xref: /linux/rust/kernel/alloc/kvec.rs (revision 9907e1df31c0f4bdcebe16de809121baa754e5b5)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Implementation of [`Vec`].
4 
5 use super::{
6     allocator::{KVmalloc, Kmalloc, Vmalloc},
7     layout::ArrayLayout,
8     AllocError, Allocator, Box, Flags, NumaNode,
9 };
10 use core::{
11     borrow::{Borrow, BorrowMut},
12     fmt,
13     marker::PhantomData,
14     mem::{ManuallyDrop, MaybeUninit},
15     ops::Deref,
16     ops::DerefMut,
17     ops::Index,
18     ops::IndexMut,
19     ptr,
20     ptr::NonNull,
21     slice,
22     slice::SliceIndex,
23 };
24 
25 mod errors;
26 pub use self::errors::{InsertError, PushError, RemoveError};
27 
28 /// Create a [`KVec`] containing the arguments.
29 ///
30 /// New memory is allocated with `GFP_KERNEL`.
31 ///
32 /// # Examples
33 ///
34 /// ```
35 /// let mut v = kernel::kvec![];
36 /// v.push(1, GFP_KERNEL)?;
37 /// assert_eq!(v, [1]);
38 ///
39 /// let mut v = kernel::kvec![1; 3]?;
40 /// v.push(4, GFP_KERNEL)?;
41 /// assert_eq!(v, [1, 1, 1, 4]);
42 ///
43 /// let mut v = kernel::kvec![1, 2, 3]?;
44 /// v.push(4, GFP_KERNEL)?;
45 /// assert_eq!(v, [1, 2, 3, 4]);
46 ///
47 /// # Ok::<(), Error>(())
48 /// ```
49 #[macro_export]
50 macro_rules! kvec {
51     () => (
52         $crate::alloc::KVec::new()
53     );
54     ($elem:expr; $n:expr) => (
55         $crate::alloc::KVec::from_elem($elem, $n, GFP_KERNEL)
56     );
57     ($($x:expr),+ $(,)?) => (
58         match $crate::alloc::KBox::new_uninit(GFP_KERNEL) {
59             Ok(b) => Ok($crate::alloc::KVec::from($crate::alloc::KBox::write(b, [$($x),+]))),
60             Err(e) => Err(e),
61         }
62     );
63 }
64 
65 /// The kernel's [`Vec`] type.
66 ///
67 /// A contiguous growable array type with contents allocated with the kernel's allocators (e.g.
68 /// [`Kmalloc`], [`Vmalloc`] or [`KVmalloc`]), written `Vec<T, A>`.
69 ///
70 /// For non-zero-sized values, a [`Vec`] will use the given allocator `A` for its allocation. For
71 /// the most common allocators the type aliases [`KVec`], [`VVec`] and [`KVVec`] exist.
72 ///
73 /// For zero-sized types the [`Vec`]'s pointer must be `dangling_mut::<T>`; no memory is allocated.
74 ///
75 /// Generally, [`Vec`] consists of a pointer that represents the vector's backing buffer, the
76 /// capacity of the vector (the number of elements that currently fit into the vector), its length
77 /// (the number of elements that are currently stored in the vector) and the `Allocator` type used
78 /// to allocate (and free) the backing buffer.
79 ///
80 /// A [`Vec`] can be deconstructed into and (re-)constructed from its previously named raw parts
81 /// and manually modified.
82 ///
83 /// [`Vec`]'s backing buffer gets, if required, automatically increased (re-allocated) when elements
84 /// are added to the vector.
85 ///
86 /// # Invariants
87 ///
88 /// - `self.ptr` is always properly aligned and either points to memory allocated with `A` or, for
89 ///   zero-sized types, is a dangling, well aligned pointer.
90 ///
91 /// - `self.len` always represents the exact number of elements stored in the vector.
92 ///
93 /// - `self.layout` represents the absolute number of elements that can be stored within the vector
94 ///   without re-allocation. For ZSTs `self.layout`'s capacity is zero. However, it is legal for the
95 ///   backing buffer to be larger than `layout`.
96 ///
97 /// - `self.len()` is always less than or equal to `self.capacity()`.
98 ///
99 /// - The `Allocator` type `A` of the vector is the exact same `Allocator` type the backing buffer
100 ///   was allocated with (and must be freed with).
101 pub struct Vec<T, A: Allocator> {
102     ptr: NonNull<T>,
103     /// Represents the actual buffer size as `cap` times `size_of::<T>` bytes.
104     ///
105     /// Note: This isn't quite the same as `Self::capacity`, which in contrast returns the number of
106     /// elements we can still store without reallocating.
107     layout: ArrayLayout<T>,
108     len: usize,
109     _p: PhantomData<A>,
110 }
111 
112 /// Type alias for [`Vec`] with a [`Kmalloc`] allocator.
113 ///
114 /// # Examples
115 ///
116 /// ```
117 /// let mut v = KVec::new();
118 /// v.push(1, GFP_KERNEL)?;
119 /// assert_eq!(&v, &[1]);
120 ///
121 /// # Ok::<(), Error>(())
122 /// ```
123 pub type KVec<T> = Vec<T, Kmalloc>;
124 
125 /// Type alias for [`Vec`] with a [`Vmalloc`] allocator.
126 ///
127 /// # Examples
128 ///
129 /// ```
130 /// let mut v = VVec::new();
131 /// v.push(1, GFP_KERNEL)?;
132 /// assert_eq!(&v, &[1]);
133 ///
134 /// # Ok::<(), Error>(())
135 /// ```
136 pub type VVec<T> = Vec<T, Vmalloc>;
137 
138 /// Type alias for [`Vec`] with a [`KVmalloc`] allocator.
139 ///
140 /// # Examples
141 ///
142 /// ```
143 /// let mut v = KVVec::new();
144 /// v.push(1, GFP_KERNEL)?;
145 /// assert_eq!(&v, &[1]);
146 ///
147 /// # Ok::<(), Error>(())
148 /// ```
149 pub type KVVec<T> = Vec<T, KVmalloc>;
150 
151 // SAFETY: `Vec` is `Send` if `T` is `Send` because `Vec` owns its elements.
152 unsafe impl<T, A> Send for Vec<T, A>
153 where
154     T: Send,
155     A: Allocator,
156 {
157 }
158 
159 // SAFETY: `Vec` is `Sync` if `T` is `Sync` because `Vec` owns its elements.
