1 // SPDX-License-Identifier: GPL-2.0 2 3 //! Implementation of [`Box`]. 4 5 #[allow(unused_imports)] // Used in doc comments. 6 use super::allocator::{KVmalloc, Kmalloc, Vmalloc, VmallocPageIter}; 7 use super::{AllocError, Allocator, Flags}; 8 use core::alloc::Layout; 9 use core::borrow::{Borrow, BorrowMut}; 10 use core::fmt; 11 use core::marker::PhantomData; 12 use core::mem::ManuallyDrop; 13 use core::mem::MaybeUninit; 14 use core::ops::{Deref, DerefMut}; 15 use core::pin::Pin; 16 use core::ptr::NonNull; 17 use core::result::Result; 18 19 use crate::ffi::c_void; 20 use crate::init::InPlaceInit; 21 use crate::page::AsPageIter; 22 use crate::types::ForeignOwnable; 23 use pin_init::{InPlaceWrite, Init, PinInit, ZeroableOption}; 24 25 /// The kernel's [`Box`] type -- a heap allocation for a single value of type `T`. 26 /// 27 /// This is the kernel's version of the Rust stdlib's `Box`. There are several differences, 28 /// for example no `noalias` attribute is emitted and partially moving out of a `Box` is not 29 /// supported. There are also several API differences, e.g. `Box` always requires an [`Allocator`] 30 /// implementation to be passed as generic, page [`Flags`] when allocating memory and all functions 31 /// that may allocate memory are fallible. 32 /// 33 /// `Box` works with any of the kernel's allocators, e.g. [`Kmalloc`], [`Vmalloc`] or [`KVmalloc`]. 34 /// There are aliases for `Box` with these allocators ([`KBox`], [`VBox`], [`KVBox`]). 35 /// 36 /// When dropping a [`Box`], the value is also dropped and the heap memory is automatically freed. 37 /// 38 /// # Examples 39 /// 40 /// ``` 41 /// let b = KBox::<u64>::new(24_u64, GFP_KERNEL)?; 42 /// 43 /// assert_eq!(*b, 24_u64); 44 /// # Ok::<(), Error>(()) 45 /// ``` 46 /// 47 /// ``` 48 /// # use kernel::bindings; 49 /// const SIZE: usize = bindings::KMALLOC_MAX_SIZE as usize + 1; 50 /// struct Huge([u8; SIZE]); 51 /// 52 /// assert!(KBox::<Huge>::new_uninit(GFP_KERNEL | __GFP_NOWARN).is_err()); 53 /// ``` 54 /// 55 /// ``` 56 /// # use kernel::bindings; 57 /// const SIZE: usize = bindings::KMALLOC_MAX_SIZE as usize + 1; 58 /// struct Huge([u8; SIZE]); 59 /// 60 /// assert!(KVBox::<Huge>::new_uninit(GFP_KERNEL).is_ok()); 61 /// ``` 62 /// 63 /// [`Box`]es can also be used to store trait objects by coercing their type: 64 /// 65 /// ``` 66 /// trait FooTrait {} 67 /// 68 /// struct FooStruct; 69 /// impl FooTrait for FooStruct {} 70 /// 71 /// let _ = KBox::new(FooStruct, GFP_KERNEL)? as KBox<dyn FooTrait>; 72 /// # Ok::<(), Error>(()) 73 /// ``` 74 /// 75 /// # Invariants 76 /// 77 /// `self.0` is always properly aligned and either points to memory allocated with `A` or, for 78 /// zero-sized types, is a dangling, well aligned pointer. 79 #[repr(transparent)] 80 #[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, derive(core::marker::CoercePointee))] 81 pub struct Box<#[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, pointee)] T: ?Sized, A: Allocator>( 82 NonNull<T>, 83 PhantomData<A>, 84 ); 85 86 // This is to allow coercion from `Box<T, A>` to `Box<U, A>` if `T` can be converted to the 87 // dynamically-sized type (DST) `U`. 88 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))] 89 impl<T, U, A> core::ops::CoerceUnsized<Box<U, A>> for Box<T, A> 90 where 91 T: ?Sized + core::marker::Unsize<U>, 92 U: ?Sized, 93 A: Allocator, 94 { 95 } 96 97 // This is to allow `Box<U, A>` to be dispatched on when `Box<T, A>` can be coerced into `Box<U, 98 // A>`. 