xref: /linux/rust/kernel/alloc.rs (revision 8373147ce4961665c5700016b1c76299e962d077)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Extensions to the [`alloc`] crate.
4 
5 #[cfg(not(any(test, testlib)))]
6 pub mod allocator;
7 pub mod box_ext;
8 pub mod kbox;
9 pub mod vec_ext;
10 
11 #[cfg(any(test, testlib))]
12 pub mod allocator_test;
13 
14 #[cfg(any(test, testlib))]
15 pub use self::allocator_test as allocator;
16 
17 pub use self::kbox::Box;
18 pub use self::kbox::KBox;
19 pub use self::kbox::KVBox;
20 pub use self::kbox::VBox;
21 
22 /// Indicates an allocation error.
23 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
24 pub struct AllocError;
25 use core::{alloc::Layout, ptr::NonNull};
26 
27 /// Flags to be used when allocating memory.
28 ///
29 /// They can be combined with the operators `|`, `&`, and `!`.
30 ///
31 /// Values can be used from the [`flags`] module.
32 #[derive(Clone, Copy)]
33 pub struct Flags(u32);
34 
35 impl Flags {
36     /// Get the raw representation of this flag.
37     pub(crate) fn as_raw(self) -> u32 {
38         self.0
39     }
40 }
41 
42 impl core::ops::BitOr for Flags {
43     type Output = Self;
44     fn bitor(self, rhs: Self) -> Self::Output {
45         Self(self.0 | rhs.0)
46     }
47 }
48 
49 impl core::ops::BitAnd for Flags {
50     type Output = Self;
51     fn bitand(self, rhs: Self) -> Self::Output {
52         Self(self.0 & rhs.0)
53     }
54 }
55 
56 impl core::ops::Not for Flags {
57     type Output = Self;
58     fn not(self) -> Self::Output {
59         Self(!self.0)
60     }
61 }
62 
63 /// Allocation flags.
64 ///
65 /// These are meant to be used in functions that can allocate memory.
66 pub mod flags {
67     use super::Flags;
68 
69     /// Zeroes out the allocated memory.
70     ///
71     /// This is normally or'd with other flags.
72     pub const __GFP_ZERO: Flags = Flags(bindings::__GFP_ZERO);
73 
74     /// Allow the allocation to be in high memory.
75     ///
76     /// Allocations in high memory may not be mapped into the kernel's address space, so this can't
77     /// be used with `kmalloc` and other similar methods.
78     ///
79     /// This is normally or'd with other flags.
80     pub const __GFP_HIGHMEM: Flags = Flags(bindings::__GFP_HIGHMEM);
81 
82     /// Users can not sleep and need the allocation to succeed.
83     ///
84     /// A lower watermark is applied to allow access to "atomic reserves". The current
85     /// implementation doesn't support NMI and few other strict non-preemptive contexts (e.g.
86     /// raw_spin_lock). The same applies to [`GFP_NOWAIT`].
87     pub const GFP_ATOMIC: Flags = Flags(bindings::GFP_ATOMIC);
88 
89     /// Typical for kernel-internal allocations. The caller requires ZONE_NORMAL or a lower zone
90     /// for direct access but can direct reclaim.
91     pub const GFP_KERNEL: Flags = Flags(bindings::GFP_KERNEL);
92 
93     /// The same as [`GFP_KERNEL`], except the allocation is accounted to kmemcg.
94     pub const GFP_KERNEL_ACCOUNT: Flags = Flags(bindings::GFP_KERNEL_ACCOUNT);
95 
96     /// For kernel allocations that should not stall for direct reclaim, start physical IO or
97     /// use any filesystem callback.  It is very likely to fail to allocate memory, even for very
98     /// small allocations.
99     pub const GFP_NOWAIT: Flags = Flags(bindings::GFP_NOWAIT);
100 
101     /// Suppresses allocation failure reports.
102     ///
103     /// This is normally or'd with other flags.
104     pub const __GFP_NOWARN: Flags = Flags(bindings::__GFP_NOWARN);
105 }
106 
107 /// The kernel's [`Allocator`] trait.
108 ///
109 /// An implementation of [`Allocator`] can allocate, re-allocate and free memory buffers described
110 /// via [`Layout`].
111 ///
112 /// [`Allocator`] is designed to be implemented as a ZST; [`Allocator`] functions do not operate on
113 /// an object instance.
114 ///
115 /// In order to be able to support `#[derive(SmartPointer)]` later on, we need to avoid a design
116 /// that requires an `Allocator` to be instantiated, hence its functions must not contain any kind
117 /// of `self` parameter.
118 ///
119 /// # Safety
120 ///
121 /// - A memory allocation returned from an allocator must remain valid until it is explicitly freed.