160 unsafe impl<T, A> Sync for Vec<T, A>
161 where
162     T: Sync,
163     A: Allocator,
164 {
165 }
166 
167 impl<T, A> Vec<T, A>
168 where
169     A: Allocator,
170 {
171     #[inline]
172     const fn is_zst() -> bool {
173         core::mem::size_of::<T>() == 0
174     }
175 
176     /// Returns the number of elements that can be stored within the vector without allocating
177     /// additional memory.
178     pub fn capacity(&self) -> usize {
179         if const { Self::is_zst() } {
180             usize::MAX
181         } else {
182             self.layout.len()
183         }
184     }
185 
186     /// Returns the number of elements stored within the vector.
187     #[inline]
188     pub fn len(&self) -> usize {
189         self.len
190     }
191 
192     /// Increments `self.len` by `additional`.
193     ///
194     /// # Safety
195     ///
196     /// - `additional` must be less than or equal to `self.capacity - self.len`.
197     /// - All elements within the interval [`self.len`,`self.len + additional`) must be initialized.
198     #[inline]
199     pub unsafe fn inc_len(&mut self, additional: usize) {
200         // Guaranteed by the type invariant to never underflow.
201         debug_assert!(additional <= self.capacity() - self.len());
202         // INVARIANT: By the safety requirements of this method this represents the exact number of
203         // elements stored within `self`.
204         self.len += additional;
205     }
206 
207     /// Decreases `self.len` by `count`.
208     ///
209     /// Returns a mutable slice to the elements forgotten by the vector. It is the caller's
210     /// responsibility to drop these elements if necessary.
211     ///
212     /// # Safety
213     ///
214     /// - `count` must be less than or equal to `self.len`.
215     unsafe fn dec_len(&mut self, count: usize) -> &mut [T] {
216         debug_assert!(count <= self.len());
217         // INVARIANT: We relinquish ownership of the elements within the range `[self.len - count,
218         // self.len)`, hence the updated value of `set.len` represents the exact number of elements
219         // stored within `self`.
220         self.len -= count;
221         // SAFETY: The memory after `self.len()` is guaranteed to contain `count` initialized
222         // elements of type `T`.
223         unsafe { slice::from_raw_parts_mut(self.as_mut_ptr().add(self.len), count) }
224     }
225 
226     /// Returns a slice of the entire vector.
227     #[inline]
228     pub fn as_slice(&self) -> &[T] {
229         self
230     }
231 
232     /// Returns a mutable slice of the entire vector.
233     #[inline]
234     pub fn as_mut_slice(&mut self) -> &mut [T] {
235         self
236     }
237 
238     /// Returns a mutable raw pointer to the vector's backing buffer, or, if `T` is a ZST, a
239     /// dangling raw pointer.
240     #[inline]
241     pub fn as_mut_ptr(&mut self) -> *mut T {
242         self.ptr.as_ptr()
243     }
244 
245     /// Returns a raw pointer to the vector's backing buffer, or, if `T` is a ZST, a dangling raw
246     /// pointer.
247     #[inline]
248     pub fn as_ptr(&self) -> *const T {
249         self.ptr.as_ptr()
250     }
251 
252     /// Returns `true` if the vector contains no elements, `false` otherwise.
253     ///
254     /// # Examples
255     ///
256     /// ```
257     /// let mut v = KVec::new();
258     /// assert!(v.is_empty());
259     ///
260     /// v.push(1, GFP_KERNEL);
261     /// assert!(!v.is_empty());
262     /// ```
263     #[inline]
264     pub fn is_empty(&self) -> bool {
265         self.len() == 0
266     }
267 
268     /// Creates a new, empty `Vec<T, A>`.
269     ///
270     /// This method does not allocate by itself.
271     #[inline]
272     pub const fn new() -> Self {
273         // INVARIANT: Since this is a new, empty `Vec` with no backing memory yet,
274         // - `ptr` is a properly aligned dangling pointer for type `T`,
275         // - `layout` is an empty `ArrayLayout` (zero capacity)
276         // - `len` is zero, since no elements can be or have been stored,
277         // - `A` is always valid.
278         Self {
279             ptr: NonNull::dangling(),
280             layout: ArrayLayout::empty(),
281             len: 0,
282             _p: PhantomData::<A>,
283         }
284     }
285 
286     /// Returns a slice of `MaybeUninit<T>` for the remaining spare capacity of the vector.
287     pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
288         // SAFETY:
289         // - `self.len` is smaller than `self.capacity` by the type invariant and hence, the
290         //   resulting pointer is guaranteed to be part of the same allocated object.
291         // - `self.len` can not overflow `isize`.
292         let ptr = unsafe { self.as_mut_ptr().add(self.len) }.cast::<MaybeUninit<T>>();
293 
294         // SAFETY: The memory between `self.len` and `self.capacity` is guaranteed to be allocated
295         // and valid, but uninitialized.
296         unsafe { slice::from_raw_parts_mut(ptr, self.capacity() - self.len) }
297     }
298 
299     /// Appends an element to the back of the [`Vec`] instance.
300     ///
301     /// # Examples
302     ///
303     /// ```
304     /// let mut v = KVec::new();
305     /// v.push(1, GFP_KERNEL)?;
306     /// assert_eq!(&v, &[1]);
307     ///
308     /// v.push(2, GFP_KERNEL)?;
309     /// assert_eq!(&v, &[1, 2]);
310     /// # Ok::<(), Error>(())
311     /// ```
312     pub fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError> {
313         self.reserve(1, flags)?;
314         // SAFETY: The call to `reserve` was successful, so the capacity is at least one greater
315         // than the length.
316         unsafe { self.push_within_capacity_unchecked(v) };
317         Ok(())
318     }
319 
320     /// Appends an element to the back of the [`Vec`] instance without reallocating.
321     ///
322     /// Fails if the vector does not have capacity for the new element.
323     ///
324     /// # Examples
325     ///
326     /// ```
327     /// let mut v = KVec::with_capacity(10, GFP_KERNEL)?;
328     /// for i in 0..10 {
329     ///     v.push_within_capacity(i)?;
330     /// }
331     ///
332     /// assert!(v.push_within_capacity(10).is_err());
333     /// # Ok::<(), Error>(())
334     /// ```
335     pub fn push_within_capacity(&mut self, v: T) -> Result<(), PushError<T>> {
336         if self.len() < self.capacity() {
337             // SAFETY: The length is less than the capacity.