99 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))] 100 impl<T, U, A> core::ops::DispatchFromDyn<Box<U, A>> for Box<T, A> 101 where 102 T: ?Sized + core::marker::Unsize<U>, 103 U: ?Sized, 104 A: Allocator, 105 { 106 } 107 108 /// Type alias for [`Box`] with a [`Kmalloc`] allocator. 109 /// 110 /// # Examples 111 /// 112 /// ``` 113 /// let b = KBox::new(24_u64, GFP_KERNEL)?; 114 /// 115 /// assert_eq!(*b, 24_u64); 116 /// # Ok::<(), Error>(()) 117 /// ``` 118 pub type KBox<T> = Box<T, super::allocator::Kmalloc>; 119 120 /// Type alias for [`Box`] with a [`Vmalloc`] allocator. 121 /// 122 /// # Examples 123 /// 124 /// ``` 125 /// let b = VBox::new(24_u64, GFP_KERNEL)?; 126 /// 127 /// assert_eq!(*b, 24_u64); 128 /// # Ok::<(), Error>(()) 129 /// ``` 130 pub type VBox<T> = Box<T, super::allocator::Vmalloc>; 131 132 /// Type alias for [`Box`] with a [`KVmalloc`] allocator. 133 /// 134 /// # Examples 135 /// 136 /// ``` 137 /// let b = KVBox::new(24_u64, GFP_KERNEL)?; 138 /// 139 /// assert_eq!(*b, 24_u64); 140 /// # Ok::<(), Error>(()) 141 /// ``` 142 pub type KVBox<T> = Box<T, super::allocator::KVmalloc>; 143 144 // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee: 145 // <https://doc.rust-lang.org/stable/std/option/index.html#representation>). 146 unsafe impl<T, A: Allocator> ZeroableOption for Box<T, A> {} 147 148 // SAFETY: `Box` is `Send` if `T` is `Send` because the `Box` owns a `T`. 149 unsafe impl<T, A> Send for Box<T, A> 150 where 151 T: Send + ?Sized, 152 A: Allocator, 153 { 154 } 155 156 // SAFETY: `Box` is `Sync` if `T` is `Sync` because the `Box` owns a `T`. 157 unsafe impl<T, A> Sync for Box<T, A> 158 where 159 T: Sync + ?Sized, 160 A: Allocator, 161 { 162 } 163 164 impl<T, A> Box<T, A> 165 where 166 T: ?Sized, 167 A: Allocator, 168 { 169 /// Creates a new `Box<T, A>` from a raw pointer. 170 /// 171 /// # Safety 172 /// 173 /// For non-ZSTs, `raw` must point at an allocation allocated with `A` that is sufficiently 174 /// aligned for and holds a valid `T`. The caller passes ownership of the allocation to the 175 /// `Box`. 176 /// 177 /// For ZSTs, `raw` must be a dangling, well aligned pointer. 178 #[inline] 179 pub const unsafe fn from_raw(raw: *mut T) -> Self { 180 // INVARIANT: Validity of `raw` is guaranteed by the safety preconditions of this function. 181 // SAFETY: By the safety preconditions of this function, `raw` is not a NULL pointer. 182 Self(unsafe { NonNull::new_unchecked(raw) }, PhantomData) 183 } 184 185 /// Consumes the `Box<T, A>` and returns a raw pointer. 186 /// 187 /// This will not run the destructor of `T` and for non-ZSTs the allocation will stay alive 188 /// indefinitely. Use [`Box::from_raw`] to recover the [`Box`], drop the value and free the 189 /// allocation, if any. 190 /// 191 /// # Examples 192 /// 193 /// ``` 194 /// let x = KBox::new(24, GFP_KERNEL)?; 195 /// let ptr = KBox::into_raw(x); 196 /// // SAFETY: `ptr` comes from a previous call to `KBox::into_raw`. 197 /// let x = unsafe { KBox::from_raw(ptr) }; 198 /// 199 /// assert_eq!(*x, 24); 200 /// # Ok::<(), Error>(()) 201 /// ``` 202 #[inline] 203 pub fn into_raw(b: Self) -> *mut T { 204 ManuallyDrop::new(b).0.as_ptr() 205 } 206 207 /// Consumes and leaks the `Box<T, A>` and returns a mutable reference. 