1 // SPDX-License-Identifier: GPL-2.0 2 3 //! Implementation of [`Box`]. 4 5 #[allow(unused_imports)] // Used in doc comments. 6 use super::allocator::{KVmalloc, Kmalloc, Vmalloc}; 7 use super::{AllocError, Allocator, Flags}; 8 use core::alloc::Layout; 9 use core::fmt; 10 use core::marker::PhantomData; 11 use core::mem::ManuallyDrop; 12 use core::mem::MaybeUninit; 13 use core::ops::{Deref, DerefMut}; 14 use core::pin::Pin; 15 use core::ptr::NonNull; 16 use core::result::Result; 17 18 use crate::ffi::c_void; 19 use crate::init::InPlaceInit; 20 use crate::types::ForeignOwnable; 21 use pin_init::{InPlaceWrite, Init, PinInit, ZeroableOption}; 22 23 /// The kernel's [`Box`] type -- a heap allocation for a single value of type `T`. 24 /// 25 /// This is the kernel's version of the Rust stdlib's `Box`. There are several differences, 26 /// for example no `noalias` attribute is emitted and partially moving out of a `Box` is not 27 /// supported. There are also several API differences, e.g. `Box` always requires an [`Allocator`] 28 /// implementation to be passed as generic, page [`Flags`] when allocating memory and all functions 29 /// that may allocate memory are fallible. 30 /// 31 /// `Box` works with any of the kernel's allocators, e.g. [`Kmalloc`], [`Vmalloc`] or [`KVmalloc`]. 32 /// There are aliases for `Box` with these allocators ([`KBox`], [`VBox`], [`KVBox`]). 33 /// 34 /// When dropping a [`Box`], the value is also dropped and the heap memory is automatically freed. 35 /// 36 /// # Examples 37 /// 38 /// ``` 39 /// let b = KBox::<u64>::new(24_u64, GFP_KERNEL)?; 40 /// 41 /// assert_eq!(*b, 24_u64); 42 /// # Ok::<(), Error>(()) 43 /// ``` 44 /// 45 /// ``` 46 /// # use kernel::bindings; 47 /// const SIZE: usize = bindings::KMALLOC_MAX_SIZE as usize + 1; 48 /// struct Huge([u8; SIZE]); 49 /// 50 /// assert!(KBox::<Huge>::new_uninit(GFP_KERNEL | __GFP_NOWARN).is_err()); 51 /// ``` 52 /// 53 /// ``` 54 /// # use kernel::bindings; 55 /// const SIZE: usize = bindings::KMALLOC_MAX_SIZE as usize + 1; 56 /// struct Huge([u8; SIZE]); 57 /// 58 /// assert!(KVBox::<Huge>::new_uninit(GFP_KERNEL).is_ok()); 59 /// ``` 60 /// 61 /// [`Box`]es can also be used to store trait objects by coercing their type: 62 /// 63 /// ``` 64 /// trait FooTrait {} 65 /// 66 /// struct FooStruct; 67 /// impl FooTrait for FooStruct {} 68 /// 69 /// let _ = KBox::new(FooStruct, GFP_KERNEL)? as KBox<dyn FooTrait>; 70 /// # Ok::<(), Error>(()) 71 /// ``` 72 /// 73 /// # Invariants 74 /// 75 /// `self.0` is always properly aligned and either points to memory allocated with `A` or, for 76 /// zero-sized types, is a dangling, well aligned pointer. 77 #[repr(transparent)] 78 #[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, derive(core::marker::CoercePointee))] 79 pub struct Box<#[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, pointee)] T: ?Sized, A: Allocator>( 80 NonNull<T>, 81 PhantomData<A>, 82 ); 83 84 // This is to allow coercion from `Box<T, A>` to `Box<U, A>` if `T` can be converted to the 85 // dynamically-sized type (DST) `U`. 86 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))] 87 impl<T, U, A> core::ops::CoerceUnsized<Box<U, A>> for Box<T, A> 88 where 89 T: ?Sized + core::marker::Unsize<U>, 90 U: ?Sized, 91 A: Allocator, 92 { 93 } 94 95 // This is to allow `Box<U, A>` to be dispatched on when `Box<T, A>` can be coerced into `Box<U, 96 // A>`. 