338             unsafe { self.push_within_capacity_unchecked(v) };
339             Ok(())
340         } else {
341             Err(PushError(v))
342         }
343     }
344 
345     /// Appends an element to the back of the [`Vec`] instance without reallocating.
346     ///
347     /// # Safety
348     ///
349     /// The length must be less than the capacity.
350     unsafe fn push_within_capacity_unchecked(&mut self, v: T) {
351         let spare = self.spare_capacity_mut();
352 
353         // SAFETY: By the safety requirements, `spare` is non-empty.
354         unsafe { spare.get_unchecked_mut(0) }.write(v);
355 
356         // SAFETY: We just initialised the first spare entry, so it is safe to increase the length
357         // by 1. We also know that the new length is <= capacity because the caller guarantees that
358         // the length is less than the capacity at the beginning of this function.
359         unsafe { self.inc_len(1) };
360     }
361 
362     /// Inserts an element at the given index in the [`Vec`] instance.
363     ///
364     /// Fails if the vector does not have capacity for the new element. Panics if the index is out
365     /// of bounds.
366     ///
367     /// # Examples
368     ///
369     /// ```
370     /// use kernel::alloc::kvec::InsertError;
371     ///
372     /// let mut v = KVec::with_capacity(5, GFP_KERNEL)?;
373     /// for i in 0..5 {
374     ///     v.insert_within_capacity(0, i)?;
375     /// }
376     ///
377     /// assert!(matches!(v.insert_within_capacity(0, 5), Err(InsertError::OutOfCapacity(_))));
378     /// assert!(matches!(v.insert_within_capacity(1000, 5), Err(InsertError::IndexOutOfBounds(_))));
379     /// assert_eq!(v, [4, 3, 2, 1, 0]);
380     /// # Ok::<(), Error>(())
381     /// ```
382     pub fn insert_within_capacity(
383         &mut self,
384         index: usize,
385         element: T,
386     ) -> Result<(), InsertError<T>> {
387         let len = self.len();
388         if index > len {
389             return Err(InsertError::IndexOutOfBounds(element));
390         }
391 
392         if len >= self.capacity() {
393             return Err(InsertError::OutOfCapacity(element));
394         }
395 
396         // SAFETY: This is in bounds since `index <= len < capacity`.
397         let p = unsafe { self.as_mut_ptr().add(index) };
398         // INVARIANT: This breaks the Vec invariants by making `index` contain an invalid element,
399         // but we restore the invariants below.
400         // SAFETY: Both the src and dst ranges end no later than one element after the length.
401         // Since the length is less than the capacity, both ranges are in bounds of the allocation.
402         unsafe { ptr::copy(p, p.add(1), len - index) };
403         // INVARIANT: This restores the Vec invariants.
404         // SAFETY: The pointer is in-bounds of the allocation.
405         unsafe { ptr::write(p, element) };
406         // SAFETY: Index `len` contains a valid element due to the above copy and write.
407         unsafe { self.inc_len(1) };
408         Ok(())
409     }
410 
411     /// Removes the last element from a vector and returns it, or `None` if it is empty.
412     ///
413     /// # Examples
414     ///
415     /// ```
416     /// let mut v = KVec::new();
417     /// v.push(1, GFP_KERNEL)?;
418     /// v.push(2, GFP_KERNEL)?;
419     /// assert_eq!(&v, &[1, 2]);
420     ///
421     /// assert_eq!(v.pop(), Some(2));
422     /// assert_eq!(v.pop(), Some(1));
423     /// assert_eq!(v.pop(), None);
424     /// # Ok::<(), Error>(())
425     /// ```
426     pub fn pop(&mut self) -> Option<T> {
427         if self.is_empty() {
428             return None;
429         }
430 
431         let removed: *mut T = {
432             // SAFETY: We just checked that the length is at least one.
433             let slice = unsafe { self.dec_len(1) };
434             // SAFETY: The argument to `dec_len` was 1 so this returns a slice of length 1.
435             unsafe { slice.get_unchecked_mut(0) }
436         };
437 
438         // SAFETY: The guarantees of `dec_len` allow us to take ownership of this value.
439         Some(unsafe { removed.read() })
440     }
441 
442     /// Removes the element at the given index.
443     ///
444     /// # Examples
445     ///
446     /// ```
447     /// let mut v = kernel::kvec![1, 2, 3]?;
448     /// assert_eq!(v.remove(1)?, 2);
449     /// assert_eq!(v, [1, 3]);
450     /// # Ok::<(), Error>(())
451     /// ```
452     pub fn remove(&mut self, i: usize) -> Result<T, RemoveError> {
453         let value = {
454             let value_ref = self.get(i).ok_or(RemoveError)?;
455             // INVARIANT: This breaks the invariants by invalidating the value at index `i`, but we
456             // restore the invariants below.
457             // SAFETY: The value at index `i` is valid, because otherwise we would have already
458             // failed with `RemoveError`.
459             unsafe { ptr::read(value_ref) }
460         };
461 
462         // SAFETY: We checked that `i` is in-bounds.
463         let p = unsafe { self.as_mut_ptr().add(i) };
464 
465         // INVARIANT: After this call, the invalid value is at the last slot, so the Vec invariants
466         // are restored after the below call to `dec_len(1)`.
467         // SAFETY: `p.add(1).add(self.len - i - 1)` is `i+1+len-i-1 == len` elements after the
468         // beginning of the vector, so this is in-bounds of the vector's allocation.
469         unsafe { ptr::copy(p.add(1), p, self.len - i - 1) };
470 
471         // SAFETY: Since the check at the beginning of this call did not fail with `RemoveError`,
472         // the length is at least one.
473         unsafe { self.dec_len(1) };
474 
475         Ok(value)
476     }
477 
478     /// Creates a new [`Vec`] instance with at least the given capacity.
479     ///
480     /// # Examples
481     ///
482     /// ```
483     /// let v = KVec::<u32>::with_capacity(20, GFP_KERNEL)?;
484     ///
485     /// assert!(v.capacity() >= 20);
486     /// # Ok::<(), Error>(())
487     /// ```
488     pub fn with_capacity(capacity: usize, flags: Flags) -> Result<Self, AllocError> {
489         let mut v = Vec::new();
490 
491         v.reserve(capacity, flags)?;
492 
493         Ok(v)
494     }
495 
496     /// Creates a `Vec<T, A>` from a pointer, a length and a capacity using the allocator `A`.