208 /// 209 /// See [`Box::into_raw`] for more details. 210 #[inline] 211 pub fn leak<'a>(b: Self) -> &'a mut T { 212 // SAFETY: `Box::into_raw` always returns a properly aligned and dereferenceable pointer 213 // which points to an initialized instance of `T`. 214 unsafe { &mut *Box::into_raw(b) } 215 } 216 } 217 218 impl<T, A> Box<MaybeUninit<T>, A> 219 where 220 A: Allocator, 221 { 222 /// Converts a `Box<MaybeUninit<T>, A>` to a `Box<T, A>`. 223 /// 224 /// It is undefined behavior to call this function while the value inside of `b` is not yet 225 /// fully initialized. 226 /// 227 /// # Safety 228 /// 229 /// Callers must ensure that the value inside of `b` is in an initialized state. 230 pub unsafe fn assume_init(self) -> Box<T, A> { 231 let raw = Self::into_raw(self); 232 233 // SAFETY: `raw` comes from a previous call to `Box::into_raw`. By the safety requirements 234 // of this function, the value inside the `Box` is in an initialized state. Hence, it is 235 // safe to reconstruct the `Box` as `Box<T, A>`. 236 unsafe { Box::from_raw(raw.cast()) } 237 } 238 239 /// Writes the value and converts to `Box<T, A>`. 240 pub fn write(mut self, value: T) -> Box<T, A> { 241 (*self).write(value); 242 243 // SAFETY: We've just initialized `b`'s value. 244 unsafe { self.assume_init() } 245 } 246 } 247 248 impl<T, A> Box<T, A> 249 where 250 A: Allocator, 251 { 252 /// Creates a new `Box<T, A>` and initializes its contents with `x`. 253 /// 254 /// New memory is allocated with `A`. The allocation may fail, in which case an error is 255 /// returned. For ZSTs no memory is allocated. 256 pub fn new(x: T, flags: Flags) -> Result<Self, AllocError> { 257 let b = Self::new_uninit(flags)?; 258 Ok(Box::write(b, x)) 259 } 260 261 /// Creates a new `Box<T, A>` with uninitialized contents. 262 /// 263 /// New memory is allocated with `A`. The allocation may fail, in which case an error is 264 /// returned. For ZSTs no memory is allocated. 265 /// 266 /// # Examples 267 /// 268 /// ``` 269 /// let b = KBox::<u64>::new_uninit(GFP_KERNEL)?; 270 /// let b = KBox::write(b, 24); 271 /// 272 /// assert_eq!(*b, 24_u64); 273 /// # Ok::<(), Error>(()) 274 /// ``` 275 pub fn new_uninit(flags: Flags) -> Result<Box<MaybeUninit<T>, A>, AllocError> { 276 let layout = Layout::new::<MaybeUninit<T>>(); 277 let ptr = A::alloc(layout, flags)?; 278 279 // INVARIANT: `ptr` is either a dangling pointer or points to memory allocated with `A`, 280 // which is sufficient in size and alignment for storing a `T`. 281 Ok(Box(ptr.cast(), PhantomData)) 282 } 283 284 /// Constructs a new `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then `x` will be 285 /// pinned in memory and can't be moved. 286 #[inline] 287 pub fn pin(x: T, flags: Flags) -> Result<Pin<Box<T, A>>, AllocError> 288 where 289 A: 'static, 290 { 291 Ok(Self::new(x, flags)?.into()) 292 } 293 294 /// Convert a [`Box<T,A>`] to a [`Pin<Box<T,A>>`]. If `T` does not implement 295 /// [`Unpin`], then `x` will be pinned in memory and can't be moved. 296 pub fn into_pin(this: Self) -> Pin<Self> { 297 this.into() 298 } 299 300 /// Forgets the contents (does not run the destructor), but keeps the allocation. 