122 ///
123 /// - Any pointer to a valid memory allocation must be valid to be passed to any other [`Allocator`]
124 ///   function of the same type.
125 ///
126 /// - Implementers must ensure that all trait functions abide by the guarantees documented in the
127 ///   `# Guarantees` sections.
128 pub unsafe trait Allocator {
129     /// Allocate memory based on `layout` and `flags`.
130     ///
131     /// On success, returns a buffer represented as `NonNull<[u8]>` that satisfies the layout
132     /// constraints (i.e. minimum size and alignment as specified by `layout`).
133     ///
134     /// This function is equivalent to `realloc` when called with `None`.
135     ///
136     /// # Guarantees
137     ///
138     /// When the return value is `Ok(ptr)`, then `ptr` is
139     /// - valid for reads and writes for `layout.size()` bytes, until it is passed to
140     ///   [`Allocator::free`] or [`Allocator::realloc`],
141     /// - aligned to `layout.align()`,
142     ///
143     /// Additionally, `Flags` are honored as documented in
144     /// <https://docs.kernel.org/core-api/mm-api.html#mm-api-gfp-flags>.
145     fn alloc(layout: Layout, flags: Flags) -> Result<NonNull<[u8]>, AllocError> {
146         // SAFETY: Passing `None` to `realloc` is valid by its safety requirements and asks for a
147         // new memory allocation.
148         unsafe { Self::realloc(None, layout, Layout::new::<()>(), flags) }
149     }
150 
151     /// Re-allocate an existing memory allocation to satisfy the requested `layout`.
152     ///
153     /// If the requested size is zero, `realloc` behaves equivalent to `free`.
154     ///
155     /// If the requested size is larger than the size of the existing allocation, a successful call
156     /// to `realloc` guarantees that the new or grown buffer has at least `Layout::size` bytes, but
157     /// may also be larger.
158     ///
159     /// If the requested size is smaller than the size of the existing allocation, `realloc` may or
160     /// may not shrink the buffer; this is implementation specific to the allocator.
161     ///
162     /// On allocation failure, the existing buffer, if any, remains valid.
163     ///
164     /// The buffer is represented as `NonNull<[u8]>`.
165     ///
166     /// # Safety
167     ///
168     /// - If `ptr == Some(p)`, then `p` must point to an existing and valid memory allocation
169     ///   created by this [`Allocator`]; if `old_layout` is zero-sized `p` does not need to be a
170     ///   pointer returned by this [`Allocator`].
171     /// - `ptr` is allowed to be `None`; in this case a new memory allocation is created and
172     ///   `old_layout` is ignored.
173     /// - `old_layout` must match the `Layout` the allocation has been created with.
174     ///
175     /// # Guarantees
176     ///
177     /// This function has the same guarantees as [`Allocator::alloc`]. When `ptr == Some(p)`, then
178     /// it additionally guarantees that:
179     /// - the contents of the memory pointed to by `p` are preserved up to the lesser of the new
180     ///   and old size, i.e. `ret_ptr[0..min(layout.size(), old_layout.size())] ==
181     ///   p[0..min(layout.size(), old_layout.size())]`.
182     /// - when the return value is `Err(AllocError)`, then `ptr` is still valid.
183     unsafe fn realloc(
184         ptr: Option<NonNull<u8>>,
185         layout: Layout,
186         old_layout: Layout,
187         flags: Flags,
188     ) -> Result<NonNull<[u8]>, AllocError>;
189 
190     /// Free an existing memory allocation.
191     ///
192     /// # Safety
193     ///
194     /// - `ptr` must point to an existing and valid memory allocation created by this [`Allocator`];
195     ///   if `old_layout` is zero-sized `p` does not need to be a pointer returned by this
196     ///   [`Allocator`].
197     /// - `layout` must match the `Layout` the allocation has been created with.
198     /// - The memory allocation at `ptr` must never again be read from or written to.
199     unsafe fn free(ptr: NonNull<u8>, layout: Layout) {
200         // SAFETY: The caller guarantees that `ptr` points at a valid allocation created by this
201         // allocator. We are passing a `Layout` with the smallest possible alignment, so it is
202         // smaller than or equal to the alignment previously used with this allocation.
203         let _ = unsafe { Self::realloc(Some(ptr), Layout::new::<()>(), layout, Flags(0)) };
204     }
205 }
206 
207 #[allow(dead_code)]
208 /// Returns a properly aligned dangling pointer from the given `layout`.
209 pub(crate) fn dangling_from_layout(layout: Layout) -> NonNull<u8> {
210     let ptr = layout.align() as *mut u8;
211 
212     // SAFETY: `layout.align()` (and hence `ptr`) is guaranteed to be non-zero.
213     unsafe { NonNull::new_unchecked(ptr) }
214 }
215