497     ///
498     /// # Examples
499     ///
500     /// ```
501     /// let mut v = kernel::kvec![1, 2, 3]?;
502     /// v.reserve(1, GFP_KERNEL)?;
503     ///
504     /// let (mut ptr, mut len, cap) = v.into_raw_parts();
505     ///
506     /// // SAFETY: We've just reserved memory for another element.
507     /// unsafe { ptr.add(len).write(4) };
508     /// len += 1;
509     ///
510     /// // SAFETY: We only wrote an additional element at the end of the `KVec`'s buffer and
511     /// // correspondingly increased the length of the `KVec` by one. Otherwise, we construct it
512     /// // from the exact same raw parts.
513     /// let v = unsafe { KVec::from_raw_parts(ptr, len, cap) };
514     ///
515     /// assert_eq!(v, [1, 2, 3, 4]);
516     ///
517     /// # Ok::<(), Error>(())
518     /// ```
519     ///
520     /// # Safety
521     ///
522     /// If `T` is a ZST:
523     ///
524     /// - `ptr` must be a dangling, well aligned pointer.
525     ///
526     /// Otherwise:
527     ///
528     /// - `ptr` must have been allocated with the allocator `A`.
529     /// - `ptr` must satisfy or exceed the alignment requirements of `T`.
530     /// - `ptr` must point to memory with a size of at least `size_of::<T>() * capacity` bytes.
531     /// - The allocated size in bytes must not be larger than `isize::MAX`.
532     /// - `length` must be less than or equal to `capacity`.
533     /// - The first `length` elements must be initialized values of type `T`.
534     ///
535     /// It is also valid to create an empty `Vec` passing a dangling pointer for `ptr` and zero for
536     /// `cap` and `len`.
537     pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
538         let layout = if Self::is_zst() {
539             ArrayLayout::empty()
540         } else {
541             // SAFETY: By the safety requirements of this function, `capacity * size_of::<T>()` is
542             // smaller than `isize::MAX`.
543             unsafe { ArrayLayout::new_unchecked(capacity) }
544         };
545 
546         // INVARIANT: For ZSTs, we store an empty `ArrayLayout`, all other type invariants are
547         // covered by the safety requirements of this function.
548         Self {
549             // SAFETY: By the safety requirements, `ptr` is either dangling or pointing to a valid
550             // memory allocation, allocated with `A`.
551             ptr: unsafe { NonNull::new_unchecked(ptr) },
552             layout,
553             len: length,
554             _p: PhantomData::<A>,
555         }
556     }
557 
558     /// Consumes the `Vec<T, A>` and returns its raw components `pointer`, `length` and `capacity`.
559     ///
560     /// This will not run the destructor of the contained elements and for non-ZSTs the allocation
561     /// will stay alive indefinitely. Use [`Vec::from_raw_parts`] to recover the [`Vec`], drop the
562     /// elements and free the allocation, if any.
563     pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
564         let mut me = ManuallyDrop::new(self);
565         let len = me.len();
566         let capacity = me.capacity();
567         let ptr = me.as_mut_ptr();
568         (ptr, len, capacity)
569     }
570 
571     /// Clears the vector, removing all values.
572     ///
573     /// Note that this method has no effect on the allocated capacity
574     /// of the vector.
575     ///
576     /// # Examples
577     ///
578     /// ```
579     /// let mut v = kernel::kvec![1, 2, 3]?;
580     ///
581     /// v.clear();
582     ///
583     /// assert!(v.is_empty());
584     /// # Ok::<(), Error>(())
585     /// ```
586     #[inline]
587     pub fn clear(&mut self) {
588         self.truncate(0);
589     }
590 
591     /// Ensures that the capacity exceeds the length by at least `additional` elements.
592     ///
593     /// # Examples
594     ///
595     /// ```
596     /// let mut v = KVec::new();
597     /// v.push(1, GFP_KERNEL)?;
598     ///
599     /// v.reserve(10, GFP_KERNEL)?;
600     /// let cap = v.capacity();
601     /// assert!(cap >= 10);
602     ///
603     /// v.reserve(10, GFP_KERNEL)?;
604     /// let new_cap = v.capacity();
605     /// assert_eq!(new_cap, cap);
606     ///
607     /// # Ok::<(), Error>(())
608     /// ```
609     pub fn reserve(&mut self, additional: usize, flags: Flags) -> Result<(), AllocError> {
610         let len = self.len();
611         let cap = self.capacity();
612 
613         if cap - len >= additional {
614             return Ok(());
615         }
616 
617         if Self::is_zst() {
618             // The capacity is already `usize::MAX` for ZSTs, we can't go higher.
619             return Err(AllocError);
620         }
621 
622         // We know that `cap <= isize::MAX` because of the type invariants of `Self`. So the
623         // multiplication by two won't overflow.
624         let new_cap = core::cmp::max(cap * 2, len.checked_add(additional).ok_or(AllocError)?);
625         let layout = ArrayLayout::new(new_cap).map_err(|_| AllocError)?;
626 
627         // SAFETY:
628         // - `ptr` is valid because it's either `None` or comes from a previous call to
629         //   `A::realloc`.
630         // - `self.layout` matches the `ArrayLayout` of the preceding allocation.
631         let ptr = unsafe {
632             A::realloc(
633                 Some(self.ptr.cast()),
634                 layout.into(),
635                 self.layout.into(),
636                 flags,
637                 NumaNode::NO_NODE,
638             )?
639         };
640 
641         // INVARIANT:
642         // - `layout` is some `ArrayLayout::<T>`,
643         // - `ptr` has been created by `A::realloc` from `layout`.
644         self.ptr = ptr.cast();
645         self.layout = layout;
646 
647         Ok(())
648     }
649 
650     /// Shortens the vector, setting the length to `len` and drops the removed values.
651     /// If `len` is greater than or equal to the current length, this does nothing.
652     ///
653     /// This has no effect on the capacity and will not allocate.