97 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))] 98 impl<T, U, A> core::ops::DispatchFromDyn<Box<U, A>> for Box<T, A> 99 where 100 T: ?Sized + core::marker::Unsize<U>, 101 U: ?Sized, 102 A: Allocator, 103 { 104 } 105 106 /// Type alias for [`Box`] with a [`Kmalloc`] allocator. 107 /// 108 /// # Examples 109 /// 110 /// ``` 111 /// let b = KBox::new(24_u64, GFP_KERNEL)?; 112 /// 113 /// assert_eq!(*b, 24_u64); 114 /// # Ok::<(), Error>(()) 115 /// ``` 116 pub type KBox<T> = Box<T, super::allocator::Kmalloc>; 117 118 /// Type alias for [`Box`] with a [`Vmalloc`] allocator. 119 /// 120 /// # Examples 121 /// 122 /// ``` 123 /// let b = VBox::new(24_u64, GFP_KERNEL)?; 124 /// 125 /// assert_eq!(*b, 24_u64); 126 /// # Ok::<(), Error>(()) 127 /// ``` 128 pub type VBox<T> = Box<T, super::allocator::Vmalloc>; 129 130 /// Type alias for [`Box`] with a [`KVmalloc`] allocator. 131 /// 132 /// # Examples 133 /// 134 /// ``` 135 /// let b = KVBox::new(24_u64, GFP_KERNEL)?; 136 /// 137 /// assert_eq!(*b, 24_u64); 138 /// # Ok::<(), Error>(()) 139 /// ``` 140 pub type KVBox<T> = Box<T, super::allocator::KVmalloc>; 141 142 // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee: 143 // <https://doc.rust-lang.org/stable/std/option/index.html#representation>). 144 unsafe impl<T, A: Allocator> ZeroableOption for Box<T, A> {} 145 146 // SAFETY: `Box` is `Send` if `T` is `Send` because the `Box` owns a `T`. 147 unsafe impl<T, A> Send for Box<T, A> 148 where 149 T: Send + ?Sized, 150 A: Allocator, 151 { 152 } 153 154 // SAFETY: `Box` is `Sync` if `T` is `Sync` because the `Box` owns a `T`. 155 unsafe impl<T, A> Sync for Box<T, A> 156 where 157 T: Sync + ?Sized, 158 A: Allocator, 159 { 160 } 161 162 impl<T, A> Box<T, A> 163 where 164 T: ?Sized, 165 A: Allocator, 166 { 167 /// Creates a new `Box<T, A>` from a raw pointer. 168 /// 169 /// # Safety 170 /// 171 /// For non-ZSTs, `raw` must point at an allocation allocated with `A` that is sufficiently 172 /// aligned for and holds a valid `T`. The caller passes ownership of the allocation to the 173 /// `Box`. 174 /// 175 /// For ZSTs, `raw` must be a dangling, well aligned pointer. 176 #[inline] 177 pub const unsafe fn from_raw(raw: *mut T) -> Self { 178 // INVARIANT: Validity of `raw` is guaranteed by the safety preconditions of this function. 179 // SAFETY: By the safety preconditions of this function, `raw` is not a NULL pointer. 180 Self(unsafe { NonNull::new_unchecked(raw) }, PhantomData) 181 } 182 183 /// Consumes the `Box<T, A>` and returns a raw pointer. 184 /// 185 /// This will not run the destructor of `T` and for non-ZSTs the allocation will stay alive 186 /// indefinitely. Use [`Box::from_raw`] to recover the [`Box`], drop the value and free the 187 /// allocation, if any. 188 /// 189 /// # Examples 190 /// 191 /// ``` 192 /// let x = KBox::new(24, GFP_KERNEL)?; 193 /// let ptr = KBox::into_raw(x); 194 /// // SAFETY: `ptr` comes from a previous call to `KBox::into_raw`. 195 /// let x = unsafe { KBox::from_raw(ptr) }; 196 /// 197 /// assert_eq!(*x, 24); 198 /// # Ok::<(), Error>(()) 199 /// ``` 200 #[inline] 201 pub fn into_raw(b: Self) -> *mut T { 202 ManuallyDrop::new(b).0.as_ptr() 203 } 204 205 /// Consumes and leaks the `Box<T, A>` and returns a mutable reference. 206 /// 207 /// See [`Box::into_raw`] for more details. 208 #[inline] 209 pub fn leak<'a>(b: Self) -> &'a mut T { 210 // SAFETY: `Box::into_raw` always returns a properly aligned and dereferenceable pointer 211 // which points to an initialized instance of `T`. 