301 fn forget_contents(this: Self) -> Box<MaybeUninit<T>, A> { 302 let ptr = Self::into_raw(this); 303 304 // SAFETY: `ptr` is valid, because it came from `Box::into_raw`. 305 unsafe { Box::from_raw(ptr.cast()) } 306 } 307 308 /// Drops the contents, but keeps the allocation. 309 /// 310 /// # Examples 311 /// 312 /// ``` 313 /// let value = KBox::new([0; 32], GFP_KERNEL)?; 314 /// assert_eq!(*value, [0; 32]); 315 /// let value = KBox::drop_contents(value); 316 /// // Now we can re-use `value`: 317 /// let value = KBox::write(value, [1; 32]); 318 /// assert_eq!(*value, [1; 32]); 319 /// # Ok::<(), Error>(()) 320 /// ``` 321 pub fn drop_contents(this: Self) -> Box<MaybeUninit<T>, A> { 322 let ptr = this.0.as_ptr(); 323 324 // SAFETY: `ptr` is valid, because it came from `this`. After this call we never access the 325 // value stored in `this` again. 326 unsafe { core::ptr::drop_in_place(ptr) }; 327 328 Self::forget_contents(this) 329 } 330 331 /// Moves the `Box`'s value out of the `Box` and consumes the `Box`. 332 pub fn into_inner(b: Self) -> T { 333 // SAFETY: By the type invariant `&*b` is valid for `read`. 334 let value = unsafe { core::ptr::read(&*b) }; 335 let _ = Self::forget_contents(b); 336 value 337 } 338 } 339 340 impl<T, A> From<Box<T, A>> for Pin<Box<T, A>> 341 where 342 T: ?Sized, 343 A: Allocator, 344 { 345 /// Converts a `Box<T, A>` into a `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then 346 /// `*b` will be pinned in memory and can't be moved. 347 /// 348 /// This moves `b` into `Pin` without moving `*b` or allocating and copying any memory. 349 fn from(b: Box<T, A>) -> Self { 350 // SAFETY: The value wrapped inside a `Pin<Box<T, A>>` cannot be moved or replaced as long 351 // as `T` does not implement `Unpin`. 352 unsafe { Pin::new_unchecked(b) } 353 } 354 } 355 356 impl<T, A> InPlaceWrite<T> for Box<MaybeUninit<T>, A> 357 where 358 A: Allocator + 'static, 359 { 360 type Initialized = Box<T, A>; 361 362 fn write_init<E>(mut self, init: impl Init<T, E>) -> Result<Self::Initialized, E> { 363 let slot = self.as_mut_ptr(); 364 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 365 // slot is valid. 366 unsafe { init.__init(slot)? }; 367 // SAFETY: All fields have been initialized. 368 Ok(unsafe { Box::assume_init(self) }) 369 } 370 371 fn write_pin_init<E>(mut self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E> { 372 let slot = self.as_mut_ptr(); 373 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 374 // slot is valid and will not be moved, because we pin it later. 375 unsafe { init.__pinned_init(slot)? }; 376 // SAFETY: All fields have been initialized. 377 Ok(unsafe { Box::assume_init(self) }.into()) 378 } 379 } 380 381 impl<T, A> InPlaceInit<T> for Box<T, A> 382 where 383 A: Allocator + 'static, 384 { 385 type PinnedSelf = Pin<Self>; 386 387 #[inline] 388 fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Pin<Self>, E> 389 where 390 E: From<AllocError>, 391 { 392 Box::<_, A>::new_uninit(flags)?.write_pin_init(init) 393 } 394 395 #[inline] 396 fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E> 397 where 398 E: From<AllocError>, 399 { 400 Box::<_, A>::new_uninit(flags)?.write_init(init) 401 } 402 } 403 404 // SAFETY: The pointer returned by `into_foreign` comes from a well aligned 405 // pointer to `T`. 