654     ///
655     /// # Examples
656     ///
657     /// ```
658     /// let mut v = kernel::kvec![1, 2, 3]?;
659     /// v.truncate(1);
660     /// assert_eq!(v.len(), 1);
661     /// assert_eq!(&v, &[1]);
662     ///
663     /// # Ok::<(), Error>(())
664     /// ```
665     pub fn truncate(&mut self, len: usize) {
666         if let Some(count) = self.len().checked_sub(len) {
667             // SAFETY: `count` is `self.len() - len` so it is guaranteed to be less than or
668             // equal to `self.len()`.
669             let ptr: *mut [T] = unsafe { self.dec_len(count) };
670 
671             // SAFETY: the contract of `dec_len` guarantees that the elements in `ptr` are
672             // valid elements whose ownership has been transferred to the caller.
673             unsafe { ptr::drop_in_place(ptr) };
674         }
675     }
676 
677     /// Takes ownership of all items in this vector without consuming the allocation.
678     ///
679     /// # Examples
680     ///
681     /// ```
682     /// let mut v = kernel::kvec![0, 1, 2, 3]?;
683     ///
684     /// for (i, j) in v.drain_all().enumerate() {
685     ///     assert_eq!(i, j);
686     /// }
687     ///
688     /// assert!(v.capacity() >= 4);
689     /// # Ok::<(), Error>(())
690     /// ```
691     pub fn drain_all(&mut self) -> DrainAll<'_, T> {
692         // SAFETY: This does not underflow the length.
693         let elems = unsafe { self.dec_len(self.len()) };
694         // INVARIANT: The first `len` elements of the spare capacity are valid values, and as we
695         // just set the length to zero, we may transfer ownership to the `DrainAll` object.
696         DrainAll {
697             elements: elems.iter_mut(),
698         }
699     }
700 
701     /// Removes all elements that don't match the provided closure.
702     ///
703     /// # Examples
704     ///
705     /// ```
706     /// let mut v = kernel::kvec![1, 2, 3, 4]?;
707     /// v.retain(|i| *i % 2 == 0);
708     /// assert_eq!(v, [2, 4]);
709     /// # Ok::<(), Error>(())
710     /// ```
711     pub fn retain(&mut self, mut f: impl FnMut(&mut T) -> bool) {
712         let mut num_kept = 0;
713         let mut next_to_check = 0;
714         while let Some(to_check) = self.get_mut(next_to_check) {
715             if f(to_check) {
716                 self.swap(num_kept, next_to_check);
717                 num_kept += 1;
718             }
719             next_to_check += 1;
720         }
721         self.truncate(num_kept);
722     }
723 }
724 
725 impl<T: Clone, A: Allocator> Vec<T, A> {
726     /// Extend the vector by `n` clones of `value`.
727     pub fn extend_with(&mut self, n: usize, value: T, flags: Flags) -> Result<(), AllocError> {
728         if n == 0 {
729             return Ok(());
730         }
731 
732         self.reserve(n, flags)?;
733 
734         let spare = self.spare_capacity_mut();
735 
736         for item in spare.iter_mut().take(n - 1) {
737             item.write(value.clone());
738         }
739 
740         // We can write the last element directly without cloning needlessly.
741         spare[n - 1].write(value);
742 
743         // SAFETY:
744         // - `self.len() + n < self.capacity()` due to the call to reserve above,
745         // - the loop and the line above initialized the next `n` elements.
746         unsafe { self.inc_len(n) };
747 
748         Ok(())
749     }
750 
751     /// Pushes clones of the elements of slice into the [`Vec`] instance.
752     ///
753     /// # Examples
754     ///
755     /// ```
756     /// let mut v = KVec::new();
757     /// v.push(1, GFP_KERNEL)?;
758     ///
759     /// v.extend_from_slice(&[20, 30, 40], GFP_KERNEL)?;
760     /// assert_eq!(&v, &[1, 20, 30, 40]);
761     ///
762     /// v.extend_from_slice(&[50, 60], GFP_KERNEL)?;
763     /// assert_eq!(&v, &[1, 20, 30, 40, 50, 60]);
764     /// # Ok::<(), Error>(())
765     /// ```
766     pub fn extend_from_slice(&mut self, other: &[T], flags: Flags) -> Result<(), AllocError> {
767         self.reserve(other.len(), flags)?;
768         for (slot, item) in core::iter::zip(self.spare_capacity_mut(), other) {
769             slot.write(item.clone());
770         }
771 
772         // SAFETY:
773         // - `other.len()` spare entries have just been initialized, so it is safe to increase
774         //   the length by the same number.
775         // - `self.len() + other.len() <= self.capacity()` is guaranteed by the preceding `reserve`
776         //   call.
777         unsafe { self.inc_len(other.len()) };
778         Ok(())
779     }
780 
781     /// Create a new `Vec<T, A>` and extend it by `n` clones of `value`.
782     pub fn from_elem(value: T, n: usize, flags: Flags) -> Result<Self, AllocError> {
783         let mut v = Self::with_capacity(n, flags)?;
784 
785         v.extend_with(n, value, flags)?;
786 
787         Ok(v)
788     }
789 
790     /// Resizes the [`Vec`] so that `len` is equal to `new_len`.
791     ///
792     /// If `new_len` is smaller than `len`, the `Vec` is [`Vec::truncate`]d.
793     /// If `new_len` is larger, each new slot is filled with clones of `value`.
794     ///
795     /// # Examples
796     ///
797     /// ```
798     /// let mut v = kernel::kvec![1, 2, 3]?;
799     /// v.resize(1, 42, GFP_KERNEL)?;
800     /// assert_eq!(&v, &[1]);
801     ///
802     /// v.resize(3, 42, GFP_KERNEL)?;
803     /// assert_eq!(&v, &[1, 42, 42]);
804     ///
805     /// # Ok::<(), Error>(())
806     /// ```
807     pub fn resize(&mut self, new_len: usize, value: T, flags: Flags) -> Result<(), AllocError> {
808         match new_len.checked_sub(self.len()) {
809             Some(n) => self.extend_with(n, value, flags),
810             None => {
811                 self.truncate(new_len);
812                 Ok(())
813             }
814         }
815     }
816 }
817 
818 impl<T, A> Drop for Vec<T, A>
819 where
820     A: Allocator,
821 {
822     fn drop(&mut self) {
823         // SAFETY: `self.as_mut_ptr` is guaranteed to be valid by the type invariant.