212 unsafe { &mut *Box::into_raw(b) } 213 } 214 } 215 216 impl<T, A> Box<MaybeUninit<T>, A> 217 where 218 A: Allocator, 219 { 220 /// Converts a `Box<MaybeUninit<T>, A>` to a `Box<T, A>`. 221 /// 222 /// It is undefined behavior to call this function while the value inside of `b` is not yet 223 /// fully initialized. 224 /// 225 /// # Safety 226 /// 227 /// Callers must ensure that the value inside of `b` is in an initialized state. 228 pub unsafe fn assume_init(self) -> Box<T, A> { 229 let raw = Self::into_raw(self); 230 231 // SAFETY: `raw` comes from a previous call to `Box::into_raw`. By the safety requirements 232 // of this function, the value inside the `Box` is in an initialized state. Hence, it is 233 // safe to reconstruct the `Box` as `Box<T, A>`. 234 unsafe { Box::from_raw(raw.cast()) } 235 } 236 237 /// Writes the value and converts to `Box<T, A>`. 238 pub fn write(mut self, value: T) -> Box<T, A> { 239 (*self).write(value); 240 241 // SAFETY: We've just initialized `b`'s value. 242 unsafe { self.assume_init() } 243 } 244 } 245 246 impl<T, A> Box<T, A> 247 where 248 A: Allocator, 249 { 250 /// Creates a new `Box<T, A>` and initializes its contents with `x`. 251 /// 252 /// New memory is allocated with `A`. The allocation may fail, in which case an error is 253 /// returned. For ZSTs no memory is allocated. 254 pub fn new(x: T, flags: Flags) -> Result<Self, AllocError> { 255 let b = Self::new_uninit(flags)?; 256 Ok(Box::write(b, x)) 257 } 258 259 /// Creates a new `Box<T, A>` with uninitialized contents. 260 /// 261 /// New memory is allocated with `A`. The allocation may fail, in which case an error is 262 /// returned. For ZSTs no memory is allocated. 263 /// 264 /// # Examples 265 /// 266 /// ``` 267 /// let b = KBox::<u64>::new_uninit(GFP_KERNEL)?; 268 /// let b = KBox::write(b, 24); 269 /// 270 /// assert_eq!(*b, 24_u64); 271 /// # Ok::<(), Error>(()) 272 /// ``` 273 pub fn new_uninit(flags: Flags) -> Result<Box<MaybeUninit<T>, A>, AllocError> { 274 let layout = Layout::new::<MaybeUninit<T>>(); 275 let ptr = A::alloc(layout, flags)?; 276 277 // INVARIANT: `ptr` is either a dangling pointer or points to memory allocated with `A`, 278 // which is sufficient in size and alignment for storing a `T`. 279 Ok(Box(ptr.cast(), PhantomData)) 280 } 281 282 /// Constructs a new `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then `x` will be 283 /// pinned in memory and can't be moved. 284 #[inline] 285 pub fn pin(x: T, flags: Flags) -> Result<Pin<Box<T, A>>, AllocError> 286 where 287 A: 'static, 288 { 289 Ok(Self::new(x, flags)?.into()) 290 } 291 292 /// Convert a [`Box<T,A>`] to a [`Pin<Box<T,A>>`]. If `T` does not implement 293 /// [`Unpin`], then `x` will be pinned in memory and can't be moved. 294 pub fn into_pin(this: Self) -> Pin<Self> { 295 this.into() 296 } 297 298 /// Forgets the contents (does not run the destructor), but keeps the allocation. 299 fn forget_contents(this: Self) -> Box<MaybeUninit<T>, A> { 300 let ptr = Self::into_raw(this); 301 302 // SAFETY: `ptr` is valid, because it came from `Box::into_raw`. 303 unsafe { Box::from_raw(ptr.cast()) } 304 } 305 306 /// Drops the contents, but keeps the allocation. 307 /// 308 /// # Examples 309 /// 310 /// ``` 311 /// let value = KBox::new([0; 32], GFP_KERNEL)?; 312 /// assert_eq!(*value, [0; 32]); 313 /// let value = KBox::drop_contents(value); 314 /// // Now we can re-use `value`: 315 /// let value = KBox::write(value, [1; 32]); 316 /// assert_eq!