xref: /linux/rust/kernel/alloc.rs (revision 024bfd2e9d80d7131f1178eb2235030b96f7ef0e)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Implementation of the kernel's memory allocation infrastructure.
4 
5 #[cfg(not(any(test, testlib)))]
6 pub mod allocator;
7 pub mod kbox;
8 pub mod kvec;
9 pub mod layout;
10 
11 #[cfg(any(test, testlib))]
12 pub mod allocator_test;
13 
14 #[cfg(any(test, testlib))]
15 pub use self::allocator_test as allocator;
16 
17 pub use self::kbox::Box;
18 pub use self::kbox::KBox;
19 pub use self::kbox::KVBox;
20 pub use self::kbox::VBox;
21 
22 pub use self::kvec::IntoIter;
23 pub use self::kvec::KVVec;
24 pub use self::kvec::KVec;
25 pub use self::kvec::VVec;
26 pub use self::kvec::Vec;
27 
28 /// Indicates an allocation error.
29 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
30 pub struct AllocError;
31 use core::{alloc::Layout, ptr::NonNull};
32 
33 /// Flags to be used when allocating memory.
34 ///
35 /// They can be combined with the operators `|`, `&`, and `!`.
36 ///
37 /// Values can be used from the [`flags`] module.
38 #[derive(Clone, Copy, PartialEq)]
39 pub struct Flags(u32);
40 
41 impl Flags {
42     /// Get the raw representation of this flag.
43     pub(crate) fn as_raw(self) -> u32 {
44         self.0
45     }
46 
47     /// Check whether `flags` is contained in `self`.
48     pub fn contains(self, flags: Flags) -> bool {
49         (self & flags) == flags
50     }
51 }
52 
53 impl core::ops::BitOr for Flags {
54     type Output = Self;
55     fn bitor(self, rhs: Self) -> Self::Output {
56         Self(self.0 | rhs.0)
57     }
58 }
59 
60 impl core::ops::BitAnd for Flags {
61     type Output = Self;
62     fn bitand(self, rhs: Self) -> Self::Output {
63         Self(self.0 & rhs.0)
64     }
65 }
66 
67 impl core::ops::Not for Flags {
68     type Output = Self;
69     fn not(self) -> Self::Output {
70         Self(!self.0)
71     }
72 }
73 
74 /// Allocation flags.
75 ///
76 /// These are meant to be used in functions that can allocate memory.
77 pub mod flags {
78     use super::Flags;
79 
80     /// Zeroes out the allocated memory.
81     ///
82     /// This is normally or'd with other flags.
83     pub const __GFP_ZERO: Flags = Flags(bindings::__GFP_ZERO);
84 
85     /// Allow the allocation to be in high memory.
86     ///
87     /// Allocations in high memory may not be mapped into the kernel's address space, so this can't
88     /// be used with `kmalloc` and other similar methods.
89     ///
90     /// This is normally or'd with other flags.
91     pub const __GFP_HIGHMEM: Flags = Flags(bindings::__GFP_HIGHMEM);
92 
93     /// Users can not sleep and need the allocation to succeed.
94     ///
95     /// A lower watermark is applied to allow access to "atomic reserves". The current
96     /// implementation doesn't support NMI and few other strict non-preemptive contexts (e.g.
97     /// raw_spin_lock). The same applies to [`GFP_NOWAIT`].
98     pub const GFP_ATOMIC: Flags = Flags(bindings::GFP_ATOMIC);
99 
100     /// Typical for kernel-internal allocations. The caller requires ZONE_NORMAL or a lower zone
101     /// for direct access but can direct reclaim.
102     pub const GFP_KERNEL: Flags = Flags(bindings::GFP_KERNEL);
103 
104     /// The same as [`GFP_KERNEL`], except the allocation is accounted to kmemcg.
105     pub const GFP_KERNEL_ACCOUNT: Flags = Flags(bindings::GFP_KERNEL_ACCOUNT);
106 
107     /// For kernel allocations that should not stall for direct reclaim, start physical IO or
108     /// use any filesystem callback.  It is very likely to fail to allocate memory, even for very
109     /// small allocations.
110     pub const GFP_NOWAIT: Flags = Flags(bindings::GFP_NOWAIT);
111 
112     /// Suppresses allocation failure reports.
113     ///
114     /// This is normally or'd with other flags.
115     pub const __GFP_NOWARN: Flags = Flags(bindings::__GFP_NOWARN);
116 }
117 
118 /// The kernel's [`Allocator`] trait.
119 ///
120 /// An implementation of [`Allocator`] can allocate, re-allocate and free memory buffers described
121 /// via [`Layout`].
122 ///
123 /// [`Allocator`] is designed to be implemented as a ZST; [`Allocator`] functions do not operate on
124 /// an object instance.
125 ///
126 /// In order to be able to support `#[derive(SmartPointer)]` later on, we need to avoid a design
127 /// that requires an `Allocator` to be instantiated, hence its functions must not contain any kind
128 /// of `self` parameter.