824         unsafe {
825             ptr::drop_in_place(core::ptr::slice_from_raw_parts_mut(
826                 self.as_mut_ptr(),
827                 self.len,
828             ))
829         };
830 
831         // SAFETY:
832         // - `self.ptr` was previously allocated with `A`.
833         // - `self.layout` matches the `ArrayLayout` of the preceding allocation.
834         unsafe { A::free(self.ptr.cast(), self.layout.into()) };
835     }
836 }
837 
838 impl<T, A, const N: usize> From<Box<[T; N], A>> for Vec<T, A>
839 where
840     A: Allocator,
841 {
842     fn from(b: Box<[T; N], A>) -> Vec<T, A> {
843         let len = b.len();
844         let ptr = Box::into_raw(b);
845 
846         // SAFETY:
847         // - `b` has been allocated with `A`,
848         // - `ptr` fulfills the alignment requirements for `T`,
849         // - `ptr` points to memory with at least a size of `size_of::<T>() * len`,
850         // - all elements within `b` are initialized values of `T`,
851         // - `len` does not exceed `isize::MAX`.
852         unsafe { Vec::from_raw_parts(ptr.cast(), len, len) }
853     }
854 }
855 
856 impl<T, A: Allocator> Default for Vec<T, A> {
857     #[inline]
858     fn default() -> Self {
859         Self::new()
860     }
861 }
862 
863 impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
864     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
865         fmt::Debug::fmt(&**self, f)
866     }
867 }
868 
869 impl<T, A> Deref for Vec<T, A>
870 where
871     A: Allocator,
872 {
873     type Target = [T];
874 
875     #[inline]
876     fn deref(&self) -> &[T] {
877         // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
878         // initialized elements of type `T`.
879         unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
880     }
881 }
882 
883 impl<T, A> DerefMut for Vec<T, A>
884 where
885     A: Allocator,
886 {
887     #[inline]
888     fn deref_mut(&mut self) -> &mut [T] {
889         // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
890         // initialized elements of type `T`.
891         unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
892     }
893 }
894 
895 /// # Examples
896 ///
897 /// ```
898 /// # use core::borrow::Borrow;
899 /// struct Foo<B: Borrow<[u32]>>(B);
900 ///
901 /// // Owned array.
902 /// let owned_array = Foo([1, 2, 3]);
903 ///
904 /// // Owned vector.
905 /// let owned_vec = Foo(KVec::from_elem(0, 3, GFP_KERNEL)?);
906 ///
907 /// let arr = [1, 2, 3];
908 /// // Borrowed slice from `arr`.
909 /// let borrowed_slice = Foo(&arr[..]);
910 /// # Ok::<(), Error>(())
911 /// ```
912 impl<T, A> Borrow<[T]> for Vec<T, A>
913 where
914     A: Allocator,
915 {
916     fn borrow(&self) -> &[T] {
917         self.as_slice()
918     }
919 }
920 
921 /// # Examples
922 ///
923 /// ```
924 /// # use core::borrow::BorrowMut;
925 /// struct Foo<B: BorrowMut<[u32]>>(B);
926 ///
927 /// // Owned array.
928 /// let owned_array = Foo([1, 2, 3]);
929 ///
930 /// // Owned vector.
931 /// let owned_vec = Foo(KVec::from_elem(0, 3, GFP_KERNEL)?);
932 ///
933 /// let mut arr = [1, 2, 3];
934 /// // Borrowed slice from `arr`.
935 /// let borrowed_slice = Foo(&mut arr[..]);
936 /// # Ok::<(), Error>(())
937 /// ```
938 impl<T, A> BorrowMut<[T]> for Vec<T, A>
939 where
940     A: Allocator,
941 {
942     fn borrow_mut(&mut self) -> &mut [T] {
943         self.as_mut_slice()
944     }
945 }
946 
947 impl<T: Eq, A> Eq for Vec<T, A> where A: Allocator {}
948 
949 impl<T, I: SliceIndex<[T]>, A> Index<I> for Vec<T, A>
950 where
951     A: Allocator,
952 {
953     type Output = I::Output;
954 
955     #[inline]
956     fn index(&self, index: I) -> &Self::Output {
957         Index::index(&**self, index)
958     }
959 }
960 
961 impl<T, I: SliceIndex<[T]>, A> IndexMut<I> for Vec<T, A>
962 where
963     A: Allocator,
964 {
965     #[inline]
966     fn index_mut(&mut self, index: I) -> &mut Self::Output {
967         IndexMut::index_mut(&mut **self, index)
968     }
969 }
970 
971 macro_rules! impl_slice_eq {
972     ($([$($vars:tt)*] $lhs:ty, $rhs:ty,)*) => {
973         $(
974             impl<T, U, $($vars)*> PartialEq<$rhs> for $lhs
975             where
976                 T: PartialEq<U>,
977             {
978                 #[inline]
979                 fn eq(&self, other: &$rhs) -> bool { self[..] == other[..] }
980             }
981         )*
982     }
983 }
984 
985 impl_slice_eq! {
986     [A1: Allocator, A2: Allocator] Vec<T, A1>, Vec<U, A2>,
987     [A: Allocator] Vec<T, A>, &[U],
988     [A: Allocator] Vec<T, A>, &mut [U],
989     [A: Allocator] &[T], Vec<U, A>,
990     [A: Allocator] &mut [T], Vec<U, A>,
991     [A: Allocator] Vec<T, A>, [U],
992     [A: Allocator] [T], Vec<U, A>,
993     [A: Allocator, const N: usize] Vec<T, A>, [U; N],
994     [A: Allocator, const N: usize] Vec<T, A>, &[U; N],
995 }
996 
997 impl<'a, T, A> IntoIterator for &'a Vec<T, A>
998 where
999     A: Allocator,
1000 {
1001     type Item = &'a T;
1002     type IntoIter = slice::Iter<'a, T>;
1003 
1004     fn into_iter(self) -> Self::IntoIter {
1005         self.iter()
1006     }
1007 }
1008 
1009 impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A>
1010 where
1011     A: Allocator,
1012 {
1013     type Item = &'a mut T;
1014     type IntoIter = slice::IterMut<'a, T>;
1015 
1016     fn into_iter(self) -> Self::IntoIter {
1017         self.iter_mut()
1018     }
1019 }
1020 
1021 /// An [`Iterator`] implementation for [`Vec`] that moves elements out of a vector.