(*value, [1; 32]); 317 /// # Ok::<(), Error>(()) 318 /// ``` 319 pub fn drop_contents(this: Self) -> Box<MaybeUninit<T>, A> { 320 let ptr = this.0.as_ptr(); 321 322 // SAFETY: `ptr` is valid, because it came from `this`. After this call we never access the 323 // value stored in `this` again. 324 unsafe { core::ptr::drop_in_place(ptr) }; 325 326 Self::forget_contents(this) 327 } 328 329 /// Moves the `Box`'s value out of the `Box` and consumes the `Box`. 330 pub fn into_inner(b: Self) -> T { 331 // SAFETY: By the type invariant `&*b` is valid for `read`. 332 let value = unsafe { core::ptr::read(&*b) }; 333 let _ = Self::forget_contents(b); 334 value 335 } 336 } 337 338 impl<T, A> From<Box<T, A>> for Pin<Box<T, A>> 339 where 340 T: ?Sized, 341 A: Allocator, 342 { 343 /// Converts a `Box<T, A>` into a `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then 344 /// `*b` will be pinned in memory and can't be moved. 345 /// 346 /// This moves `b` into `Pin` without moving `*b` or allocating and copying any memory. 347 fn from(b: Box<T, A>) -> Self { 348 // SAFETY: The value wrapped inside a `Pin<Box<T, A>>` cannot be moved or replaced as long 349 // as `T` does not implement `Unpin`. 350 unsafe { Pin::new_unchecked(b) } 351 } 352 } 353 354 impl<T, A> InPlaceWrite<T> for Box<MaybeUninit<T>, A> 355 where 356 A: Allocator + 'static, 357 { 358 type Initialized = Box<T, A>; 359 360 fn write_init<E>(mut self, init: impl Init<T, E>) -> Result<Self::Initialized, E> { 361 let slot = self.as_mut_ptr(); 362 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 363 // slot is valid. 364 unsafe { init.__init(slot)? }; 365 // SAFETY: All fields have been initialized. 366 Ok(unsafe { Box::assume_init(self) }) 367 } 368 369 fn write_pin_init<E>(mut self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E> { 370 let slot = self.as_mut_ptr(); 371 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 372 // slot is valid and will not be moved, because we pin it later. 373 unsafe { init.__pinned_init(slot)? }; 374 // SAFETY: All fields have been initialized. 375 Ok(unsafe { Box::assume_init(self) }.into()) 376 } 377 } 378 379 impl<T, A> InPlaceInit<T> for Box<T, A> 380 where 381 A: Allocator + 'static, 382 { 383 type PinnedSelf = Pin<Self>; 384 385 #[inline] 386 fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Pin<Self>, E> 387 where 388 E: From<AllocError>, 389 { 390 Box::<_, A>::new_uninit(flags)?.write_pin_init(init) 391 } 392 393 #[inline] 394 fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E> 395 where 396 E: From<AllocError>, 397 { 398 Box::<_, A>::new_uninit(flags)?.write_init(init) 399 } 400 } 401 402 // SAFETY: The pointer returned by `into_foreign` comes from a well aligned 403 // pointer to `T`. 404 unsafe impl<T: 'static, A> ForeignOwnable for Box<T, A> 405 where 406 A: Allocator, 407 { 408 const FOREIGN_ALIGN: usize = core::mem::align_of::<T>(); 409 type Borrowed<'a> = &'a T; 410 type BorrowedMut<'a> = &'a mut T; 411 412 fn into_foreign(self) -> *mut c_void { 413 Box::into_raw(self).cast() 414 } 415 416 unsafe fn from_foreign(ptr: *mut c_void) -> Self { 417 // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous 418 // call to `Self::into_foreign`. 419 unsafe { Box::from_raw(ptr.cast()) } 420 } 421 422 unsafe fn borrow<'a>(ptr: *mut c_void) -> &'a T { 423 // SAFETY: The safety requirements of this method ensure that the object remains alive and 424 // immutable for the duration of 'a. 425 unsafe { &*ptr.cast() } 426 } 427 428 unsafe fn borrow_mut<'a>(ptr: *mut c_void) -> &'a mut T { 429 let ptr = ptr.cast(); 430 // SAFETY: The safety requirements of this method ensure that the pointer is valid and that 431 // nothing else will access the value for the duration of 'a. 432 unsafe { &mut *ptr } 433 } 434 } 435 436 // SAFETY: The pointer returned by `into_foreign` comes from a well aligned 437 // pointer to `T`. 