406 unsafe impl<T: 'static, A> ForeignOwnable for Box<T, A> 407 where 408 A: Allocator, 409 { 410 const FOREIGN_ALIGN: usize = core::mem::align_of::<T>(); 411 type Borrowed<'a> = &'a T; 412 type BorrowedMut<'a> = &'a mut T; 413 414 fn into_foreign(self) -> *mut c_void { 415 Box::into_raw(self).cast() 416 } 417 418 unsafe fn from_foreign(ptr: *mut c_void) -> Self { 419 // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous 420 // call to `Self::into_foreign`. 421 unsafe { Box::from_raw(ptr.cast()) } 422 } 423 424 unsafe fn borrow<'a>(ptr: *mut c_void) -> &'a T { 425 // SAFETY: The safety requirements of this method ensure that the object remains alive and 426 // immutable for the duration of 'a. 427 unsafe { &*ptr.cast() } 428 } 429 430 unsafe fn borrow_mut<'a>(ptr: *mut c_void) -> &'a mut T { 431 let ptr = ptr.cast(); 432 // SAFETY: The safety requirements of this method ensure that the pointer is valid and that 433 // nothing else will access the value for the duration of 'a. 434 unsafe { &mut *ptr } 435 } 436 } 437 438 // SAFETY: The pointer returned by `into_foreign` comes from a well aligned 439 // pointer to `T`. 440 unsafe impl<T: 'static, A> ForeignOwnable for Pin<Box<T, A>> 441 where 442 A: Allocator, 443 { 444 const FOREIGN_ALIGN: usize = core::mem::align_of::<T>(); 445 type Borrowed<'a> = Pin<&'a T>; 446 type BorrowedMut<'a> = Pin<&'a mut T>; 447 448 fn into_foreign(self) -> *mut c_void { 449 // SAFETY: We are still treating the box as pinned. 450 Box::into_raw(unsafe { Pin::into_inner_unchecked(self) }).cast() 451 } 452 453 unsafe fn from_foreign(ptr: *mut c_void) -> Self { 454 // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous 455 // call to `Self::into_foreign`. 456 unsafe { Pin::new_unchecked(Box::from_raw(ptr.cast())) } 457 } 458 459 unsafe fn borrow<'a>(ptr: *mut c_void) -> Pin<&'a T> { 460 // SAFETY: The safety requirements for this function ensure that the object is still alive, 461 // so it is safe to dereference the raw pointer. 462 // The safety requirements of `from_foreign` also ensure that the object remains alive for 463 // the lifetime of the returned value. 464 let r = unsafe { &*ptr.cast() }; 465 466 // SAFETY: This pointer originates from a `Pin<Box<T>>`. 467 unsafe { Pin::new_unchecked(r) } 468 } 469 470 unsafe fn borrow_mut<'a>(ptr: *mut c_void) -> Pin<&'a mut T> { 471 let ptr = ptr.cast(); 472 // SAFETY: The safety requirements for this function ensure that the object is still alive, 473 // so it is safe to dereference the raw pointer. 474 // The safety requirements of `from_foreign` also ensure that the object remains alive for 475 // the lifetime of the returned value. 476 let r = unsafe { &mut *ptr }; 477 478 // SAFETY: This pointer originates from a `Pin<Box<T>>`. 479 unsafe { Pin::new_unchecked(r) } 480 } 481 } 482 483 impl<T, A> Deref for Box<T, A> 484 where 485 T: ?Sized, 486 A: Allocator, 487 { 488 type Target = T; 489 490 fn deref(&self) -> &T { 491 // SAFETY: `self.0` is always properly aligned, dereferenceable and points to an initialized 492 // instance of `T`. 493 unsafe { self.0.as_ref() } 494 } 495 } 496 497 impl<T, A> DerefMut for Box<T, A> 498 where 499 T: ?Sized, 500 A: Allocator, 501 { 502 fn deref_mut(&mut self) -> &mut T { 503 // SAFETY: `self.0` is always properly aligned, dereferenceable and points to an initialized 504 // instance of `T`. 