1022 ///
1023 /// This structure is created by the [`Vec::into_iter`] method on [`Vec`] (provided by the
1024 /// [`IntoIterator`] trait).
1025 ///
1026 /// # Examples
1027 ///
1028 /// ```
1029 /// let v = kernel::kvec![0, 1, 2]?;
1030 /// let iter = v.into_iter();
1031 ///
1032 /// # Ok::<(), Error>(())
1033 /// ```
1034 pub struct IntoIter<T, A: Allocator> {
1035     ptr: *mut T,
1036     buf: NonNull<T>,
1037     len: usize,
1038     layout: ArrayLayout<T>,
1039     _p: PhantomData<A>,
1040 }
1041 
1042 impl<T, A> IntoIter<T, A>
1043 where
1044     A: Allocator,
1045 {
1046     fn into_raw_parts(self) -> (*mut T, NonNull<T>, usize, usize) {
1047         let me = ManuallyDrop::new(self);
1048         let ptr = me.ptr;
1049         let buf = me.buf;
1050         let len = me.len;
1051         let cap = me.layout.len();
1052         (ptr, buf, len, cap)
1053     }
1054 
1055     /// Same as `Iterator::collect` but specialized for `Vec`'s `IntoIter`.
1056     ///
1057     /// # Examples
1058     ///
1059     /// ```
1060     /// let v = kernel::kvec![1, 2, 3]?;
1061     /// let mut it = v.into_iter();
1062     ///
1063     /// assert_eq!(it.next(), Some(1));
1064     ///
1065     /// let v = it.collect(GFP_KERNEL);
1066     /// assert_eq!(v, [2, 3]);
1067     ///
1068     /// # Ok::<(), Error>(())
1069     /// ```
1070     ///
1071     /// # Implementation details
1072     ///
1073     /// Currently, we can't implement `FromIterator`. There are a couple of issues with this trait
1074     /// in the kernel, namely:
1075     ///
1076     /// - Rust's specialization feature is unstable. This prevents us to optimize for the special
1077     ///   case where `I::IntoIter` equals `Vec`'s `IntoIter` type.
1078     /// - We also can't use `I::IntoIter`'s type ID either to work around this, since `FromIterator`
1079     ///   doesn't require this type to be `'static`.
1080     /// - `FromIterator::from_iter` does return `Self` instead of `Result<Self, AllocError>`, hence
1081     ///   we can't properly handle allocation failures.
1082     /// - Neither `Iterator::collect` nor `FromIterator::from_iter` can handle additional allocation
1083     ///   flags.
1084     ///
1085     /// Instead, provide `IntoIter::collect`, such that we can at least convert a `IntoIter` into a
1086     /// `Vec` again.
1087     ///
1088     /// Note that `IntoIter::collect` doesn't require `Flags`, since it re-uses the existing backing
1089     /// buffer. However, this backing buffer may be shrunk to the actual count of elements.
1090     pub fn collect(self, flags: Flags) -> Vec<T, A> {
1091         let old_layout = self.layout;
1092         let (mut ptr, buf, len, mut cap) = self.into_raw_parts();
1093         let has_advanced = ptr != buf.as_ptr();
1094 
1095         if has_advanced {
1096             // Copy the contents we have advanced to at the beginning of the buffer.
1097             //
1098             // SAFETY:
1099             // - `ptr` is valid for reads of `len * size_of::<T>()` bytes,
1100             // - `buf.as_ptr()` is valid for writes of `len * size_of::<T>()` bytes,
1101             // - `ptr` and `buf.as_ptr()` are not be subject to aliasing restrictions relative to
1102             //   each other,
1103             // - both `ptr` and `buf.ptr()` are properly aligned.
1104             unsafe { ptr::copy(ptr, buf.as_ptr(), len) };
1105             ptr = buf.as_ptr();
1106 
1107             // SAFETY: `len` is guaranteed to be smaller than `self.layout.len()` by the type
1108             // invariant.
1109             let layout = unsafe { ArrayLayout::<T>::new_unchecked(len) };
1110 
1111             // SAFETY: `buf` points to the start of the backing buffer and `len` is guaranteed by
1112             // the type invariant to be smaller than `cap`. Depending on `realloc` this operation
1113             // may shrink the buffer or leave it as it is.
1114             ptr = match unsafe {
1115                 A::realloc(
1116                     Some(buf.cast()),
1117                     layout.into(),
1118                     old_layout.into(),
1119                     flags,
1120                     NumaNode::NO_NODE,
1121                 )
1122             } {
1123                 // If we fail to shrink, which likely can't even happen, continue with the existing
1124                 // buffer.
1125                 Err(_) => ptr,
1126                 Ok(ptr) => {
1127                     cap = len;
1128                     ptr.as_ptr().cast()
1129                 }
1130             };
1131         }
1132 
1133         // SAFETY: If the iterator has been advanced, the advanced elements have been copied to
1134         // the beginning of the buffer and `len` has been adjusted accordingly.
1135         //
1136         // - `ptr` is guaranteed to point to the start of the backing buffer.
1137         // - `cap` is either the original capacity or, after shrinking the buffer, equal to `len`.
1138         // - `alloc` is guaranteed to be unchanged since `into_iter` has been called on the original
1139         //   `Vec`.
1140         unsafe { Vec::from_raw_parts(ptr, len, cap) }
1141     }
1142 }
1143 
1144 impl<T, A> Iterator for IntoIter<T, A>
1145 where
1146     A: Allocator,
1147 {
1148     type Item = T;
1149 
1150     /// # Examples
1151     ///
1152     /// ```
1153     /// let v = kernel::kvec![1, 2, 3]?;
1154     /// let mut it = v.into_iter();
1155     ///
1156     /// assert_eq!(it.next(), Some(1));
1157     /// assert_eq!(it.next(), Some(2));
1158     /// assert_eq!(it.next(), Some(3));
1159     /// assert_eq!(it.next(), None);
1160     ///
1161     /// # Ok::<(), Error>(())
1162     /// ```
1163     fn next(&mut self) -> Option<T> {
1164         if self.len == 0 {
1165             return None;
1166         }
1167 
1168         let current = self.ptr;
1169 
1170         // SAFETY: We can't overflow; decreasing `self.len` by one every time we advance `self.ptr`
1171         // by one guarantees that.