129 ///
130 /// # Safety
131 ///
132 /// - A memory allocation returned from an allocator must remain valid until it is explicitly freed.
133 ///
134 /// - Any pointer to a valid memory allocation must be valid to be passed to any other [`Allocator`]
135 ///   function of the same type.
136 ///
137 /// - Implementers must ensure that all trait functions abide by the guarantees documented in the
138 ///   `# Guarantees` sections.
139 pub unsafe trait Allocator {
140     /// Allocate memory based on `layout` and `flags`.
141     ///
142     /// On success, returns a buffer represented as `NonNull<[u8]>` that satisfies the layout
143     /// constraints (i.e. minimum size and alignment as specified by `layout`).
144     ///
145     /// This function is equivalent to `realloc` when called with `None`.
146     ///
147     /// # Guarantees
148     ///
149     /// When the return value is `Ok(ptr)`, then `ptr` is
150     /// - valid for reads and writes for `layout.size()` bytes, until it is passed to
151     ///   [`Allocator::free`] or [`Allocator::realloc`],
152     /// - aligned to `layout.align()`,
153     ///
154     /// Additionally, `Flags` are honored as documented in
155     /// <https://docs.kernel.org/core-api/mm-api.html#mm-api-gfp-flags>.
156     fn alloc(layout: Layout, flags: Flags) -> Result<NonNull<[u8]>, AllocError> {
157         // SAFETY: Passing `None` to `realloc` is valid by its safety requirements and asks for a
158         // new memory allocation.
159         unsafe { Self::realloc(None, layout, Layout::new::<()>(), flags) }
160     }
161 
162     /// Re-allocate an existing memory allocation to satisfy the requested `layout`.
163     ///
164     /// If the requested size is zero, `realloc` behaves equivalent to `free`.
165     ///
166     /// If the requested size is larger than the size of the existing allocation, a successful call
167     /// to `realloc` guarantees that the new or grown buffer has at least `Layout::size` bytes, but
168     /// may also be larger.
169     ///
170     /// If the requested size is smaller than the size of the existing allocation, `realloc` may or
171     /// may not shrink the buffer; this is implementation specific to the allocator.
172     ///
173     /// On allocation failure, the existing buffer, if any, remains valid.
174     ///
175     /// The buffer is represented as `NonNull<[u8]>`.
176     ///
177     /// # Safety
178     ///
179     /// - If `ptr == Some(p)`, then `p` must point to an existing and valid memory allocation
180     ///   created by this [`Allocator`]; if `old_layout` is zero-sized `p` does not need to be a
181     ///   pointer returned by this [`Allocator`].
182     /// - `ptr` is allowed to be `None`; in this case a new memory allocation is created and
183     ///   `old_layout` is ignored.
184     /// - `old_layout` must match the `Layout` the allocation has been created with.
185     ///
186     /// # Guarantees
187     ///
188     /// This function has the same guarantees as [`Allocator::alloc`]. When `ptr == Some(p)`, then
189     /// it additionally guarantees that:
190     /// - the contents of the memory pointed to by `p` are preserved up to the lesser of the new
191     ///   and old size, i.e. `ret_ptr[0..min(layout.size(), old_layout.size())] ==
192     ///   p[0..min(layout.size(), old_layout.size())]`.
193     /// - when the return value is `Err(AllocError)`, then `ptr` is still valid.
194     unsafe fn realloc(
195         ptr: Option<NonNull<u8>>,
196         layout: Layout,
197         old_layout: Layout,
198         flags: Flags,
199     ) -> Result<NonNull<[u8]>, AllocError>;
200 
201     /// Free an existing memory allocation.
202     ///
203     /// # Safety
204     ///
205     /// - `ptr` must point to an existing and valid memory allocation created by this [`Allocator`];
206     ///   if `old_layout` is zero-sized `p` does not need to be a pointer returned by this
207     ///   [`Allocator`].
208     /// - `layout` must match the `Layout` the allocation has been created with.
209     /// - The memory allocation at `ptr` must never again be read from or written to.
210     unsafe fn free(ptr: NonNull<u8>, layout: Layout) {
211         // SAFETY: The caller guarantees that `ptr` points at a valid allocation created by this
212         // allocator. We are passing a `Layout` with the smallest possible alignment, so it is
213         // smaller than or equal to the alignment previously used with this allocation.
214         let _ = unsafe { Self::realloc(Some(ptr), Layout::new::<()>(), layout, Flags(0)) };
215     }
216 }
217 
218 /// Returns a properly aligned dangling pointer from the given `layout`.
219 pub(crate) fn dangling_from_layout(layout: Layout) -> NonNull<u8> {
220     let ptr = layout.align() as *mut u8;
221 
222     // SAFETY: `layout.align()` (and hence `ptr`) is guaranteed to be non-zero.
223     unsafe { NonNull::new_unchecked(ptr) }
224 }
225