505 unsafe { self.0.as_mut() } 506 } 507 } 508 509 /// # Examples 510 /// 511 /// ``` 512 /// # use core::borrow::Borrow; 513 /// # use kernel::alloc::KBox; 514 /// struct Foo<B: Borrow<u32>>(B); 515 /// 516 /// // Owned instance. 517 /// let owned = Foo(1); 518 /// 519 /// // Owned instance using `KBox`. 520 /// let owned_kbox = Foo(KBox::new(1, GFP_KERNEL)?); 521 /// 522 /// let i = 1; 523 /// // Borrowed from `i`. 524 /// let borrowed = Foo(&i); 525 /// # Ok::<(), Error>(()) 526 /// ``` 527 impl<T, A> Borrow<T> for Box<T, A> 528 where 529 T: ?Sized, 530 A: Allocator, 531 { 532 fn borrow(&self) -> &T { 533 self.deref() 534 } 535 } 536 537 /// # Examples 538 /// 539 /// ``` 540 /// # use core::borrow::BorrowMut; 541 /// # use kernel::alloc::KBox; 542 /// struct Foo<B: BorrowMut<u32>>(B); 543 /// 544 /// // Owned instance. 545 /// let owned = Foo(1); 546 /// 547 /// // Owned instance using `KBox`. 548 /// let owned_kbox = Foo(KBox::new(1, GFP_KERNEL)?); 549 /// 550 /// let mut i = 1; 551 /// // Borrowed from `i`. 552 /// let borrowed = Foo(&mut i); 553 /// # Ok::<(), Error>(()) 554 /// ``` 555 impl<T, A> BorrowMut<T> for Box<T, A> 556 where 557 T: ?Sized, 558 A: Allocator, 559 { 560 fn borrow_mut(&mut self) -> &mut T { 561 self.deref_mut() 562 } 563 } 564 565 impl<T, A> fmt::Display for Box<T, A> 566 where 567 T: ?Sized + fmt::Display, 568 A: Allocator, 569 { 570 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 571 <T as fmt::Display>::fmt(&**self, f) 572 } 573 } 574 575 impl<T, A> fmt::Debug for Box<T, A> 576 where 577 T: ?Sized + fmt::Debug, 578 A: Allocator, 579 { 580 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 581 <T as fmt::Debug>::fmt(&**self, f) 582 } 583 } 584 585 impl<T, A> Drop for Box<T, A> 586 where 587 T: ?Sized, 588 A: Allocator, 589 { 590 fn drop(&mut self) { 591 let layout = Layout::for_value::<T>(self); 592 593 // SAFETY: The pointer in `self.0` is guaranteed to be valid by the type invariant. 594 unsafe { core::ptr::drop_in_place::<T>(self.deref_mut()) }; 595 596 // SAFETY: 597 // - `self.0` was previously allocated with `A`. 598 // - `layout` is equal to the `Layout´ `self.0` was allocated with. 599 unsafe { A::free(self.0.cast(), layout) }; 600 } 601 } 602 603 /// # Examples 604 /// 605 /// ``` 606 /// # use kernel::prelude::*; 607 /// use kernel::alloc::allocator::VmallocPageIter; 608 /// use kernel::page::{AsPageIter, PAGE_SIZE}; 609 /// 610 /// let mut vbox = VBox::new((), GFP_KERNEL)?; 611 /// 612 /// assert!(vbox.page_iter().next().is_none()); 613 /// 614 /// let mut vbox = VBox::<[u8; PAGE_SIZE]>::new_uninit(GFP_KERNEL)?; 615 /// 616 /// let page = vbox.page_iter().next().expect("At least one page should be available.\n"); 617 /// 618 /// // SAFETY: There is no concurrent read or write to the same page. 619 /// unsafe { page.fill_zero_raw(0, PAGE_SIZE)? }; 620 /// # Ok::<(), Error>(()) 621 /// ``` 622 impl<T> AsPageIter for VBox<T> { 623 type Iter<'a> 624 = VmallocPageIter<'a> 625 where 626 T: 'a; 627 628 fn page_iter(&mut self) -> Self::Iter<'_> { 629 let ptr = self.0.cast(); 630 let size = core::mem::size_of::<T>(); 631 632 // SAFETY: 633 // - `ptr` is a valid pointer to the beginning of a `Vmalloc` allocation. 634 // - `ptr` is guaranteed to be valid for the lifetime of `'a`. 635 // - `size` is the size of the `Vmalloc` allocation `ptr` points to. 636 unsafe { VmallocPageIter::new(ptr, size) } 637 } 638 } 639