(3, b.len());
514 
515         let b = BitmapVec::new(1024, GFP_KERNEL)?;
516         assert_eq!(1024, b.len());
517 
518         // Requesting too large values results in [`AllocError`].
519         let res = BitmapVec::new(1 << 31, GFP_KERNEL);
520         assert!(res.is_err());
521         Ok(())
522     }
523 
524     #[test]
525     fn bitmap_set_clear_find() -> Result<(), AllocError> {
526         let mut b = BitmapVec::new(128, GFP_KERNEL)?;
527 
528         // Zero-initialized
529         assert_eq!(None, b.next_bit(0));
530         assert_eq!(Some(0), b.next_zero_bit(0));
531         assert_eq!(None, b.last_bit());
532 
533         b.set_bit(17);
534 
535         assert_eq!(Some(17), b.next_bit(0));
536         assert_eq!(Some(17), b.next_bit(17));
537         assert_eq!(None, b.next_bit(18));
538         assert_eq!(Some(17), b.last_bit());
539 
540         b.set_bit(107);
541 
542         assert_eq!(Some(17), b.next_bit(0));
543         assert_eq!(Some(17), b.next_bit(17));
544         assert_eq!(Some(107), b.next_bit(18));
545         assert_eq!(Some(107), b.last_bit());
546 
547         b.clear_bit(17);
548 
549         assert_eq!(Some(107), b.next_bit(0));
550         assert_eq!(Some(107), b.last_bit());
551         Ok(())
552     }
553 
554     #[test]
555     fn owned_bitmap_out_of_bounds() -> Result<(), AllocError> {
556         // TODO: Kunit #[test]s do not support `cfg` yet,
557         // so we add it here in the body.
558         #[cfg(not(CONFIG_RUST_BITMAP_HARDENED))]
559         {
560             let mut b = BitmapVec::new(128, GFP_KERNEL)?;
561             b.set_bit(2048);
562             b.set_bit_atomic(2048);
563             b.clear_bit(2048);
564             b.clear_bit_atomic(2048);
565             assert_eq!(None, b.next_bit(2048));
566             assert_eq!(None, b.next_zero_bit(2048));
567             assert_eq!(None, b.last_bit());
568         }
569         Ok(())
570     }
571 
572     // TODO: uncomment once kunit supports [should_panic] and `cfg`.
573     // #[cfg(CONFIG_RUST_BITMAP_HARDENED)]
574     // #[test]
575     // #[should_panic]
576     // fn owned_bitmap_out_of_bounds() -> Result<(), AllocError> {
577     //     let mut b = BitmapVec::new(128, GFP_KERNEL)?;
578     //
579     //     b.set_bit(2048);
580     // }
581 
582     #[test]
583     fn bitmap_copy_and_extend() -> Result<(), AllocError> {
584         let mut long_bitmap = BitmapVec::new(256, GFP_KERNEL)?;
585 
586         long_bitmap.set_bit(3);
587         long_bitmap.set_bit(200);
588 
589         let mut short_bitmap = BitmapVec::new(32, GFP_KERNEL)?;
590 
591         short_bitmap.set_bit(17);
592 
593         long_bitmap.copy_and_extend(&short_bitmap);
594 
595         // Previous bits have been cleared.
596         assert_eq!(Some(17), long_bitmap.next_bit(0));
597         assert_eq!(Some(17), long_bitmap.last_bit());
598         Ok(())
599     }
600 }
601