438 unsafe impl<T: 'static, A> ForeignOwnable for Pin<Box<T, A>> 439 where 440 A: Allocator, 441 { 442 const FOREIGN_ALIGN: usize = core::mem::align_of::<T>(); 443 type Borrowed<'a> = Pin<&'a T>; 444 type BorrowedMut<'a> = Pin<&'a mut T>; 445 446 fn into_foreign(self) -> *mut c_void { 447 // SAFETY: We are still treating the box as pinned. 448 Box::into_raw(unsafe { Pin::into_inner_unchecked(self) }).cast() 449 } 450 451 unsafe fn from_foreign(ptr: *mut c_void) -> Self { 452 // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous 453 // call to `Self::into_foreign`. 454 unsafe { Pin::new_unchecked(Box::from_raw(ptr.cast())) } 455 } 456 457 unsafe fn borrow<'a>(ptr: *mut c_void) -> Pin<&'a T> { 458 // SAFETY: The safety requirements for this function ensure that the object is still alive, 459 // so it is safe to dereference the raw pointer. 460 // The safety requirements of `from_foreign` also ensure that the object remains alive for 461 // the lifetime of the returned value. 462 let r = unsafe { &*ptr.cast() }; 463 464 // SAFETY: This pointer originates from a `Pin<Box<T>>`. 465 unsafe { Pin::new_unchecked(r) } 466 } 467 468 unsafe fn borrow_mut<'a>(ptr: *mut c_void) -> Pin<&'a mut T> { 469 let ptr = ptr.cast(); 470 // SAFETY: The safety requirements for this function ensure that the object is still alive, 471 // so it is safe to dereference the raw pointer. 472 // The safety requirements of `from_foreign` also ensure that the object remains alive for 473 // the lifetime of the returned value. 474 let r = unsafe { &mut *ptr }; 475 476 // SAFETY: This pointer originates from a `Pin<Box<T>>`. 477 unsafe { Pin::new_unchecked(r) } 478 } 479 } 480 481 impl<T, A> Deref for Box<T, A> 482 where 483 T: ?Sized, 484 A: Allocator, 485 { 486 type Target = T; 487 488 fn deref(&self) -> &T { 489 // SAFETY: `self.0` is always properly aligned, dereferenceable and points to an initialized 490 // instance of `T`. 491 unsafe { self.0.as_ref() } 492 } 493 } 494 495 impl<T, A> DerefMut for Box<T, A> 496 where 497 T: ?Sized, 498 A: Allocator, 499 { 500 fn deref_mut(&mut self) -> &mut T { 501 // SAFETY: `self.0` is always properly aligned, dereferenceable and points to an initialized 502 // instance of `T`. 503 unsafe { self.0.as_mut() } 504 } 505 } 506 507 impl<T, A> fmt::Display for Box<T, A> 508 where 509 T: ?Sized + fmt::Display, 510 A: Allocator, 511 { 512 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 513 <T as fmt::Display>::fmt(&**self, f) 514 } 515 } 516 517 impl<T, A> fmt::Debug for Box<T, A> 518 where 519 T: ?Sized + fmt::Debug, 520 A: Allocator, 521 { 522 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 523 <T as fmt::Debug>::fmt(&**self, f) 524 } 525 } 526 527 impl<T, A> Drop for Box<T, A> 528 where 529 T: ?Sized, 530 A: Allocator, 531 { 532 fn drop(&mut self) { 533 let layout = Layout::for_value::<T>(self); 534 535 // SAFETY: The pointer in `self.0` is guaranteed to be valid by the type invariant. 536 unsafe { core::ptr::drop_in_place::<T>(self.deref_mut()) }; 537 538 // SAFETY: 539 // - `self.0` was previously allocated with `A`. 540 // - `layout` is equal to the `Layout´ `self.0` was allocated with. 541 unsafe { A::free(self.0.cast(), layout) }; 542 } 543 } 544