1172         unsafe { self.ptr = self.ptr.add(1) };
1173 
1174         self.len -= 1;
1175 
1176         // SAFETY: `current` is guaranteed to point at a valid element within the buffer.
1177         Some(unsafe { current.read() })
1178     }
1179 
1180     /// # Examples
1181     ///
1182     /// ```
1183     /// let v: KVec<u32> = kernel::kvec![1, 2, 3]?;
1184     /// let mut iter = v.into_iter();
1185     /// let size = iter.size_hint().0;
1186     ///
1187     /// iter.next();
1188     /// assert_eq!(iter.size_hint().0, size - 1);
1189     ///
1190     /// iter.next();
1191     /// assert_eq!(iter.size_hint().0, size - 2);
1192     ///
1193     /// iter.next();
1194     /// assert_eq!(iter.size_hint().0, size - 3);
1195     ///
1196     /// # Ok::<(), Error>(())
1197     /// ```
1198     fn size_hint(&self) -> (usize, Option<usize>) {
1199         (self.len, Some(self.len))
1200     }
1201 }
1202 
1203 impl<T, A> Drop for IntoIter<T, A>
1204 where
1205     A: Allocator,
1206 {
1207     fn drop(&mut self) {
1208         // SAFETY: `self.ptr` is guaranteed to be valid by the type invariant.
1209         unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.ptr, self.len)) };
1210 
1211         // SAFETY:
1212         // - `self.buf` was previously allocated with `A`.
1213         // - `self.layout` matches the `ArrayLayout` of the preceding allocation.
1214         unsafe { A::free(self.buf.cast(), self.layout.into()) };
1215     }
1216 }
1217 
1218 impl<T, A> IntoIterator for Vec<T, A>
1219 where
1220     A: Allocator,
1221 {
1222     type Item = T;
1223     type IntoIter = IntoIter<T, A>;
1224 
1225     /// Consumes the `Vec<T, A>` and creates an `Iterator`, which moves each value out of the
1226     /// vector (from start to end).
1227     ///
1228     /// # Examples
1229     ///
1230     /// ```
1231     /// let v = kernel::kvec![1, 2]?;
1232     /// let mut v_iter = v.into_iter();
1233     ///
1234     /// let first_element: Option<u32> = v_iter.next();
1235     ///
1236     /// assert_eq!(first_element, Some(1));
1237     /// assert_eq!(v_iter.next(), Some(2));
1238     /// assert_eq!(v_iter.next(), None);
1239     ///
1240     /// # Ok::<(), Error>(())
1241     /// ```
1242     ///
1243     /// ```
1244     /// let v = kernel::kvec![];
1245     /// let mut v_iter = v.into_iter();
1246     ///
1247     /// let first_element: Option<u32> = v_iter.next();
1248     ///
1249     /// assert_eq!(first_element, None);
1250     ///
1251     /// # Ok::<(), Error>(())
1252     /// ```
1253     #[inline]
1254     fn into_iter(self) -> Self::IntoIter {
1255         let buf = self.ptr;
1256         let layout = self.layout;
1257         let (ptr, len, _) = self.into_raw_parts();
1258 
1259         IntoIter {
1260             ptr,
1261             buf,
1262             len,
1263             layout,
1264             _p: PhantomData::<A>,
1265         }
1266     }
1267 }
1268 
1269 /// An iterator that owns all items in a vector, but does not own its allocation.
1270 ///
1271 /// # Invariants
1272 ///
1273 /// Every `&mut T` returned by the iterator references a `T` that the iterator may take ownership
1274 /// of.
1275 pub struct DrainAll<'vec, T> {
1276     elements: slice::IterMut<'vec, T>,
1277 }
1278 
1279 impl<'vec, T> Iterator for DrainAll<'vec, T> {
1280     type Item = T;
1281 
1282     fn next(&mut self) -> Option<T> {
1283         let elem: *mut T = self.elements.next()?;
1284         // SAFETY: By the type invariants, we may take ownership of this value.
1285         Some(unsafe { elem.read() })
1286     }
1287 
1288     fn size_hint(&self) -> (usize, Option<usize>) {
1289         self.elements.size_hint()
1290     }
1291 }
1292 
1293 impl<'vec, T> Drop for DrainAll<'vec, T> {
1294     fn drop(&mut self) {
1295         if core::mem::needs_drop::<T>() {
1296             let iter = core::mem::take(&mut self.elements);
1297             let ptr: *mut [T] = iter.into_slice();
1298             // SAFETY: By the type invariants, we own these values so we may destroy them.
1299             unsafe { ptr::drop_in_place(ptr) };
1300         }
1301     }
1302 }
1303 
1304 #[macros::kunit_tests(rust_kvec_kunit)]
1305 mod tests {
1306     use super::*;
1307     use crate::prelude::*;
1308 
1309     #[test]
1310     fn test_kvec_retain() {
1311         /// Verify correctness for one specific function.
1312         #[expect(clippy::needless_range_loop)]
1313         fn verify(c: &[bool]) {
1314             let mut vec1: KVec<usize> = KVec::with_capacity(c.len(), GFP_KERNEL).unwrap();
1315             let mut vec2: KVec<usize> = KVec::with_capacity(c.len(), GFP_KERNEL).unwrap();
1316 
1317             for i in 0..c.len() {
1318                 vec1.push_within_capacity(i).unwrap();
1319                 if c[i] {
1320                     vec2.push_within_capacity(i).unwrap();
1321                 }
1322             }
1323 
1324             vec1.retain(|i| c[*i]);
1325 
1326             assert_eq!(vec1, vec2);
1327         }
1328 
1329         /// Add one to a binary integer represented as a boolean array.
1330         fn add(value: &mut [bool]) {
1331             let mut carry = true;
1332             for v in value {
1333                 let new_v = carry != *v;
1334                 carry = carry && *v;
1335                 *v = new_v;
1336             }
1337         }
1338 
1339         // This boolean array represents a function from index to boolean. We check that `retain`
1340         // behaves correctly for all possible boolean arrays of every possible length less than
1341         // ten.
1342         let mut func = KVec::with_capacity(10, GFP_KERNEL).unwrap();
1343         for len in 0..10 {
1344             for _ in 0u32..1u32 << len {
1345                 verify(&func);
1346                 add(&mut func);
1347             }
1348             func.push_within_capacity(false).unwrap();
1349         }
1350     }
1351 }
1352